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A change of support model consists of a procedure to change a stationary histogram at a small data scale 
to represent a larger scale; typically a distribution of sample drillhole data is changed to represent a 
chosen selective mining unit (SMU) scale.  Most grade variables average arithmetically.  Thus, the mean 
stays the same for different scales and the variance changes according to well established theory using 
average variogram values.  The longstanding challenge has been to predict how the shape of the histogram 
changes.  The discrete Gaussian model is widely used because it appears reasonable and introduces few 
artifacts; there are no artificial minimum/maximum values and the target mean and variance are 
reproduced exactly.  The resulting distribution shape, however, is strongly dependent on a multivariate 
Gaussian distribution.  We generalize the approach by taking advantage of a property of the isofactorial 
model, which allows us to specify where the random function falls on the spectrum between a low-entropy 
mosaic model and a maximum-entropy diffusion model.  A Measure of Dissemination (MD) is computed 
using a ratio of the madogram and the variogram.  The change of support algorithm is developed that uses 
a Variable Measure of Dissemination (VMD) that is easily calculated and fit to data from the deposit.  The 
resulting VMD change of support model is very flexible to represent different mineralization styles 
encountered in practice; global predictions of recoverable reserves are more accurate and decision-
making is improved.  A number of real examples are shown to demonstrate the approach. 

Introduction 

Predicting the grade and tonnage above a cutoff grade for practical mining volumes is an important 
problem.  It is particularly critical early in resource evaluation when no actual mining has taken place.  
Practitioners rely on global change of support models, kriging with different search plans, and simulation to 
address this problem. 

Simulating at point scale and then upscaling the realizations to the SMU’s size provides a direct solution to 
the change of support problem, but it can be very demanding in computer resources and it is affected by the 
multivariate Gaussian methods adopted for simulation.  If indicator based simulation is used, the block 
values are affected by an increased grade smoothing in the SMU scale due to the uncontrolled interclass 
transitions and randomness within classes that are characteristic of indicator simulation. 

Global change of support models do not require a high amount of computer resources, are fairly simple to 
apply and can be very flexible in regard of the shape of distribution. A change of support model is used to 
estimate different block selectivity statistics for individual panels from the point-support samples.  The 
principles that every change of support model must to fulfill are (Chilès and Delfiner, 1999): 

• The marginal distribution of the block support grades Z(v) depend on the complete spatial distribution 
of the point support grades Z(x). 

• The general approach is to establish a transformation from the distribution of Z(x) to the less selective 
distribution of Z(v). 

• The distribution of block grades Z(v) must have the same mean m as the distribution of the point 
support grades Z(x).  The variance distribution of block grades Z(v) is the dispersion variance 

),(2 VvD , which is defined by the well known volume-variance relation, which states: 

2 ( , ) ( , ) ( , )D v V V V v vγ γ= −  
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where ( , )V Vγ is the average variogram within the deposit, it approaches the sample scale variance as 
the deposit volume V increases in comparison to the variogram range; ( , )v vγ is the average 
variogram within the block or SMU, if the samples volume is several orders of magnitude smaller than 
the block volume the average variogram within the block is practically equal to the samples dispersion 
variance: 

2 ( , ) ( , )D v v vγ=i  

The most popular change of support models are affine, indirect log-normal and discrete Gaussian model.  
The affine change of support model (Journel and Huijbregts, 1978) is the simplest among all change of 
support models, it assumes no change in the shape of the data histogram, only reduction in the variance.  It 
is known, however, that the distribution does change shape as the variable is averaged within larger blocks, 
thus affine correction is limited to minor changes in scale. 

The indirect lognormal change of support model (Isaaks and Srivastava, 1989) assumes that the point and 
block distributions are lognormally distributed.  The indirect log-normal correction is performed by 
maintaining the mean and reducing the variance (Chilès and Delfiner, 1999).  The indirect lognormal 
change of support model is considered to be more realistic than affine, since it does not impose artificial 
maxima and minima and can assume arbitrary shape. However, again the assumption of the same shape for 
point and block distributions is very limiting, particularly when the point data histogram do not match 
satisfactorily the lognormal distribution.  A methodology for transforming the point-scale lognormal 
distribution to a more symmetric block scale distribution has been proposed (Vargas-Guzmán, 2005). 

