
Minimum Acceptance Criteria for Geostatistical Realizations

Oy Leuangthong (oy@ualberta.ca), Jason A. McLennan (jam12@ualberta.ca)
and Clayton V. Deutsch (cdeutsch@ualberta.ca)

Department of Civil & Environmental Engineering
University of Alberta

Abstract

Geostatistical simulation is being increasingly used for numerical modeling of natural phe-
nomena. The development of simulation as an alternative to kriging is due to improved
characterization of heterogeneity and a model of joint uncertainty. The popularity of simu-
lation has increased in both mining and petroleum industries. Simulation is widely available
in commercial software. Many of these software packages, however, do not provide the tools
for careful checking of the geostatistical realizations prior to their use in decision-making.

There are some very basic checks that should be performed on all geostatistical mod-
els. This paper identifies (1) the minimum criteria that should be met by all geostatistical
simulation models, and (2) the checks required to verify that these minimum criteria are
indeed satisfied. All numerical simulations should honour the input information including
the geological interpretation, the data values at their locations, the data distribution, and the
correlation structure, within “acceptable” statistical fluctuations. Moreover, the uncertainty
measured by the differences between simulated realizations should be a reasonable measure of
uncertainty. A number of different applications are shown to illustrate the various checks.
These checks should be an integral part of any simulation modeling work flow.

Introduction

Geostatistics has grown to a suite of tools for both estimation and simulation. Recently, sim-
ulation is gaining in popularity over estimation techniques because of its ability to improve
heterogeneity characterization and assessment of joint uncertainty.

Conventional kriging algorithms are looked upon favourably for their ability to estimate
accounting for the spatial variability of the data. The only problem is the overly smooth
distribution of estimates, that is not representative of the true variability.

Geostatistical simulation is built on the foundations of kriging. In its development,
simulation retains the positive attributes of kriging, that is, exact data reproduction and
use of the spatial correlations between data. The smoothing effect in estimation is corrected
by accounting for the variability between the simulated locations. Multiple realizations of
the deposit allow for the assessment of joint uncertainty.

In 1983, Parker claimed that “production of the reserve model is now on the critical
path of the project . . . [it] has forced geostatistics to be practiced in a ‘production mode’.
That many successful geostatistical studies of the past were the result of careful methodical
research and checking is often forgotten.” [14] (Parker, 1983a, p.930) Almost 20 years later,
this sentiment still rings true in modern practice. The only difference is that in today’s
technologically advanced environment, this “production mode” is at an even bigger scale.

The advancement of technology and the availability of simulation algorithms in many
commercial software has popularized the use of geostatistics in both the mining and the
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petroleum industry. The algorithms and engines are faster than ever before, and they are
designed to facilitate easy setup of a geostatistical study. The ease of application sometimes
turns geostatistical modeling into a “black box” practice, allowing for more inferior models
[16] (Srivastava, 1996, p. 56). Furthermore, the tools required for careful checking of these
models are not often provided as part of the software; the only recourse is to perform model
checking tasks outside of the commercial software, but this is often impractical due to the
large size of the files and the data manipulation required.

This paper reinforces the need for careful checks to ensure success in a modern geosta-
tistical application. Specifically, the minimum criteria for confirming consistency in a model
are addressed, and the required checks that must be performed are outlined. An application
to a gold deposit illustrates the model results and shows the basic tools to verify consistency
of the model with input information.

Geostatistical simulation produces a model of uncertainty that is represented by multiple
sets of possible values distributed in space; one set of possible outcomes is referred to as a
realization. Some checks described in this paper are performed on a single realization, while
others are performed on the set of multiple realizations. The term suite of realizations or
ensemble are used to refer to this latter set of realizations.

Identification and Verification of Minimum Criteria

The term model validation commonly refers to some measure of the goodness of a model.
This goodness is usually measured by reconciling model results to some additional hard data.
In mining, this hard data can be blast hole data; while in petroleum, reconciliation is often
more complex due to the use of dynamic production test results. Whatever the additional
information, model validation has a very specific reference to the predictive ability of the
model, suggesting that the model is representative of the physical reality [13] (Oreskes et.al.,
1994, p. 642).

