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Abstract 

The bootstrap resampling procedure is widely used to quantify uncertainty in statistical 
parameters.  The two most important assumptions are that (1) the initial data distribution is 
representative of the entire population and (2) the data are independent.  This short note presents 
a bootstrap program that resamples with correlation, which relaxes the second assumption of 
independence.  A LU simulation algorithm is used to simulate values under a multivariate 
Gaussian model.  The program is extremely fast and suitable for virtually all data sets.  The 
program parameters are documented thoroughly and a number of synthetic and real examples 
demonstrate the place of the program. 

Introduction 

Geostatistical realizations are being used increasingly for uncertainty quantification.  Uncertainty 
in global statistical parameters such as the mean porosity within facies is an important component 
of uncertainty quantification.  Simulated realizations that use fixed input parameters can 
significantly underestimate global uncertainty.  This underestimation of uncertainty is especially 
significant when the reservoir is large relative to the variogram range; the global histogram is 
reproduced very closely by each realization.  Uncertainty in the global mean and other parameters 
should be accounted for by (1) establishing their distributions of uncertainty, and (2) generating 
each geostatistical realization with different mean values and other input parameters that are 
sampled from their distributions of uncertainty.  The bootstrap procedure is considered for the 
first step – establishing distributions of uncertainty in input statistics. 

The bootstrap is a popular application of Monte Carlo simulation technique and was developed by 
Efron (1983).  The bootstrap is a statistical resampling technique that permits the quantification 
of uncertainty in statistics by resampling from the original data, in other words, “pulling yourself 
up by your bootstraps.”  In the simplest case, consider n data values of a single variable (zi, 
i=1,…,n) and a calculated statistic, say, the experimental mean mz.  The bootstrap can be used to 
calculate the uncertainty in the calculated statistic by the following simple procedure: 

1. Assemble the representative distribution of the Z random variable using declustering and 
debiasing techniques if appropriate: FZ(z).  This distribution could simply be the equal 
weighted histogram of the n data. 

2. Draw n values from the representative distribution, that is, generate n uniformly 
distributed random numbers pi, i=1,…,n and read the corresponding quantiles:  
zs,i = FZ

-1(pi), i=1,…,n.  The number of data drawn is typically equal to the number of data 
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available in the first place.  The distribution of simulated values is not identical to the 
initial data distribution because they are drawn randomly and with replacement. 

3. Calculate the statistic of interest from the resampled set of data, say, the experimental 
mean msz. 

4. Return to step 2 and repeat many times, say, L=1000. 

5. Assemble the distribution of uncertainty in the calculated statistic. 

The result is trivial in the case of the mean since we know (1) that the average of independent 
identically distributed samples tends to a normal distribution, and (2) the variance of an average 
of independent random variables of variance σ2 is σ2/n, where n is the number of samples in the 
average.  There is no need to bootstrap the mean.  The bootstrap gets particularly interesting for 
more complex statistics such as the proportion above a cutoff, the average above a cutoff, the 
correlation between two variables, the regression relationship between multiple variables, and so 
on. 

The bootstrap assumes that the data are independent one from another and representative of the 
underlying population.  The independence assumption may be acceptable early in reservoir 
appraisal with widely spaced wells; however, highly correlated data (such as nearby 
measurements along a well) and close wells do not meet this assumption.  The bootstrap 
procedure must be modified to account for the spatial correlation in the input data. 

A number of people have proposed a spatial bootstrap over the years.  Andy Solow proposed an 
approach in the early 1980s.  André Journel proposed a method in a SCRF paper in the mid 
1990s.  Other workers in geostatistics have almost certainly hacked together some code for this 
over the years.  This paper presents some clean GSLIB-like code based on an efficient matrix 
simulation approach. 

Methodology 

There is a need to account for the spatial correlation between the data when simulating n values 
from the distribution of n data.  Any number of geostatistical simulation techniques could be 
used.  The simulated values are unconditional and are only required at the data locations.  The LU 
method was chosen because (1) it is simple and efficient for a large number of realizations, and 
(2) the number of data would typically not exceed 10000 or so; sequential methods are not 
warranted.  A 3-D variogram model is required to establish the covariance values between each 
pair of data.  Implicit assumptions to the LU method are multivariate Gaussianity and stationarity, 
which are ubiquitous in geostatistics. 