The Discrete Gaussian model (Matheron, 1978) is a robust model for change of support.  It does not make 
any assumptions on the point and block distributions.  Discrete Gaussian correction is performed by 
transforming point data to the normal space and fitting the point distribution of the normal space by the 
Hermite polynomials.  Subsequently, Hermite expansion of the block distribution is found in the normal 
space and the new distribution is back-transformed to the original units, as result, desired block distribution 
is found.  One of the advantages of the discrete Gaussian model is that it allows the distributions of larger 
block volumes become more symmetric as the size of the block increases.  Neither indirect lognormal or 
affine correction, obviously, allow such symmetrization.   

The Hermitian model (the basis for the Discrete Gaussian change of support) is the most used model of the 
family of Isofactorial models.  These models have proven flexible for fitting a wide range of univariate and 
bivariate distributions.  Isofactorial models are based on the factorial decomposition of a transformed 
distribution into polynomials with an orthonomal base, such as the Hermite polynomials, Laguerre 
Polynomials, among several others.  

An adequate transformation and the correspondent type of polynomial factors for a given grade distribution 
is chosen first.  Then, the form of the covariance of these factors is defined according the type of spatial 
dispersion of the variable under study.  Two models for extreme behaviour of spatial phenomena have been 
defined in Geostatistics (Matheron, 1989; Chilès and Delfiner 1999, Wackernagel 2003): the first is the 
diffusion isofactorial model, which corresponds to variables that exhibits a gradual spatial change, with 
high values separated of low values but with a continuous spatial transition between them (maximum 
entropy).  Examples of diffusion model are the Sequential Gaussian Simulation realizations fulfilling the 
condition of multigaussianity (see Fig. 1).  The second extreme model of spatial behaviour, the Mosaic 
model, corresponds to a high continuity (or even identity of values) within a region or partition followed by 
abrupt changes in the transition from one partition to another.  Voronoi polygons have been frequently used 
as an example of Mosaic type spatial phenomena, as well as the “dead leafs model” (Fig. 2) 

When sample support values of a Diffusion type phenomenon are upscaled to SMU size, the SMU scale 
distribution will become symmetric very quickly as the SMU size increases.  Mosaic type variables will be 
more resistant to change of support, and its symmetrization will be clear only when the SMU size exceeds 
the size of the partitions. 

Current implementations of the Discrete Gaussian Model consider by default that the variable used for 
change of support corresponds to the Diffusion Model.  However, real data usually behaves as an 
intermediate model between the Mosaic and the Diffusion, and its behaviour can vary as the scale changes.  



303-3 

Intermediate models of change of support exist, such as the barycentric model (Chilès and Delfiner 1999; 
Wackernagel, 2003) and the Beta model (Hu, 1988), but only for the Beta model a methodology for its 
practical application has been proposed and implemented (Emery and Ortiz, 1984). 

The main objective of the present work is to develop a new change of support model that is not based on 
the extreme of either the diffusive or the mosaic type model.  After introduction of isofactorial models and 
the Discrete Gaussian Model procedure, an intermediate model between the Mosaic and the Diffusion, 
called Barycentric model is presented. Then, a Measure of Dissemination (MD) used to characterize the 
spatial dispersion is derived from the barycentric model as a function of variogram and madogram; and a 
representative value of this measure is calculated for a given SMU size.  Afterwards, a variable Effective 
Measure of Dissemination (VEMD) change of support model is introduced and applied in small example 
and real data examples. 

Isofactorial Models 

Consider a pair of stationary random variables (Y(x), Y(x+h)) representing the values of an attribute at 
locations x and x+h. This pair follows an isofactorial model if the bivariate distribution of the pair (Y(x), 
Y(x+h)) can be factorized as the following linear combination (Matheron, 1984a; Chilès and Delfiner, 
1999): 

 )()()()()(),(
0

hxk
k

xkkhxxhxx yyhTdyFdyFdydyF +

∞

=
++ ∑= χχ  (1) 

where ,, Nkk ∈χ  is a set of orthonormal functions for the space L²(G), ,, Nkk ∈χ  are referred to as 

the ‘factors’ of the isofactorial model; and the coefficients )(hTk  are the covariances between the factors 

kχ .  

A variety of isofactorial models have been developed during past years.  Known examples are bigaussian, 
bigamma, Hermitian, etc (Amstrong and Matheron, 1986 a, b; Chilès and Delfiner, 1999).  A large number 
of these models can be grouped according to their applicability to two main types of patterns present in 
random functions - diffusion and mosaic patterns. 