Confirming that a model reproduces the input is the scope of what we mean by minimum
criteria. It does not necessarily imply that the model is geologically realistic or good for
production forecasting. The key deposit-specific inputs to a geostatistical simulation consist
of the actual data and the variogram function. At the very least, the information contained
in these two inputs must be reproduced by a numerical model. A simulated model must
reproduce:

1. data values at their location,

2. distribution of the attribute of interest, and

3. the spatial continuity characterized by the variogram model.

Note that reproduction of the latter two statistics refers to honouring the expected value,
thus statistical fluctuations about these values are anticipated. In the case of simulation
models of multiple variables, the multivariate distributions and corresponding summary
statistics should also be honoured.

Specific implementation details may cause problems. In such situations, a careful exami-
nation should be conducted to confirm the cause of violation, and whether this is acceptable.
Some of these checks can be performed on individual realizations while others require con-
sideration of the full suite of multiple realizations.
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The credibility of any model is not only dependent on satisfying the above checks, but
also on ensuring that the model parameters are appropriate. Reliable inference of model
parameters is critical to model credibility and deserves some attention; however, that is not
the subject of this note.

The practitioner is faced with many decisions in the process of model construction,
use of declustering tools, variogram modeling, size of the model to generate, number of
realizations, type of kriging to apply, and a general multitude of implementation details
that vary with the software. Careful documentation and justification of these decisions
are important for repeatability of the models. Although this documentation may help to
improve the construction of future models, it does not act as an error-checking tool for the
current model under construction. For this, several validation tools exist that should be
integrated into the modeling work flow.

As simple as this sounds, the first check should be a visualization of the realizations (in
3-D if possible). This visualization should highlight low and high valued areas. The project
geologist should be satisfied with the variability of the high and low values and their overall
distribution. The variability or uncertainty should be reasonable and plausible, for example,
there should be no high values in clearly low areas and vice versa. Comparisons against
simple geologic contours of trends, generated by methods such as hand contouring, inverse
distance and other common estimation techniques, would also provide a level of comfort
and confidence in the simulation models. The geologist should be neither intimidated by
the geostatistical procedures nor swayed into accepting any strange results.

Once the realizations are deemed geologically plausible, common validation tools, such as
cross validation and the jackknife, could be used. The basic idea is to estimate an attribute
at a location where the true value is known. In cross validation, a data value is removed
and the location is estimated using all other neighbouring data. Conversely, the jackknife
refers to resampling without replacement. As a result, cross validation is commonly known
as the “leave one out” approach, and the jackknife approach is known as the “keep some
back” approach [2] (Deutsch, 1996). These methods provide an indication of the goodness
of modeling parameters. Cross validation should yield the following results for a model with
“good” parameters:

• Cross plot of the estimate vs. the true value should show a high correlation coefficient.
A correlation of 1.0 means that the error between the values is 0.0.

• Distribution of errors should be symmetric, with a mean of zero and a low variance.

• Cross plot of the error vs. the estimate should be centered about zero error, satisfying
a property called “conditional unbiasedness” [7, 10, 11].

Although these techniques are often used to fine tune the variogram model, cross validation
results are often insensitive to minor changes in the variogram model. The main use of cross
validation is to identify mistakes and/or problem data. It does not prove which simulation
or estimation technique is optimal.

Data Reproduction

From the exactitude property of kriging, the estimate at a data location is exactly the data
value and the error variance is zero [5, 9] (Goovaerts, 1997; Journel and Huijbregts, 1978),
that is,
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a) Outside 3-D grid. b) In 3-D Grid, but no value.

-1.0

c) In 3-D grid, but multiple data

in one block.

Figure 1: Schematic illustrations of possible reasons why a composite is not assigned to a grid
block: a) sample is available but lies outside of simulation grid, b) sample lies within simulation
grid, but is uninformed, and c) two samples lie within the same grid block, but only closest sample
is assigned.

z∗K(u) = z(uα), ∀u = uα, α = 1, . . . , n

where z∗K(u) is the kriged estimate of the random variable, Z, at location u in the domain,
and z(uα) is the data values at location uα, α = 1, . . . , n. Since simulation relies on the
kriged estimate and the kriging variance to define the conditional cumulative distribution
function (ccdf), simulation will also reproduce the data exactly at their locations.

To verify that all data that should be reproduced are reproduced, a crossplot of the data
and the simulated values at the data locations should be generated. First, all data should be
accounted for via a detailed inventory for data reproduction. In some cases, there is a valid
reason why some data are not reproduced. For instance, some implementations of simulation
allow for data assignment to grid nodes as a way to speed up distance calculations. As a
result, the total number of assigned data may be less than the total number of data available
for conditioning. There are a number of reasons for this (Figure 1):

• The sample coordinates may lie outside of the 3-D grid as specified by the model
limits.

