
305-1 

A Two Step Approach for Block Simulation 
 

S. Elogne1, O. Leuangthong1, and J. Ortiz2 

1Centre for Computational Geostatistics – Edmonton, Alberta 
2Department of Mining Engineering – Santiago, Chile 

 

An important problem in mining is the estimation of global recoverable reserves.  A consistent block 
simulated value requires (i) a fine discretization of the block into a number of nodes, (ii) simulated values 
at those nodes and (iii) a regularization at the block scale.  In presence of large domains with relatively 
wide spacing data locations, this approach is computationally heavy.  A two-step block simulation 
approach is proposed to handle such problem. The method first partitions  the domain into two sets of 
blocks, uses the point support scales to get simulated values at blocks belonging the first set, that are then 
used to simulate at second set of blocks.  An illustration of the method is given with real data example. 

Introduction 

Assume that n data collected at known spatial locations  come from 
a second order stationary process Z defined over a finite domain of interest D with positive volume A 
central problem in mining exploration, petroleum, reserves estimation, environmental sciences and others, 
is to simulation/prediction grades at block support scale (Journel and Huijbrets, 1978). Geostatistical 
simulation is widely used as it provides an assessment of uncertainty and reproduces the spatial variability 
and distribution of a regionalized variable. A recommended and accurate approach will be to provide $L$ 
simulated realizations at point support scale before regularizing at the block scale. This approach can prove 
computationally inefficient, if the number of discretized nodes within the domain is extremely large due to 
the computer limitations. In such case, the impracticability of approach can lead to a coarser discretization 
point scale process, where one has to cope with the uncertainty at block scale. 

Another approach for global recoverable reserves is the change of support models. From the support v to 
the support V, (assuming the volume of v smaller that the one of V) this approach (Journel and Huijbregts, 
1978) defines the dispersion variance D(v/V) and  expresses it in term of the second order stationary 
semivariogram of the point support as 

 
with the double summation being approximated by its discretized form as  

 
If v is a point support volume, then the variance reduction factor defined as the ratio between the variance 
of the block support and the variance of the point support is given by (Journel and kyriakidis, 2003) 

 
and the variance of the block at support V is approximated by 

 
This paper proposes a two-step block simulation (TSBS) method based on simulating the nodes within 
those blocks that contain sample data based by performing the LU conditional simulation, and then using 
the previous realizations for simulating blocks realizations on the entire domain. The new approach is 
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proved to be computationally efficient compared to the conventional approach described above which 
provides L simulated realizations on the entire domain D.  

The remainder of the paper is structured as follows. Section 2 reviews the conventional approach 
considered in this paper. In Section 3, the two-steps block simulation is fully described and Section 4 
studies and compares the numerical complexities of the conventional approach and of the two-steps block 
simulation approach. A real data example is carried out in Section 5 and finally Section 6 summarizes the 
potential of the method and discusses futures directions. 

Conventional Approach Considered (CAC) 

One of the consistent and recommended (Journel and Kyriakidis, 2004) geostatistical approach for global 
reserve recoverable estimation first transformed the original data into a transformed data set  

 
which is normally distributed with n correlated components through a non-decreasing function as  

 
where F is an estimator of the cumulative distribution of the collected data and G is the known cumulative 
Gaussian distribution. The transformed data is then used to simulate L equiprobable realizations at 
unknown locations of the domain D under the Gaussian space by lower-upper decomposition approach 
(Alabert, 1987) or by sequential approach (Deutsch and Journel, 1998). Then a back transformation 
operation of the Gaussian simulated data are conducted through the following 

 
Then a simulated value at the block V at the l-th realization is obtained by regularizing the above point 
scale simulated values over the block V as 

 

for l=1,..,L where  is  a kernel function allowing weights to the location . This methodology 
provides simulated blocks realization where statistics, like histogram or semivariogram can be computed. 

Methodology of the two step block approach (TSBS) 

In this section, we describe the two step block simulation method.  

Step one of the TSBS 

1. Infer relevant statistics of the data, including representative histogram and semivariogram. 
Declustering or debiasing technique may be required. Simulation is typically based on multivariate 
Gaussiannity framework. A normal score transformation is performed on the original data. The 
normal score transformation is a commonly used approach in nonparametric statistics which is 
defined as values of the order statistics in a sample from a Gaussian distribution. This approach 
has proved to be a powerful tool in geostatistics when dealing with non Gaussian distribution. 

2. Consider a block grid discretization od the entire domain of interest into  non-overlapping blocks 
after a practical block size has been chosen 

3. Consider a partition of the domain D into two sets of blocks  and , that is 
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4. The choice of subsets  and  can be made subjective as many different partitions of the domain 

can be proposed. We believe that a relevant approach for block’s partition is as follows: the subset 
 called the occupied block set is the set of blocks containing at least one sample data locations. 

