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An important problem in mining is the estimation of global recoverable reserves. A consistent block
simulated value requires (i) a fine discretization of the block into a number of nodes, (ii) simulated values
at those nodes and (iii) a regularization at the block scale. In presence of large domains with relatively
wide spacing data locations, this approach is computationally heavy. A two-step block simulation
approach is proposed to handle such problem. The method first partitions the domain into two sets of
blocks, uses the point support scales to get simulated values at blocks belonging the first set, that are then
used to simulate at second set of blocks. An illustration of the method is given with real data example.

Introduction

Assume that n dataZ = (2(wy), ..., 2(u,)) collected at known spatial locations U1, - - -, U, come from
a second order stationary process Z defined over a finite domain of interest D with positive volume A
central problem in mining exploration, petroleum, reserves estimation, environmental sciences and others,
is to simulation/prediction grades at block support scale (Journel and Huijbrets, 1978). Geostatistical
simulation is widely used as it provides an assessment of uncertainty and reproduces the spatial variability
and distribution of a regionalized variable. A recommended and accurate approach will be to provide $L$
simulated realizations at point support scale before regularizing at the block scale. This approach can prove
computationally inefficient, if the number of discretized nodes within the domain is extremely large due to
the computer limitations. In such case, the impracticability of approach can lead to a coarser discretization
point scale process, where one has to cope with the uncertainty at block scale.

Another approach for global recoverable reserves is the change of support models. From the support v to

the support V, (assuming the volume of v smaller that the one of V) this approach (Journel and Huijbregts,

1978) defines the dispersion variance D(v/V) and expresses it in term of the second order stationary
semivariogram of the point support as

1 1

D*(v/V) = W/ ds ds' vy(s —§') — —2/ dsds'v(s —§) (1)

;’ V2 ! v?

U

with the double summation being approximated by its discretized form as
i/ ds de"r‘(s — Sr) ~ i Z Z ’r‘(Sg — S-') = Yy
VR TR s ~ i v

If v is a point support volume, then the variance reduction factor defined as the ratio between the variance
of the block support and the variance of the point support is given by (Journel and kyriakidis, 2003)

. v
f~1-— =l

and the variance of the block at support V is approximated by

o2 ~ fo’.

This paper proposes a two-step block simulation (TSBS) method based on simulating the nodes within

those blocks that contain sample data based by performing the LU conditional simulation, and then using
the previous realizations for simulating blocks realizations on the entire domain. The new approach is
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proved to be computationally efficient compared to the conventional approach described above which
provides L simulated realizations on the entire domain D.

The remainder of the paper is structured as follows. Section 2 reviews the conventional approach
considered in this paper. In Section 3, the two-steps block simulation is fully described and Section 4
studies and compares the numerical complexities of the conventional approach and of the two-steps block
simulation approach. A real data example is carried out in Section 5 and finally Section 6 summarizes the
potential of the method and discusses futures directions.

Conventional Approach Considered (CAC)

One of the consistent and recommended (Journel and Kyriakidis, 2004) geostatistical approach for global
reserve recoverable estimation first transformed the original data into a transformed data set

Y = (y(ul)?....g(u,,)) (2)
which is normally distributed with n correlated components through a non-decreasing function as
y(w) = G [F(2(u))] (3)

where F is an estimator of the cumulative distribution of the collected data and G is the known cumulative
Gaussian distribution. The transformed data is then used to simulate L equiprobable realizations at
unknown locations of the domain D under the Gaussian space by lower-upper decomposition approach
(Alabert, 1987) or by sequential approach (Deutsch and Journel, 1998). Then a back transformation
operation of the Gaussian simulated data are conducted through the following

O(u) = PG w))] @

Then a simulated value at the block V at the I-th realization is obtained by regularizing the above point
scale simulated values over the block V as

i |f du 2\ (u)

gi . )Zw(uﬁ,) {I}(ujel) (5)
w) /7!

for I=1,..,.L where w(u) is a kernel function allowing weights to the location u. This methodology
provides simulated blocks realization where statistics, like histogram or semivariogram can be computed.

() =

Methodology of the two step block approach (TSBS)
In this section, we describe the two step block simulation method.
Step one of the TSBS

1. Infer relevant statistics of the data, including representative histogram and semivariogram.
Declustering or debiasing technique may be required. Simulation is typically based on multivariate
Gaussiannity framework. A normal score transformation is performed on the original data. The
normal score transformation is a commonly used approach in nonparametric statistics which is
defined as values of the order statistics in a sample from a Gaussian distribution. This approach
has proved to be a powerful tool in geostatistics when dealing with non Gaussian distribution.