• The data lies inside the 3-D grid, but its value is trimmed. Although these samples
are located inside the 3-D grid to be simulated, their data values indicate that either
no sample is available or it is specified as missing or an outlier. Hence it would not
be assigned to a grid block.

• The data is inside the 3-D grid but there are multiple data close to one grid block;
another sample is closer to the same block centre and is assigned to the grid block.
The first sample is then not considered in the simulation.

The exact breakdown of samples that are not assigned as a result of the above reasons
should be tabulated to ensure that all non-reproduced data are accounted for. In this type
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Figure 2: Crossplot of original data and simulated values at data locations.

of implementation, all data are used to define the global distribution but only the assigned
data are used to condition the simulation.

Once the exact number of data that should be reproduced is determined, a crossplot of
this subset data against the model values at the same locations should show a 1:1 corre-
spondence between these two sets of values (see Figure 2). Slight deviations may be due
to numerical precision of the transformation look up table for back transformation of sim-
ulated values to original units, which is the case for the low values in Figure 2. Significant
deviations from the 45 degree line should be investigated further to determine the cause.

Of course, there is also the option to not assign data to grid nodes. In this case, unless a
sample has the same coordinates as a grid block center, it will not be reproduced exactly. In
this implementation, the corresponding crossplot to Figure 2 should show slight deviations
from the 45 degree line with a high correlation near 1.0. The potential for large deviations
from this 45 degree line depends on the proportion of the nugget effect.

Histogram Reproduction

The second check that should be performed is to verify that the histogram is reproduced.
This requires that the target histogram is clearly identified. If the representative histogram
is different from the equally weighted data histogram, then this target distribution should
be clearly specified in the simulation input parameters.

Moreover, the practitioner should also be clear in the declustering approach employed to
establish the representativity of the distribution. In this matter, appropriate considerations
regarding the different techniques should be addressed. For instance, if a geology model is
available that clearly defines the geological boundaries, then polygonal declustering may be
preferable to cell declustering.

In the multivariate context, if the simulation approach will consider secondary data,
then the target distributions may also require accounting for both the joint and marginal
distributions of the two variables in the weighting scheme. For instance, use of the stepwise
conditional transformation requires transforming one variable conditional to another [12];
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Figure 3: Histogram reproduction for attribute of interest: representative histogram (left) compared
to simulated histogram from one realization (right).
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Figure 4: Q-Q plot of the original data distribution and the simulated values distribution to check
histogram reproduction

hence, the target distribution of the conditionally transformed variable will require use of the
bivariate distribution to calibrate the marginal distribution to obtain the target histogram.

To verify global reproduction of the histogram, the histogram of the model should be
examined. It may be impractical to examine the histograms from all realizations; however,
a few randomly selected realizations should be checked. In this type of visual checking,
the key features to note include reproduction of (1) the histogram shape, (2) the range of
the simulated values, and (3) the summary statistics, such as the mean, median and the
variance (see Figure 3).

Alternatively, a quantile-quantile (Q-Q) plot may provide a better indication of his-
togram reproduction, as binning may hide some features in the histogram (see Figure 4).
This type of check permits multiple realizations to be visualized at once. This amounts to
plotting multiple distributions onto the same Q-Q plot and assessing whether the suite of
distributions honours the input histogram with some statistical fluctuations.
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Figure 5: Reproduction of summary statistics for model variable: histogram of means (left) and
variances (right) from multiple simulated realizations. Box plots on x-axis shows the 95% probability
interval (outside lines), 50% probability interval (box) and the median (vertical bold line inside box).
The dot indicates the mean value of the summary statistic from the target (declustered) distributions.

Reproduction of Summary Statistics

The previous check was an examination of the reproduction of the histogram shapes and
some statistics on an individual realization basis. This particular check differs in that the
reproduction of the summary statistics will be examined over the entire suite of multiple
realizations (which is sometimes referred to as the ensemble).