The second part  called the empty block set denotes the set of blocks where no collected data 
falls in. The cardinality of   and  are denoted by  and  respectively. 

5. A local discretization is then applied inside the blocks  into m nodes and L simulated 
realizations are accried out on those local dicretized nodes using the CAC approach described 
above. This gives L simulated realizations at only blocks belonging to , that is we end the first 
step with L equiprobables simulated values at  blocks. 

Step two of the TSBS 

The second and final step of the TSBS approach is to use the previously simulated blocks of  to simulate 
at blocks of . 

1. Analyze of the spatial variability of the occupied block support over the L realizations is 
performed as well as the spatial continuity. 

2. For each realization of the previous L simulated values at block support, one realization from the 
SGS/LU algorithm is obtained after common technique. A back transformation of this realization 
gives a full block realization. The final result produces L simulated values at block support. 

Implementation 

In this section we study the numerical complexity of the TSBS approach and compare it to the one of the 
conventional approach, using the LU approach. The numerical complexity of both steps using the SGS 
algorithm is not discussed here.  Assume the following conditions. 

• (C1) The sample size n is sufficiently large (acceptable) to obtain relevant and consistent statistics 
at the point scale. 

• (C2) The quantity  is sufficiently large (acceptable) to obtain relevant and consistent at the block 
support scale. 

• (C3) The number of occupied blocks  is sufficiently large (acceptable) to obtain relevant and 
consistent at the block support scale. 

• (C4) The ratio between the   and  is small, that is there exists a positive number <1 such that 

 
Or equivalently, 

 
While conditions (C1) and (C2) can be viewed as minimum requirements, condition (C3) is not 
straightforward derived from the previous conditions. This assumption (C3) is not too restrictive in practice 
since economical reasons lead to sparsely collected data. Thus the probability that all the locations fall into 
a few number of blocks is significantly reduced. 

Recall that the lower-upper decomposition simulation requires one inversion of a matrix and two LU 
decompositions (Alabert, 1987). Recall that a LU decomposition of a positive definite matrix A of size K 
has a numerical complexity that scales proportionally to third power of K. Similarly any inverse matrix 
operation of matrix A of size K has a numerical complexity that scales proportionally to third power of K.  

Numerical Complexity of the Conventional Approach  

Since the number of discretized nodes into each block is m, the numerical complexity of the CAC using the 
LU decomposition is as  
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which is clearly reduced to 

 
which bears an heavy computational burden if the product of the number of blocks  by the number of 
nodes m is large. The computer storing process is not discussed here. 

Numerical Complexity of the TSBS Approach 

As the TSBS method uses two steps, the computational time for the first step is  

 
while the one of the second step is given as 

 
Hence the computation time for the TSBS approach is deduced as  

 
A comparison between the times consuming for the CAC and TSBS approaches is obtained through the 
ratio . If =1, that is =0, then the computational times are the same. If  <1/2 or equivalently if  >2 , 
then a clearly computational advantage is attributed to the TSBS approach. 

Real Data Application: Walker Lake Data set 

All the programs are running under the Gslib software (Deustch and Journel, 1998). We present a 
'well-known' Walker Lake data example to demonstrate the TSBS approach described in the paper. Any 
computational comparison has not been conducted here since proofs for time consuming of both 
approaches have been provided. In this section, we compare the performances of both methods described in 
the paper. The data consists of a training set of n=470 samples collected over a domain 
D=[0,260m]x[0,300m]. Figure (1) shows relevant information about the data, like the locations map of the 
data and the histogram. For simplicity and for a comparison purpose, the omni directional semivariogram 
modeling is considered.  

 

 
Figure 1:  Data configuration and empirical histogram estimates of the collected data 
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Now a practical block grid discretization of the domain D by 26x30 is considered with a constant nodes 
discretization  by 5x5 within each block, whilst the number of simulated realizations is L=100. For 
simplicity, an isotropic assumption will be formulated as the goal of this paper is to assess the proposed 
methodology and to compare it to the conventional approach described above. The normally transformed 
data set with n correlated components through has a fitted semivariogram model given by  

 
as described in Figure (2).  

 
Figure 2:   Empirical semivariogram estimates and the superimposed fitted model of the normal score data. 

The CAC employing the sequential Gaussian algorithm (SGS) to simulate at the point support before 
regularizing at the desired block scale as is fully computed and described in Figure (3).  The TSBS 
approach is now performed. The number of blocks obtained after selecting our practical block grid size 
discretization of 26x30 gives obviously =780 leading to  

 
This later results indicates that the TSBS approach can be approximately 20 times much faster than the 
CAC, which can be significant if the TSBS times consuming exceeds the hour. Figure (4) describes the first 
step of the TSBS approach while Figure (5) gives relevant information on the spatial dispersion of the 
blocks realizations of . Comparisons between histograms estimates and cumulative distribution function 
estimates using the CAC method and the first step of TSBS are plotted in Figure (6). Finally Figure (7) 
provided some final results of the TSBS after the second step has been performed. Quantile quantile plots 
between arbitrarily chosen realizations are also provided. 

