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Latin Hypercube Sampling with Multidimensional Uniformity 
 

Jared L. Deutsch and Clayton V. Deutsch 

 

Complex geostatistical models can only be realized a limited number of times due to large computational 

requirements.  Many methods exist for generating input parameters for model realizations including 

Monte Carlo simulation (MCS) and Latin hypercube sampling (LHS).  An extension of Latin hypercube 

sampling (LHSMDU) for multivariate models with limited realizations is presented which enforces 

multidimensional uniformity of the input parameters through sequential realization elimination.  A lhsmdu 

program is shown that will calculate an L x N input matrix for N variables and L realizations.  A simulation 

study comparing MCS, LHS and LHSMDU demonstrates that LHSMDU can significantly improve realization 

efficiency.  Correlations are imposed on the sampling matrix using a Cholesky LU decomposition of the 

correlation matrix.   

 

Introduction 

Geostatisticians frequently deal with computationally expensive models involving numerous input 

variables each distributed according to a calculated distribution.  The traditional technique for selecting 

realization input variables is Monte Carlo simulation (MCS) which randomly samples the cumulative 

distributions to obtain variable inputs.  Another technique which has gained popularity is Latin hypercube 

sampling (LHS), a technique that emphasizes uniformly sampling the variables by stratifying the 

distribution function.  It has been demonstrated for many applications that LHS is a much more efficient 

method compared to MCS (McKay 1979, 1992).  We propose a modified LHS method, LHSMDU, that 

enforces multidimensional uniformity.  This method extends the goal of univariate uniformity used by LHS 

to a multivariate situation.  A method for conforming the inputs to a correlation matrix using LU post-

processing is also implemented.   

 

Background 

Consider a computer model requiring N input variables that can be realized L times.  The Monte Carlo 

approach would be to generate LxN uniform random numbers from [0,1] and sample the cumulative 

distribution functions (CDFs) for each of the N variables using these random numbers.  These sampled 

values would then be used as inputs for the realizations.  MCS was first named and used extensively by 

von Neumann and Ulam in their work at Los Alamos Labs during the 1940s (Kochanski, 2005).  This 

technique has been widely employed by all areas of science and engineering and forms the basis for many 

statistical methods.   

 The Latin hypercube approach, developed by McKay et al. (1979), for input generation is to 

stratify the CDF into L strata and draw uniform random numbers from each of the strata for the inputs.  

The reasoning for this stratification is that true randomness is not perfectly uniform.  It is possible that 

significant regions of the cumulative distribution function would not be sampled if only a limited number 

of inputs could be realized.  The stratification enforces univariate uniformity but does not account for 

multivariate relationships.  LHS was demonstrated by McKay (1979, 1992) to, on average, be better than 

MCS for the selection of input variables and to be an unbiased estimator.   

 Modifications to the Latin hypercube presented by McKay et al. have been described by Iman 

and Conover (1982), Owen (1994), Lin et al. (2009) and others.  The discussion by Iman, Conover and 

Owen providing a method for imposing correlations in a Latin hypercube matrix is very similar to the 

method used in this paper.  Lin et al. introduced a method for creating small orthogonal or nearly-

orthogonal Latin hypercube matrices.  Their idea of enforcing multivariate uniformity is key. 

 

Methods 

Suppose a geostatistical model requires N variables and can be realized L times.  The model inputs can be 

viewed as an input matrix with L rows and N columns (Equation 1).  The Monte Carlo approach would be 

to generate NL uniform random numbers in the range of 0 to 1 and arrange these values into an N by L 
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matrix.  The cumulative distribution function for each of the N variables is then sampled using the random 

numbers.   

 [ ]
11 1

1

( ) ( )

Sampling Matrix = , ( ) 0,1

( ) ( )

N

ij

L LN

F x F x

F x

F x F x

 
 

∈ 
  

…

⋮ ⋱ ⋮

⋯

 (1) 

The Latin hypercube approach would be to generate NL uniform random numbers with a range given by 

Equation 2.  This ensures that each variable is uniformly sampled.  The ordering of the L realizations is 

then randomized.  The cumulative distribution is sampled using these values to determine the input 

variables.   
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Neither MCS nor LHS impose a degree of multidimensional uniformity on the sampling matrix.  To enforce 

a degree multidimensional uniformity, a realization elimination algorithm is proposed.  Initially, ML 

realizations are generated where M is a small number greater than 1 making the initial sampling matrix M 

times larger than the final.  Each of the ML realizations is composed of N uniform random numbers in the 

range of 0 to 1.  To eliminate realizations, the average Euclidean distance of each realization to its two 

nearest neighbors is calculated (Equation 3).  The two nearest neighbors instead of the single nearest 

neighbor are taken since this prevents realization pairs from being generated.   
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The realization with the smallest average distance to its two nearest neighbors is eliminated.  This 

distance calculation and elimination scheme is repeated until only L realizations remain.  If the variables 

are assumed independent, then the realizations are ranked and the same stratification scheme 

implemented by LHS is imposed on the samples.  This enforces univariate uniformity without significantly 

modifying the multivariate distribution of the realizations.   