For each realization, there is a global mean and a global variance. Over the ensemble,
the summary statistics can be checked. An easy way to check this reproduction is to plot
the histograms of the mean and variance from all the realizations. We would expect that
over many realizations, the mean of the means should reproduce the target mean, and
the mean of the variance distribution should reproduce the target variance. A box plot
on both distributions with a reference value will show the position of the target statistic
relative to the distribution of simulated statistics. Figure 5 shows an example of this type
of check performed over 40 realizations. The dot plotted on the box plot shows the target
statistic relative to the distribution of the simulated statistics; this can be compared with
the reported mean value of the summary statistic.

Departures from these expectations may be cause for concern. Although this check (over
the ensemble) should be performed, common practice is to check only a few realizations and
any departures from the target histogram and variogram are typically attributed to ergodic
fluctuations [16](Srivastava, 1996). There has been little work to establish acceptable ergodic
fluctuations. Deutsch and Journel discussed the effect of domain size and the variogram
model on ergodic fluctuations [4](Deutsch and Journel, 1998); Goovaerts explored the mag-
nitude of ergodic fluctuations and the space of uncertainty from four different simulation
algorithms [6](Goovaerts, 1999); Srivastava touched on the ability of simulation to fairly
sample from the space of uncertainty [16] (Srivastava, 1996, p.60). Another way to “pre-
dict” the amount of ergodic fluctuations one should expect is to calculate the dispersion
variance of the domain relative to the assumption of an infinite domain, D2(A,∞); this can
be calculated numerically. If ergodic fluctuations exceed D2(A,∞), then model parameters
should be checked. More work is required to explore this issue.
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Figure 6: Reproduction of horizontal variogram: input variogram model (outlined by a white line),
and resulting variograms in multiple realizations are shown in dashed line.

Variogram Reproduction

Now that the data and the histograms have been checked for reproduction, we can proceed
by checking reproduction of the second order statistics, specifically the variogram. For
Gaussian simulation, it is important to note that this check must be performed in normal
or transformed space (prior to back transformation), since only the normal scores variogram
is imposed directly.

The variogram should be calculated for multiple realizations, and compared to the input
variogram model in the same directions. The model variogram should be reproduced within
acceptable ergodic fluctuations (see above discussion).

Other Checks for Credibility

Unlike cross validation where the true value is known, the probabilistic models developed
using geostatistical tools are built with some degree of uncertainty.

One basic check is to verify that the probability intervals of the local distributions are
consistent with the underlying model of uncertainty. For a specific probability interval (PI),
p, we should expect to find that over multiple realizations, the proportion of times the true
value falls within the PI is approximately equal to p for all p in [0,1] [2] (Deutsch, 1996).
For instance, a symmetric PI of 80% (p = 0.80) means that the lower and upper probability
values in the interval is 0.10 and 0.90, respectively. Ideally, the proportion of times the true
value falls within the 80% PI should be close to 0.80. If this fraction is much greater than
0.80, then the probability interval is too wide, and the local uncertainty may be too high.
Conversely, if the fraction is much smaller than 0.80, then the probability interval is too
narrow and the distribution has too low a variance.

This can be checked for a series of PI from [0,1], and the probability intervals plotted
against the fraction of true values that fall within these intervals. Figure 7 shows this
crossplot for a simulation model that was reconciled against blast hole samples. For the
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Figure 7: Crossplot of fraction of true values falling within a specific probability interval (PI) and
the probability interval. Note that these paired data fall very close to the 45 degree line.

70% probability interval, the fraction of the true values falling within this interval is 63%.
For this and all other intervals shown in the plot, the match between these pairs of numbers
is sufficiently close to the ideal case of falling on the 45 degree line.

Application

The grades in this example are from a 2D gold deposit. There are 52 available gold drillhole
sample data. Figure 8 shows the drillhole sample locations and the histogram of gold
grades. Samples are clustered in the high grade area close to the ground surface. The gold
grades (g/t) are positively skewed with a mean and variance of 1.563 and 1.641, respectively.
Preferential sampling in the high grade area requires declustering to obtain the target (or
reference) distribution. This target distribution is also shown in Figure 8, with a noticeably
reduced mean and variance of 1.126 and 1.479, respectively. This is the distribution that
must be reproduced in expected value by geostatistical simulation.