Diffusion type isofactorial models (Fig. 1) are characterized by almost continuous realizations and used for 
phenomena that exhibit a gradual spatial change, with almost continuous realizations. Characteristic feature 
of diffusion type models is disconnectedness of the extreme values: the occurrence of extreme-high or low 
values are purely random, so there is no clustering in space. In diffusion type models the k factor 
correlation functions are given by 

 ( ) .)()( k
k hhT ρ=  (2) 

A diffusion type phenomena is defined by the following variogram vs. madogram ratio, 

 1 1(h)     h
(h)

C
C

γ
γ

= ∀ , (3) 

where )(1 hγ  and )(hγ  are the theoretical madogram and variogram models with sills 1C  and ,C  
respectively. 

The Mosaic type models (Fig. 2) present partitions or cells within which the phenomenon stays constant 
while it shows sudden change from one cell to another.  This corresponds to the idea of abrupt change when 
stepping from one compartment to another.  Voronoi polygons, polyhedra based on a Poisson process, 
among others, are classical examples of mosaic models.  In Mosaic type model the factor covariances are 
the same for al k in Eq. (1): 

 ).()( hhTk ρ=  (4) 
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A mosaic type phenomena is defined by the following variogram vs. madogram ratio, 

 1 1(h)       h
(h)

C
C

γ
γ

= ∀ , (5) 

where, as before, )(1 hγ  and )(hγ  are the theoretical madogram and variogram models with sills 1C  and 
,C  respectively.  The variogram sill is the variance, while the madogram sill is equal to the dispersion 

indicator, whose analytical expression is given by: 

 
1 ( ) ( )
2

S z z F dz F dz
∞ ∞

−∞ −∞

′ ′= −∫ ∫  (6) 

Or, it can be calculated numerically as: 

 2
1 1

1
2

N N

i j
i j

S z z
N = =

= −∑∑  (7) 

Isofactorial Change of Support: Discrete Gaussian Model  

The discrete Gaussian model (Chilès and Delfiner, 1999) is the change of support model which relies on the 
following assumptions and hypotheses: 

• Z(x) is a known stationary random function at point support; Z(v) is an unknown stationary 
random function at block support.  

• The domain of interest is divided into k same size blocks kv . Each datum is randomly and 
uniformly located within the block. If there are several samples within the block, their locations 
are independent from each other. 

• )),(()( xYxZ φ=  where φ  is the known anmorphosis function and ).1,0(~)( NxY  

),()( vv YxZ φ=  where vφ  is the unknown anmorphosis function and ).1,0(~ NYv  

• For any block kv  and point x, the pair )),(( vYxY  is bigaussian, with the same correlation 
coefficient r. 

• Cartier’s Relation (Matheron, 1984b): If the location of x is randomly and uniformly located 
within the block kv , the value of x is equal to the block value, that is, 

 vv ZZxZE =)|)(( . (8) 

The Discrete Gaussian model for the change of support involves the following 5 steps. 

1. Original data distribution is transformed to the Gaussian using normal score transformation. 
Anamorphosis function GF D1−=φ  describes this transformation. That is,  

 )( ii yz φ= , (9) 

where iz  and ,,,1, niyi …=  are original and normal score transformed data. Can check 

anamorphosis by plotting )( iyφ  versus original data distribution. 

2. A variogram model for the original data is fitted and the variance for the block support, ),( vvγ  is 
calculated. 

3. The distribution of the normal score transformed data is fitted with Hermite polynomials. For a 
stationary Gaussian random function Y(x) the Hermite polynomials are orthonormal functions for 
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the space L²(G).   That is, they have a mean of zero, a variance of one, and are uncorrelated. 
Hermite polynomials are a polynomial family defined by the Rodrigues’ Formula: 

 .)(
)(!

1)( p

p

p dy
ygd

ygp
yH ⋅

⋅
=  (10) 

The first two Hermite polynomials are 

 1)(0 =yH  and .)(1 yyH −=  (11) 

For higher orders, the following recurrence formula is used 

 ).(
1

)(
1

1)( 11 yH
p

pyyH
p

yH ppp −+ +
−

+
−=  (12) 

The distribution of the normal score transformed data expanded using Hermite polynomials is 
given below 

 ∑
∞

=

=
0

)()(
p

pp yHy φφ , (13) 

where ))).(())((( xYHxYE pp φφ =  

4. A new distribution for the block support is found in terms of Hermite polynomials. 

 .))|)((()|))((()(
0
∑
∞

=

==
p

vppvvv YxYHEYxYEY φφφ  (14) 

Note that the first equality follows directly from Cartier’s Relation. Since the pair ))(,( xYYv  is 
bivariate standard normal (pure diffusion model),  

 ,0),())|)((( ≥= pYHrYxYHE vp
p

vp  (15) 

the distribution for the block support in terms of Hermite polynomials is given by 

 .)),()(
0
∑
∞

=

=
p

vp
p

pvv YHrY φφ  (16) 

where constant r, referred to as the change of support coefficient is found from 

 ,),(
1

2222 ∑
=

=−=
P

p

p
pv rvv φγσσ  (17) 

where 2σ  and 2
vσ  are the point and block variances, respectively. Due to uniqueness of the 

Hermite polynomial decomposition, the coefficients of the block anamorphosis are p
prφ , 0≥p . 