We are to simulate n values from the deemed representative histogram FZ(z) following a known 
3-D variogram model γ(h), which is the variogram of the normal scores of the Z variable.  The 
basic algorithm is to perform an LU decomposition of the n by n covariance matrix: 

 C = L U (1) 

Where C, L, and U are n by n matrices.  C is built directly from the variogram model.  L and U 
are lower and upper triangular matrices calculated by a Cholesky LU decomposition; the code 
from Numerical Recipes is convenient.  Unconditional Gaussian simulations are quickly 
calculated by a simple matrix multiplication: 

 y(l) = L w(l),  l=1,…,L (2) 
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where w is a n by 1 vector of independent Gaussian values and y is the resulting n by 1 vector of 
unconditionally simulated values with the correct covariance.  The superscript l=1,…,L denotes 
one of the large number, L, of realizations we are generating.  These Gaussian values can be 
converted to probability values to draw from the representative distribution. 

 p(l) = G(y(l)),  l=1,…,L (3) 

Where G-1(·) is the inverse of the standard normal distribution and p is an n by 1 vector of 
probability values [0,1].  The drawn z-values are calculated as: 

 z(l) = FZ
-1(p(l)),  l=1,…,L (4) 

Once the LU decomposition is performed (required only once), the generation of the simulated 
realizations can be calculated simply as:  z(l) = FZ

-1(G(L w(l))),  l=1,…,L. 

This procedure is straightforward to code and can be implemented very simply.  Different 
statistics can be calculated from each set of simulated values, e.g., the mean, the proportion above 
some critical cutoff, the mean above cutoff, and so on.  The distribution of these statistics can be 
used for later geostatistical modeling or directly for uncertainty calculation. 

Correlation in the n values will lead to greater uncertainty than the assumption of independence.  
There are effectively less independent data when the data are correlated.  In fact, we can calculate 
the effective number of data as: 

 2

2

Z

Z
effn

σ
σ

=  (5) 

Where 2
Zσ  is the variance of the data values and 2

Zσ  is the variance of the average values.  The 
program that implements the simulation procedure will be described next; followed by some 
examples. 

Program 

The Spatial_Bootstrap program follows standard GSLIB conventions.  Most of the functions 
are available in GSLIB.  Two source code files are required: Spatial_Bootstrap.for and 
Spatial_Bootstrap_Subs.for; the subroutines have been collected to facilitate compilation if 
the compiled GSLIB library is not available.  The parameters for the program: 

 
Line   START OF PARAMETERS: 
 1     example/cluster.dat              -file with reference distribution 
 2     3   0                            -   columns for value and weight 
 3     -1.0e21    1.0e21                -   trimming limits 
 4     example/cluster.dat              -file with locations to resample 
 5     1   2   0                        -   columns for X, Y, Z locations 
 6     1                                -save realizations? (0=no, 1=yes) 
 7     example/SB-realizations.out      -file for all simulated realizations 
 8     example/Spatial_Bootstrap.out    -file for bootstrapped average 
 9     0.0                              -threshold (average above is reported) 
10     100                              -number of realizations 
11     112063                           -random number seed 
12     1    0.2                         -nst, nugget effect 
13     1    0.8  0.0   0.0   0.0        -it,cc,ang1,ang2,ang3 
14              10.0  10.0  10.0        -a_hmax, a_hmin, a_vert 
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The reference distribution (Lines 1, 2, and 3) specifies the distribution of data for the bootstrap.  
The reference distribution could the data at the locations being bootstrapped.  The locations are 
specified on Lines 4 and 5.  The bootstrapped realizations can be saved (optionally) to a data file 
(Lines 6 and 7).  The bootstrapped average, the proportion above the specified cutoff, and the 
average above cutoff are saved in the second output file – Line 8.  The cutoff is specified in Line 
9.  This cutoff can be used to define the threshold between net and non-net.  The number of 
realizations is specified in Line 10.  The random number seed is in Line 11.  Lines 12 and greater 
specify a 3-D variogram model in standard GSLIB conventions. 