2. Consider a block grid discretization od the entire domain of interest into 7 non-overlapping blocks
after a practical block size has been chosen

3. Consider a partition of the domain D into two sets of blocks D1 and %, that is
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D=D,UD, (6)

4. The choice of subsets D1 and D: can be made subjective as many different partitions of the domain
can be proposed. We believe that a relevant approach for block’s partition is as follows: the subset
D called the occupied block set is the set of blocks containing at least one sample data locations.
The second part D called the empty block set denotes the set of blocks where no collected data
falls in. The cardinality of L:and D- are denoted by ». and 7. respectively.

5. A local discretization is then applied inside the blocks D: into m nodes and L simulated
realizations are accried out on those local dicretized nodes using the CAC approach described
above. This gives L simulated realizations at only blocks belonging to, that is we end the first
step with L equiprobables simulated values at 7. blocks.

Step two of the TSBS

The second and final step of the TSBS approach is to use the previously simulated blocks of £ to simulate
at blocks of D:.

1. Analyze of the spatial variability of the occupied block support over the L realizations is
performed as well as the spatial continuity.

2. For each realization of the previous L simulated values at block support, one realization from the
SGS/LU algorithm is obtained after common technique. A back transformation of this realization
gives a full block realization. The final result produces L simulated values at block support.

Implementation

In this section we study the numerical complexity of the TSBS approach and compare it to the one of the
conventional approach, using the LU approach. The numerical complexity of both steps using the SGS
algorithm is not discussed here. Assume the following conditions.

e (C1) The sample size n is sufficiently large (acceptable) to obtain relevant and consistent statistics
at the point scale.

e (C2) The quantity n is sufficiently large (acceptable) to obtain relevant and consistent at the block
support scale.

e (C3) The number of occupied blocks = is sufficiently large (acceptable) to obtain relevant and
consistent at the block support scale.

e (C4) The ratio between the 7. and n is small, that is there exists a positive number a<1 such that
N, = Q1. (7)
Or equivalently,
Ne = (1 —a) ny,. (8)

While conditions (C1) and (C2) can be viewed as minimum requirements, condition (C3) is not
straightforward derived from the previous conditions. This assumption (C3) is not too restrictive in practice
since economical reasons lead to sparsely collected data. Thus the probability that all the locations fall into
a few number of blocks is significantly reduced.

Recall that the lower-upper decomposition simulation requires one inversion of a matrix and two LU
decompositions (Alabert, 1987). Recall that a LU decomposition of a positive definite matrix A of size K
has a numerical complexity that scales proportionally to third power of K. Similarly any inverse matrix
operation of matrix A of size K has a numerical complexity that scales proportionally to third power of K.

Numerical Complexity of the Conventional Approach

Since the number of discretized nodes into each block is m, the numerical complexity of the CAC using the
LU decomposition is as
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T, = O(ni m*) + O(n®)
which is clearly reduced to
toge = O (ng -mg) 9)

which bears an heavy computational burden if the product of the number of blocks n by the number of
nodes m is large. The computer storing process is not discussed here.

Numerical Complexity of the TSBS Approach
As the TSBS method uses two steps, the computational time for the first step is
T, = O(nym*) + O(n*) + O(n*)
while the one of the second step is given as
Ty = O(n2) +O(n) + O3).
Hence the computation time for the TSBS approach is deduced as
trape = O (ng ?713) + O(ng)

=a? O(nfg 7723) +(1—a)O (nﬁ) [from the equations (7) and (8)}

=a*0 (ng ?71.3)

= Ot e (10)

A comparison between the times consuming for the CAC and TSBS approaches is obtained through the
ratio «. If =1, that is 7.=0, then the computational times are the same. If «<1/2 or equivalently if n>2n.,
then a clearly computational advantage is attributed to the TSBS approach.

Real Data Application: Walker Lake Data set

All the programs are running under the Gslib software (Deustch and Journel, 1998). We present a
‘well-known' Walker Lake data example to demonstrate the TSBS approach described in the paper. Any
computational comparison has not been conducted here since proofs for time consuming of both
approaches have been provided. In this section, we compare the performances of both methods described in
the paper. The data consists of a training set of n=470 samples collected over a domain
D=[0,260m]x[0,300m]. Figure (1) shows relevant information about the data, like the locations map of the
data and the histogram. For simplicity and for a comparison purpose, the omni directional semivariogram
modeling is considered.
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Figure 1: Data configuration and empirical histogram estimates of the collected data
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Now a practical block grid discretization of the domain D by 26x30 is considered with a constant nodes
discretization by 5x5 within each block, whilst the number of simulated realizations is L=100. For
simplicity, an isotropic assumption will be formulated as the goal of this paper is to assess the proposed
methodology and to compare it to the conventional approach described above. The normally transformed
data set with n correlated components through has a fitted semivariogram model given by

yns(h) = 0.135 + 0.865 Spheyg o (|| 1)) (12)

as described in Figure (2).
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Figure 2: Empirical semivariogram estimates and the superimposed fitted model of the normal score data.