Variography is performed using the normal score values of the drillhole data. Conclud-
ing a directional variogram investigation, the best correlation is shown in the dip direction
of 45 degrees and is chosen as the principal or major direction; the direction of minor
continuity is the perpendicular direction of 135 degrees dip. Figure 9 shows the final ex-
perimental variogram points scaled according to the number of pairs, which is shown above
each point, used in the calculation and the variogram model lines for both directions. The
final variogram model fitted to both directions simultaneously is:

γ(h) = 0.35 + 0.25 · Sph
amax = 40
amin = 115

(h) + 0.40 · Sph
amax = 200
amin = 115

(h)
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Figure 8: Location map of drillhole samples (top). Histogram of gold grades (bottom left) and the
declustered histogram of grades (bottom right).
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Simulated Gold: Realization 30
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Figure 10: Normal scores variogram for gold in a dip direction of 45 degrees (left) and 135 degrees
(right).

where amax is the direction of maximum continuity with a dip of 45 degrees, and amin is
the direction of minimum continuity with a dip of 135 degrees.

Sequential Gaussian simulation is used to create 100 realizations of gold grades at a
square 2m support. The Northing-Elevation (Y-Z) view and histogram of the gold grades
simulated for the 30th realization are shown in Figure 10. For easy comparison, the declus-
tered histogram is also shown. Notice the agreement between the realization’s distribution
of simulated gold grades and the input declustered histogram.

The check for data reproduction after simulation is a cross plot of the original gold
samples against the collocated simulated values. This cross plot is shown for the 30th

realization in Figure 11. All of the pairs fall on the 45 degree line. The input data are
honored at the original sample locations.

The reproduction of the summary statistics is checked by considering all 100 realizations
of the gold distribution. The mean and variance for each realization are summarized as a
histogram of the means and a histogram of the variances. These histograms are shown in
Figure 12. The mean of the means is 1.107 and the mean of the variances is 1.449 compared
to the input declustered distribution’s mean and variance of 1.126 and 1.479, respectively.
The input distribution is satisfactorily reproduced.

To check that the variogram model is reproduced satisfactorily, the variogram is calcu-
lated in both the major and minor direction for each of the 100 realizations. All 100 calcu-
lated variograms are shown as dashed lines on top of the input model variogram shown as a
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Figure 13: Variogram in direction of major (left) and minor (right) continuity directions. The input
model is shown as a dark solid line, while the variograms corresponding to the 100 realizations are
shown as lighter dashed lines.

solid line in Figure 13. The variogram model is satisfactorily reproduced in both directions.

Discussion

Although this paper is focused mainly on the minimum acceptance criteria, there are still a
number of considerations that should be addressed prior to using these models for decision
making.

The four basic criteria identified as the minimum criteria in this paper are not new.
Geostatisticians have known about these checks, but the general practice of model checking
is lacking.

Any model of spatial uncertainty should include a prior assessment of data uncertainty
and possible errors. This involves a clear and complete documentation of the errors and
uncertainty inherent in the data. In light of this assessment, the practitioner can then
gauge when the data or statistics are honoured too well. Essentially, this practice is aimed
at documenting data that must be honoured and recognizing the level of reproduction that
would be acceptable.

Once the models are constructed, one idea is to methodically check each realization and
“sign off” on it, after verifying that the realization honours all the input information and
conforms to the geological interpretation. The set of signed-off realizations can then be
passed through to the next stage of decision making.

Another consideration is to reconcile the model results with existing “output” or pro-
duction data. For instance, in a petroleum context, the flow response of the reservoir is
of primary importance. A set of realizations could be processed through a flow simula-
tor and the model response could be checked against real production data. Similarly in a
mining context, the simulated values could be reconciled against blasthole data or actual
mill production to assess the predictive ability of the model. The historical performance of
simulation models for other similar sites can also be used as a measure for comparison.
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Conclusions

Today, much emphasis is placed on the construction of numerical models for risk quantified
decision making. Many different stochastic simulation algorithms exist to build these mod-
els, and the application of conventional approaches is made popular through commercial
software. Faster, more efficient computers facilitates this modeling process. Model check-
ing is as important to the decision making process as the actual model construction, but
unfortunately, this area is often overlooked in practice.

For geostatistical realizations, there are essentially four minimum criteria that must
be satisfied. These are reproduction of (1) data values at data locations, (2) the target
histogram, (3) the target summary statistics, and (4) the input covariance model. In the
multivariate context, this list should also include reproduction of the multivariate distribu-
tion and the corresponding summary statistics. An application to a 2D gold deposit shows
the relevant checks required to ensure the realizations are consistent with the simulation
approach.
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