5. The Hermite-expanded distribution for the block support is back transformed to the original units.  

Barycentric Model  

An intermediate isofactorial model between diffusion and mosaic models can be obtained as a linear 
combination of both models, that is, an intermediate isofactorial model  
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=
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with: 

 ,)()1())(()( hhhT k
k ρβρβ −+=   (19) 

where ],1,0[∈β  is called barycentric model (Chilès and Delfiner, 1999) . The variogram vs. madogram 
relation which defines this model is: 

 1

1

(h) (h) (h)(1 )     
C C C

γ γ γβ β= + −  (20) 

The parameter β of the barycentric model is referred as a measure of dissemination (MD) and is calculated 
from Eq. (20) to be  

 

1

1

(h) (h)

(h)  
(h) (h)

C C

C C

γ γ

β
γ γ

−
=

−
 (21) 

The measure of dissemination, β, becomes 0 when the spatial distribution of grades correspond to a mosaic 
type model (Eq. (2)), and it is equal to one, when it correspond to a pure diffusion model (Eq. (4)).  

The measure of dissemination (MD) is not necessarily constant and changes according the variogram 
direction and lag distance, h, in response to the corresponding changes in the variogram and madogram.  
An Effective Measure of Dissemination (EMD), or effβ , gives an ‘expected’ value for parameter β and for 
a given SMU size V, and sample support volume v, can be calculated by the expression:  

 2
1 ( , )eff

v

v v dvdv
V

β β ′ ′= ∫∫  (22) 

A Variable Effective Measure of Dissemination (VEMD) change of support model  

A Variable Effective Measure of Dissemination (VEMD) change of support model based on the above 
development of the effective MD can be proposed as follows: 

• Z(x) is a known stationary random function at point support; Z(v) is an unknown stationary 
random function at block support.  

• The domain of interest is divided into k same size blocks kv . Each datum is randomly and 
uniformly located within the block. If there are several samples within the block, their locations 
are independent from each other. 

• )),(()( xYxZ φ=  where φ  is the known anamorphosis function and ).1,0(~)( NxY  

),()( vv YxZ φ=  where vφ  is the unknown anamorphosis function and ).1,0(~ NYv  

• The bivariate distribution of the pair (Y(x), Y(x+h)) is given by 

)()()()()(),(
0

hxk
k

xkkhxxhxx yyhTdyFdyFdydyF +

∞

=
++ ∑= χχ  

where .))(1()()( rhrhhT k
k ββ −+⋅=  
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• Cartier’s Relation: If the location of x is randomly and uniformly located within the block kv , the 
value of x is equal to the block value, that is, 

vv ZZxZE =)|)(( . 

The Variable Effective Measure of Dissemination (VEMD) change of support model involves the 
following 6 steps. 

1. The original data distribution is transformed to the Gaussian using normal score transformation. 
Anamorphosis function GF D1−=φ  describes this transformation. 

2. The effective measure of dissemination, effβ , is calculated from Eq.(23).  

3. A variogram model for the original data is fitted and the variance for the block support, ),( vvγ  is 
calculated. 

4. The distribution of the normal score transformed data is fitted with Hermite polynomials.  

5. A new distribution for the block support is found in terms of Hermite polynomials. 

 .))|)((()|))((()(
0
∑
∞

=
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p

vppvvv YxYHEYxYEY φφφ  (23) 

where: 

,1))|)((( 0 =vYxYHE  
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Because 
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p ββ −+⋅=  (25) 

then, 
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And the distribution for the block support in terms of Hermite polynomials is given by 

 ∑
∞

=
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1
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vpeff
p

effpvv YHrrY ββφφφ  (26) 

where constant r, referred to as the change of support coefficient is found from 

 ,])1([),(
1
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P
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p
effpv rrvv ββφγσσ  (27) 
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where 2σ  and 2
vσ  are the point and block variances, respectively and effβ  is the effective 

measure of dissemination. 

