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Implementation of the Min/Max Autocorrelation Factors and 
Application to a Real Data Example 

S. Elogne and O. Leuangthong 

The implementation in a GSLIB version of the minimum maximum autocorrelation factor (MAF) technique 
is considered in this note. This note reviews in a practical way the technique by describing the main lines of 
the approach. An academic application of the method has been conducted on a real data example.  

Introduction 

This note implements and describes the minimum maximum autocorrelation factor which is based on the 
principal component analysis that spatially brings correlated variables into non-correlated factors at any lag 
h. Principal Component Analysis (PCA) is a well-known technique involving a linear transformation of one 
vector into another, by an orthogonalization procedure.  

This method which was initially proposed by Switzer and Green (1984) in image processing and remote 
sensing has been smoothly introduced in geostatistics (see references). Like the stepwise conditional 
transform (Leuangthong and Deutsch, 2003), the MAF is a powerful tool for analyzing and simulating 
coregionalized variables. It is practically convenient to avoid manipulating large systems in cokriging and 
the modeling of cross-covariance and use of the linear model of coregionalization.  

Algorithm  

Consider a multivariate data matrix of dimension p x n 

 
with the columns being the collocated data and the row being the variables. The main idea of the 
minimum/maximum autocorrelation factor (MAF) is to transform the correlated multivariate variables 

 into uncorrelated factors . Switzer and Green (1984) proposed the following algorithm 
which mainly uses the properties of the eigenvectors and eigenvalues of symmetric matrices. 

Part one: principal components analysis at h=0. 

• Compute the empirical covariance matrix as 

 
• Consider the spectral decomposition (eigenvalue decomposition) of the above matrix as 

 
where  is the matrix of the eigenvalues and  the matrix of the orthonormal eigenvectors. 

• Ensure that the entries of  are in a decreasing order and that the corresponding eigenvectors are 
in rows 
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• Compute the (standardized) first PCA transformations  by the following  

 

Part two: principal components analysis at a nonzero lag h using the previous factors. 

• Select a nonzero lag distance h. 

• Compute the experimental omni-directional symmetric cross-variance matrix  for matrix V. 

• Then consider the spectral decomposition of  as  

 
• Finally, the principal components factors give the MAF factors as 

 

Forward transform of the MAF 

The forward transform of the MAF technique is obtained through the matrix A given by 

 
Indeed by plugging Equation (4) into Equation (6), we derive that 

 
 

Back transform of the MAF 

The back transform operation of the MAF technique is utterly computed through the inverse of the matrix 
A given in Equation (7). 

Data application: Jura data set 

We apply the MAF technique by considering three correlated variables from the Jura data set (Goovaerts, 
1997). The correlated variables used in this note are Cd, Co and Cr of sample size n=259. We consider the 
shift lag h=0.187 with a tolerance number taken to be half of this lag. We transform each variable into their 
normal score space (Desbarats and Dimitrakopoulos, 2000). The sample correlation matrix is as  

 

The spectral eigen decomposition  gives  
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and 

 
Thus we obtain the first factors V(u) using Equation (4) as 

 
Taking the shift lag h=0.187, the sample semivariogram matrix of the standardized factor V is as 

 

An eigen decomposition as  produces  

 
and  

 
Thus the forward transform MAF matrix A follows by 

 
and the back transform process is conducted through the following inverse  

 
Figure (1) gives the cross plots of the MAF factors as the correlations between the factors are removed. 
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Figure 1:  Cross plots of the three MAF factors using the lag h=0.187. 