Both reference distributions at block support are compared in Figure (8) showing a good match of the 
approach. The new approach gives a higher probability of the first class than does the CAC. We may 
suspect the uncertainty brought by the variogram model used for each partial block support realization and 
the impact of the seed. Indeed, one simulation from one simulated value using the sequential Gaussian 
algorithm may be investigated in more detail to analyze the sensitivity of the variogram model employed.  
At the end, Figure (9) studies the spatial variablity of both approaches. That plot indicates some good 
matching between on the average semivariogram estimates at block support. 

Discussion and Future Work  

A new approach for fast recoverable estimation at block support scale is proposed. This method uses a 
conventional approach to simulate realizations at blocks containing only observed data locations and uses 
those realizations to obtain blocks on the entire domain. Although it is proved to be computationally 
efficient, the following points need to be addressed. 
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• On the first hand, discretizing only occupied blocks and taking those blocks as realizations for 
inferring the whole domain, may bear a huge uncertainty if the number  of occupied blocks  is 
not 'enough' for an 'acceptable modeling.' This case may happen in presence of small sample data. 
In this case, some empties blocks should be considered as occupied blocks to get a reasonable 
blocks inference process at the second step of the TSBS method. 

• On the other hand, discretizing occupied blocks and simulating using the LU decomposition 
conditionally to the data is not always possible, depending of the number of blocks considered and 
the number of nodes in each block (large number of occupied blocks for instance). In such case, 
some occupied blocks should be considered as empties blocks before the simulation in the first 
step of the TSBS method takes place. 

• In the general case, a flexible and rigorous algorithm (up to the practitioner) for the selection 
blocks in the first step of the TSBS should be proposed in the future.  
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Figure 3:  The CAC approach shown in six plots after the point support simulation and regularization 
processes have been carried out; (a) realization 15; (b) realization 45; (c) empirical histogram reproduction 
at block scale using the L=100 simulated realizations; (d) empirical cumulative distribution function at 
block scale using the L realizations; (e) quantile quantile plot of block realization 15 against 45 and (f) 
quantile quantile plot of realization 81 against realization 40. 
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Figure 4:  Description of the first step of the TSBS approach given in four plots. The part of the domain D with no 
data is clearly the empty part block set  while the part with plotted data is the  block set. (a) Point support 
realization 50 under the normal space (NS) at discretized nodes of blocks of ; (b) Back transformation of the 
normally simulated realization given in (a) to the original space (OS); (c) regularization of point support  realization 
given in (b) to the block scale yielding to the realization 50 of blocks of ; realization 70 at blocks of .  

 
Figure 5:  Study of the spatial dispersion of the blocks simulated realizations of  obtained from the first step of the 
TSBS method. (a) Plot of all the L=100 estimates at blocks of  ; (b) histogram estimates using all the L simulated 
realizations at blocks of  ; (c) average of all the c.d.f. estimates given in (a); (d) quantile quantile plot of blocks (of 

) realizations  1 and 4 and (e) same as in (d) by using the realizations 70 and 45. 
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Figure 6:  Comparison study between the block distribution obtained from the CAC and the distribution 
obtained at the first step of the TSBS approach. (a) Histogram estimates of all realizations at block scale 
using the CAC; (b) Histogram estimates of all realizations at block scale using the first step of the TSBS 
method; (c) comparison between the averages of all the c.d.f. estimates using the blocks realizations 
obtained for the CAC and those obtained from the first step of the TSBS method. 
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Figure 7:  The second step of TSBS method. (a) Realization number 15; (b) realization number 45; (c) 
empirical histogram reproduction at block scale using all the L=100 simulated realizations; (d) empirical 
cumulative distribution function at block scale using all the L=100 simulated realizations; (e) quantile-
quantile plot of block realizations 15 and 45 and (f) same as in (e) by using realizations 81 and 40. 
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Figure 8:  Comparison study of the distribution between CAC and the TSBS method plotted in (a) 
histogram average from CAC; (b) histogram average from TSBS; (c) average cumulative distributions 
estimates and (d), (e) and (f) compare some realization obtained from both approaches. 



305-12 

 
Figure 9:  Spatial variability comparison between the CAC and the TSBS. (a) All the L semivariogram 
estimates using the CAC; (b) all the L semivariogram estimates using the TSBS method; (c) average over 
the L semivariogram estimates from (a); average over the L semivariogram estimates from (b); (e) 
comparison between  (c) and (d). 

 