6. Finally, the Hermite-expanded distribution for the block support is back transformed to the 
original units.  

Software Implementation  

Several existing programs of the extended GSLIB group were modified in order to implement the flexible 
change of support and the required previous steps.  First, the GAMV program for calculating experimental 
variograms was updated for calculating the dispersion indicator, and thus, allowing the standardized 
semimadogram calculation.  The parameter file for the updated program remains unchanged. 

The second program modified was GAMMABAR, this new version allows to calculate the Beta effective for a 
given SMU volume and a user defined block discretization.  The new parameter file for GAMMABAR is 
presented below. As it can be observed, the specification for the madogram model is required if the EMD 
has to be calculated. 

 

 
The third program modified was DGM.  The new version of this program allows calculating the change of 
support coefficient r and block distribution according to the effective measure of dissemination, effβ .  The 

new parameter file for dgm_md is given below. 

 

A Small Synthetic Example 

Fig. 3 shows a distribution of 101 grade values.  The mean and standard deviation of the simulated data are 
1.25 and 1.96, respectively, and the coefficient of variation is 1.56.  The distribution of the data is highly 
skewed.  Assume that the target average variogram is 1.9 (approximately half the data variance).  Let us 
now consider how the block distribution would change for these data when considering different levels of 
the effective measure of dissemination. 
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Fig. 4 shows the change in the shape of the block support distribution for 75.0,5.0,25.0,0=effβ  and 

1.  Note that value 1=effβ  corresponds to conventional discrete Gaussian model for the change of 
support.  For convenience, Fig. 4 also shows the original data distributions.  When comparing graphs in 
Fig. 4, we note that as effβ  increases the shape of the block support distribution becomes more and more 
similar to the shape obtained using conventional discrete Gaussian model for the change of support.  
Moreover, with an increase in effβ , we can also note that the number of small values in the block support 

distribution increases.  The mosaic model ( 0=effβ ) is characterized by the smallest number of low data 
values.  The mosaic model is characterized by dramatic changes between large and small values.  High and 
low grades quickly average with adjacent grades that are potentially very different. 

Results for the block distribution obtained based on affine correction and the indirect lognormal correction 
are shown in Fig. 5.  Note that the resulting affine block distribution is very similar to the one obtained by 
the pure mosaic model; while the indirect lognormal block distribution is very similar to the pure diffusive 
model or intermediate model with high EMD ( effβ ). 

Fig. 6 shows grade-tonnage curves obtained for the same levels of effβ  as considered above. The highest 

value for the grade above cut-off is obtained for the mosaic model ( effβ  = 0), the lowest value for the 

grade above cut off is obtained for the diffusion model ( effβ  = 1).  In general, with an increase in the value 

of effβ , we observe a decrease in the grade above cut-off. 

Practical Applications 

Now let us present three examples of the application of the newly developed flexible change of support 
model: two epithermal disseminated gold deposits, and a skarn zinc deposit.  For all these examples the 
omnidirectional experimental variograms and madograms were generated and their models fitted, the 
measure of dissemination was then calculated from these models at several lag distances. In practice, a 
more detailed analysis could be undertaken by calculating the measure of dissemination from the 
directional variogram models in the major directions of continuity. 

The data for first example come from the drilling campaign of an epithermal gold deposit located in the 
central Andes.  The declustered grade distribution is skewed and has a mean of 0.42g/t, a standard deviation 
of 0.87 , a high coefficient of variation of 2.16, and a high skewness value of 6.3.  The Measure of 
dissemination fluctuates around a relatively low value at short lag distances and then grows up approaching 
the pure diffusive behaviour at long lag distances (see Fig. 7a).  With a SMU size of 5x5x5m the EMD is 
0.51.  In this case the difference between the intermediate and pure diffusion model are clear only for high 
cut-off’s in the corresponding grade-tonnage curves presented in Fig. 7b. 

For the second example the data set used consists of 2m drillhole composites from a Sn-Zn skarn deposit.  
For Zn grades the mean is 2.99%, the standard deviation 2.84% and the coefficient of variation 0.95.  Here 
the MD takes moderate values at short lag distances and then decreases towards zero for lag distances that 
approach the variogram and madogram ranges which are short, around 16m (see Fig. 8a). For a SMU size 
of 4x4x4m the variance of the SMU scale values within the deposits becomes 3.86 and the EMD is 0.71.  
The curves of average grade above cutoff for the pure diffusion, mosaic and intermediate models (Fig. 8b) 
are different but close to each other.  This is due to the relatively high EMD, a moderate coefficient of 
variation, and a low skewness.  