  

Program: maf.exe 
START OF PARAMETERS: 
NS_transf.out                          - File with data (after normal transformation) 
3                                      - Number of variables 
5   7   9                              - Columns for variables 
1   2   0                              - Columns for locations 
-20000.5      1.0e21                   - Trimming limits 
0.30     0.15   0.15                   - Hlag, Htol1, Htol2 (lag and tolerance) 
first-Testing.out                      - Eigenvector first PCA  
first-Trans.out                        -first PCA transformation factors 
Second-Testing.out                     -file for eigen values second PCA at nonzero lag 
output.out                             -file for final MAF factors 

 

Appendix: The min/max autocorrelation formalism 

 

Consider p multivariate data  and let  

 
Consider p orthogonal linear combinations  such that  

 
for j=1,…, p. The idea of the maximum/minimum autocorrelation factor is similar to the principal 
component analysis. Basically each transform  is determined so as to exhibit greater spatial correlation 
than that is the previously determined factor while being orthogonal to the other transformed factors 
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(Desbarats and Dimitrakopoulos, 2000). The orthogonality requirement being that for any j different of j’, 
one checks that 

 
The covariance of the factor  is given as 

 
Consider the variance-covariance matrix  

 
Thus 

 
Now under the second order stationary assumption, consider the variance matrix  

 
It follows that 

 
where the correlation coefficient is derived by  

 
Minimization of the above correlation is equivalent to maximize the second term of the right hand side. It is 
shown (Switzer and Green, 1984) that the coefficients  yielding the MAF factors are obtained as the left 
hand eigen vectors of the matrix 
 

 
The technique for deriving the eigen vectors  is the above MAF method with two principal components 
analysis. 
 
 
 
 



406-6 

References 

Davis, M.W., Greenes, K.A., 1983. Estimation using spatially distributed multivariate data: an example 
with coal quality. Mathematical Geology 15 (2), 287–300. 

Desbarats, A.J., Dimitrakopoulos, R., 2000. Geostatistical simulation of regionalized pore-size distributions 
using min/max autocorrelation factors. Mathematical Geology 32 (8), p. 919–941.  

Dimitrakopoulos, R., Fonseca, M.B., 2003. Assessing risk in grade–tonnage curves in a complex copper 
deposit, northern Brazil, based on an efficient joint simulation of multiple correlated variables. In: 
Proceedings of the Application of Computers and Operations Research in the Minerals Industries, 
Cape Town, South Africa, p. 373-382. 

Dimitrakopoulos, R., Mackie, S., 2003. Stochastic simulation for the quantification of mine spoil variability 
and rehabilitation decision making. In: Proceedings of MODSIM 2003, International Congress on 
Modelling and Simulation, Townsville, Australia, pp. 1703–1708. 

Green Andrew A. Green, Berman Mark, Switzer Paul, and Craig Maurice D. , A transformation for 
ordering multispectral data in terms of image quality with implications for noise removal, IEEE 
Transactions on Geoscience and Remote Sensing, vol. 26, no. 1, p. 65-74, 1988. 

Goovaerts, P., 1993. Spatial orthogonality of the principal components computed from coregionalized 
variables. Mathematical Geology 25 (3), 281–302. 

Jolliffe, I.T., 1986. Principal Component Analysis. Springer, New York, 271pp. 

Leuangthong, O., Deutsch, C.V., 2003. Stepwise conditional transformation for simulation of multiple 
variables. Mathematical Geology 35 (2), 155–173. 

Switzer, P., and Green, A. A., 1984, Min/Max autocorrelation factors for multivariate spatial imaging 
Technical Report No. 6, Department of Statistics, Stanford University. 

Switzer Paul, Min/max autocorrelation factors for multivariate spatial imagery, in Computer Science and 
Statistics, L. Billard, Ed. 1985, pp. 13–16, Elsevier, Science Publishers B.V. (North Holland) 

Vargas-Guzman, J.A., Dimitrakopoulos R., 2003. Computational properties of min/max autocorrelation 
factors. Computers & Geosciences 29 (6), 715–723. 

Wackernagel, H., 1998. Principal component analysis for autocorrelated data: a geostatistical perspective. 
Centre de Geostatistique-Ecole des Mines de Paris Technical Report N-22/98/G, 47pp. 

 

 