The CAC employing the sequential Gaussian algorithm (SGS) to simulate at the point support before
regularizing at the desired block scale as is fully computed and described in Figure (3). The TSBS
approach is now performed. The number of blocks obtained after selecting our practical block grid size
discretization of 26x30 gives obviously =780 leading to

lo 1
ne =298, n, =48, 2=a~038 and o~ _—.
Ty 20

(13)

This later results indicates that the TSBS approach can be approximately 20 times much faster than the
CAC, which can be significant if the TSBS times consuming exceeds the hour. Figure (4) describes the first
step of the TSBS approach while Figure (5) gives relevant information on the spatial dispersion of the
blocks realizations of Di. Comparisons between histograms estimates and cumulative distribution function
estimates using the CAC method and the first step of TSBS are plotted in Figure (6). Finally Figure (7)
provided some final results of the TSBS after the second step has been performed. Quantile quantile plots
between arbitrarily chosen realizations are also provided.

Both reference distributions at block support are compared in Figure (8) showing a good match of the
approach. The new approach gives a higher probability of the first class than does the CAC. We may
suspect the uncertainty brought by the variogram model used for each partial block support realization and
the impact of the seed. Indeed, one simulation from one simulated value using the sequential Gaussian
algorithm may be investigated in more detail to analyze the sensitivity of the variogram model employed.
At the end, Figure (9) studies the spatial variablity of both approaches. That plot indicates some good
matching between on the average semivariogram estimates at block support.

Discussion and Future Work

A new approach for fast recoverable estimation at block support scale is proposed. This method uses a
conventional approach to simulate realizations at blocks containing only observed data locations and uses
those realizations to obtain blocks on the entire domain. Although it is proved to be computationally
efficient, the following points need to be addressed.
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e On the first hand, discretizing only occupied blocks and taking those blocks as realizations for
inferring the whole domain, may bear a huge uncertainty if the number of occupied blocks 7. is
not 'enough’ for an ‘acceptable modeling." This case may happen in presence of small sample data.
In this case, some empties blocks should be considered as occupied blocks to get a reasonable
blocks inference process at the second step of the TSBS method.

e On the other hand, discretizing occupied blocks and simulating using the LU decomposition
conditionally to the data is not always possible, depending of the number of blocks considered and
the number of nodes in each block (large number of occupied blocks for instance). In such case,
some occupied blocks should be considered as empties blocks before the simulation in the first
step of the TSBS method takes place.

e In the general case, a flexible and rigorous algorithm (up to the practitioner) for the selection
blocks in the first step of the TSBS should be proposed in the future.
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Figure 3: The CAC approach shown in six plots after the point support simulation and regularization
processes have been carried out; (a) realization 15; (b) realization 45; (c) empirical histogram reproduction
at block scale using the L=100 simulated realizations; (d) empirical cumulative distribution function at
block scale using the L realizations; (e) quantile quantile plot of block realization 15 against 45 and (f)

quantile quantile plot of realization 81 against realization 40.
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Figure 4: Description of the first step of the TSBS approach given in four plots. The part of the domain D with no
data is clearly the empty part block set D> while the part with plotted data is the D: block set. (a) Point support
realization 50 under the normal space (NS) at discretized nodes of blocks of Di; (b) Back transformation of the
normally simulated realization given in (a) to the original space (OS); (c) regularization of point support realization
given in (b) to the block scale yielding to the realization 50 of blocks of Ds; realization 70 at blocks of L-.
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Figure 5: Study of the spatial dispersion of the blocks simulated realizations of D1 obtained from the first step of the
TSBS method. (a) Plot of all the L=100 estimates at blocks of 1 ; (b) histogram estimates using all the L simulated
realizations at blocks of D1 ; (c) average of all the c.d.f. estimates given in (a); (d) quantile quantile plot of blocks (of
D)) realizations 1 and 4 and (e) same as in (d) by using the realizations 70 and 45.
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Figure 7: The second step of TSBS method. (a) Realization number 15; (b) realization number 45; (c)
empirical histogram reproduction at block scale using all the L=100 simulated realizations; (d) empirical
cumulative distribution function at block scale using all the L=100 simulated realizations; (e) quantile-
guantile plot of block realizations 15 and 45 and (f) same as in (e) by using realizations 81 and 40.
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Figure 8: Comparison study of the distribution between CAC and the TSBS method plotted in (a)
histogram average from CAC; (b) histogram average from TSBS; (c) average cumulative distributions
estimates and (d), (e) and (f) compare some realization obtained from both approaches.
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Figure 9: Spatial variability comparison between the CAC and the TSBS. (a) All the L semivariogram
estimates using the CAC; (b) all the L semivariogram estimates using the TSBS method; (c) average over
the L semivariogram estimates from (a); average over the L semivariogram estimates from (b); (e)

comparison between (c) and (d).
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