The third example consists of a very skewed drillhole sampling data from a disseminated gold deposit.  The 
three models, pure diffusion, intermediate, and pure mosaic, yield very different grade-tonnage curves (see 
Fig. 9b).  The average gold grade of this data set is 1.13Au g/t, the standard deviation 4.25, the coefficient 
of variation is very high, 3.76, and the coefficient of skewness is also very high: 12.8.  The fitted variogram 
and madogram models are very close (see Fig. 9a), this translates to a low and practically constant measure 
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of dissemination at distances shorter than the variogram range.  At a block size of 4m x 4m x 4m, the 
calculated EMD is 0.22. 

From these examples, we conclude that the use of the intermediate model is relevant in certain cases and 
particularly when the data set is highly variable. 

Limitations 

Under the assumption of stationarity, the EMD is considered constant over the study area, which may be 
adequate for global estimation purposes.  Local variations in the spatial distribution are not accounted for.  
The concept of a fixed-size SMU is somewhat artificial.  It may be reasonable for feasibility studies or long 
term planning.  Specific grade control practices must be considered in practice.  It is also important to note 
that the results presented are valid only under the assumption of perfect ore/waste selectivity.  A lack of 
perfect selection could be accounted for by using a slightly larger block size, but this is difficult to 
calibrate.  Like other change of support models, we assume that the change of support coefficient r is a 
constant and, in general, that correlation functions in the isofactorial model are of the simple form 

rhrhhT k
k ))(1()()( ββ −+⋅= . 

To make the Variable Effective Measure of Dissemination (VEMD) change of support model even more 
realistic we could consider r variable and  

)).())((1())(()()( hhhhhT k
k ρβρβ −+⋅=  

However, in this case we could encounter problems of non-positiveness of the resulting distributions 
(Chiles, 1999). 

Conclusions 

Predicting a grade-tonnage curve representative of practical SMU support before any mining has taken 
place is an important challenge for mining geostatisticians.  The variable measure of dissemination (VMD) 
model presented here should prove useful when the real data do not fit the well-defined Gaussian pattern of 
spatial variation.  The application of the intermediate model becomes relevant when the data set is highly 
variable and the measure of dissemination does not match the Gaussian model.  A correct calibration of the 
measure of dissemination will yield more accurate predictions of recoverable reserves. 
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Figure 1: Example Diffusion Model (Sequential Gaussian simulation realization). 

 

 
Figure 2: Example Mosaic Model. (Dead leafs model) 
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Figure 3: Distribution of the 101 simulated grade values.  

 
Figure 4: Original data distribution for 101 simulated values (top left), block support distribution obtained 
based on effβ  equal to 0 (top right), 0.25 (middle left), 0.50 (middle right), 0.75 (bottom left) and 1 
(bottom right). 
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Figure 5: Original data distribution for 101 simulated values (top), block support distribution obtained 
based on affine correction (bottom left) and block support distribution obtained based on affine correction 
(bottom right).  

 

Figure 6: Grade-tonnage curves for effβ  equal to 0 (black curves), 0.25 (red curves), 0.50 (blue curves), 
0.75 (purple curves) and 1 (green curves). 
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a)      b) 

Figure 7: Epithermal gold deposit:  (a) Omnidirectional Variogram (green curve), Madogram (dashed 
black curve) models and the Measure of dissemination (continuous Blue curve). (b) Grade/tonnage curves 
for effβ  equal to 1 (diffusive model, red lines), equal to 0 (Mosaic model, blue lines) and 0.51 
(intermediate model, green lines). 
 

 
a)      b) 

Figure 8: Zn skarn deposit:  (a) Omnidirectional Variogram (green curve), Madogram (dashed black 
curve) models and the Measure of dissemination (continuous Blue curve). (b) Grade/tonnage curves for 

effβ  equal to 1 (diffusive model, red lines), equal to 0 (Mosaic model, blue lines) and 0.71 (intermediate 
model, green lines). 
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a)      b) 

Figure 9: Disseminated Gold deposit: (a) Omnidirectional Variogram (green curve), Madogram (dashed 
black curve) models and the Measure of dissemination (continuous Blue curve). (b) Grade/tonnage curves 
for effβ  equal to 1 (diffusive model, red lines), equal to 0 (Mosaic model, blue lines) and 0.25 
(intermediate model, green lines). 