The program writes two output files: the simulated values and the bootstrap statistics.  The 
statistics of the input data and the resampled average are written the screen.  The effective 
number of data is also written to the screen.  The LU simulation approach is very fast when there 
are 100s of data.  The program will take minutes of CPU time (versus seconds) when there are 
1000s of data.  All memory allocation is dynamic so, theoretically, any number of data could be 
considered; however, the data should be subset or blocked-up to a larger scale if more than 5000 
data are considered.  The CPU time will be large and numerical precision problems can become 
important. 

Examples 

Figure 1 shows the results using cluster.dat from GSLIB.  The location map and histogram of 
the data are shown on the top.  The uncertainty in the mean assuming independence is shown in 
the lower left.  The spatial bootstrap results are shown in the lower right.  A single structure 
spherical variogram with a range of 10 distance units was used for the spatial bootstrap.  The 
variance assuming independence has gone down almost exactly by 1/140 (44.92 to 0.3109); 
however, the variance in the case of the spatial bootstrap decreased to 0.9888, which is more than 
three times higher than when independence is assumed.  The effective number of data is 
calculated as 45.  We see how the spatial bootstrap accounts for correlation in the data. 

The second example is with two wells through a reservoir that is about 100m thick; there are 212 
data spaced about 1m.  The two wells are 600m apart.  The two wells are essentially uncorrelated, 
but the data within each well are highly correlated.  Figure 2 shows the profile of porosity in the 
two wells and a histogram of the data are shown on the top.  The uncertainty in the mean 
assuming independence is shown in the lower left.  The spatial bootstrap results are shown in the 
lower right.  The vertical variogram is fitted and is shown at the bottom.  There are certainly not 
212 independent data; in fact, the effective number of data is calculated as 14. 

The third and final example is based on the well-used Amoco data.  There are 62 wells through a 
reservoir that is about 70 feet thick.  There are 3303 data.  There are certainly not 3303 
independent data, but there are probably more than 62 given the thickness of the reservoir relative 
to the vertical variogram range.  Figure 3 shows a horizontal slice through the data and a 
histogram of the data are shown on the top.  The uncertainty in the mean assuming independence 
is shown in the lower left.  The spatial bootstrap results are shown in the lower right.  The 3-D 
variogram points and model are shown on Figure 4.  There are certainly not 3303 independent 
data; Spatial_Bootstrap calculated that there were 72, which is slightly more than the 62 wells.  
There is some horizontal correlation between the wells, but the vertical thickness of the reservoir 
implies more than 1 independent data per well. 
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Application Notes 

The bootstrap is typically applied within deemed homogeneous geological rock types to establish 
uncertainty in parameters such as the mean, variance, and distribution shape.  The uncertainty in 
the rock types and their proportions must be considered separately. 

It would be straightforward to simulate multiple correlated values by drawing sets of values with 
correlation.  The correlated probability values are used to pick up data indices and not z-values 
from the representative histogram FZ(z). 

Conclusions 

The bootstrap is a useful statistical tool to establish uncertainty in input parameters based on 
resampling the available data.  The conventional bootstrap assumes data independence, which is 
unrealistic.  The Spatial_Bootstrap program is a useful tool for the geostatistician performing 
uncertainty analysis.  There remain strong assumptions of stationarity and representative input 
data distributions. 
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Figure 1: example with cluster.dat from GSLIB.  The location map and histogram of the data are 
shown on the top.  The uncertainty in the mean assuming independence is shown in the lower left.  
The spatial bootstrap results are shown in the lower right. 
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Figure 2: example with twowell.dat.  The profile of porosity in the two wells and a histogram of 
the data are shown on the top.  The uncertainty in the mean assuming independence is shown in 
the lower left.  The spatial bootstrap results are shown in the lower right.  The vertical variogram 
is fitted and is shown at the bottom. 
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Figure 3: example with Amoco data.  A slice through the data and a histogram of the data are 
shown on the top.  The uncertainty in the mean assuming independence is shown in the lower left.  
The spatial bootstrap results are shown in the lower right. 
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Figure 4: 3-D variograms for the Amoco data.  The horizontal anisotropy N-S versus E-W was 
found by visual inspection.  The variograms were fit with varfit. 

 