 If necessary, a correlation structure can be imposed before applying Latin hypercube using a 

method similar to that of Iman, Conover and Owen.  The LU approach to enforce a correlation structure is 

detailed by Deutsch (1998) but is presented in brief here.  To prevent artifacts from using linear 

combinations of variables, the input matrix is transformed to Gaussian units using a Gaussian inverse 

function.  After transformation, the variables are correlated by multiplying each realization by the L matrix 

from the Cholesky LU decomposition of the correlation matrix.  The correlated Gaussian variables are 

then normal score transformed to return them to the range of [0,1].   

 A comparison of the three techniques discussed, MCS, LHS and LHSMDU is presented in Figure 1.  

This figure is a plot of four input matrices of twenty realizations each for a bivariate problem.  For this 

illustration, the variables are assumed independent.  It can be seen that MCS does not uniformly sample 

either the marginal or multivariate space.  LHS and LHSMDU both uniformly sample the marginal 

distributions but only LHSMDU approximately samples the multivariate uniformly.   

 

Implementation 

The GSLIB compatible program lhsmdu implements all of the techniques discussed.  Given values for N, L, 

M and a correlation matrix, it will generate sampling matrices in the form of Equation 1 using MCS, LHS 

and LHSMDU.  The pseudo-random number generator used is the ACORNI generator described by 

Wikramaratna (1990).  Ortiz and Deutsch (2001) tested the ACORNI pseudo-random number generator 

and found that it acceptably passed all tests for randomness.  The parameter file and specific details on 

the lhsmdu program are contained in Appendix 1.   

 A small simulation study to test the relative power of the MCS, LHS and LHSMDU algorithms was 

set up using an original oil in place (OOIP) example.  For this 5 variable problem, the variables were 

assumed to be independent.  Probability distribution functions for each variable and a full description are 

given in Appendix 2.  The OOIP was calculated using Equation 4 letting C=1 for simplicity.  Unless 
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otherwise noted, the default values used in this study were L=100 realizations and an initialization factor 

of M=5.   

 OOIP C A T NTG (1 S )
net w

= Φ −i i i i i  (4) 

The “true” OOIP probability distribution function was easily calculated using 10 million MCS realizations 

which was compared with the sample cumulative distribution functions (CDFs) generated in this study.  

The effectiveness of each technique was judged using a value similar to the Kolmogorov-Smirnov D 

statistic.  This value, e, is given by Equation 5 and illustrated in Figure 2.   
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A cumulative histogram of e values for MCS, LHS and LHSMDU techniques was generated using 5000 sets 

of 100 realizations (Figure 3).  From this plot it can be seen that LHSMDU significantly improves over LHS 

which in turn is a significant improvement over MCS.  All of the histograms are bounded on the lower end 

by 0 resulting in skewed distributions.   

 The median e value was calculated for different numbers of realizations ranging from L=10 to 

L=10000 (Figure 4).  As expected, all techniques improved as the number of realizations increased.  The 

curves fit to each series have the form of Equation 6.   

 ,  0.5b
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The coefficient of b in Equation 6 was approximately -0.5 for all techniques.  MCS had a value slightly 

lower, LHS was almost exactly -0.5 and LHSMDU had a slightly higher coefficient.  This relationship 

frequently occurs in statistics, such as the standard deviation for a Gaussian variable.  A more intuitive 

way to understand the improvements by LHS and LHSMDU is shown in Figure 5.  Here, the equivalent 

number of Monte Carlo realizations that would be required to have the same median e value is plotted as 

a function of the number of realizations if MCS, LHS or LHSMDU was used.  The MCS line (a 1:1 

relationship) is plotted for reference.   

 To determine the optimal initialization factor, M, for the MDU algorithm, a simulation of e values 

as a function of M was conducted (Figure 6).  This was found to have an asymptotic relationship as the e 

value for M=5 was almost the same as for M=10 and M=15.  As such, the default setting recommended 

for the lhsmdu program is M=5.  Note that if M=1 then no realizations are eliminated so the LHSMDU 

algorithm is the same as LHS.   

 Correlated variables are handled by LHSMDU using the LU method previously described.  After 

correlating, the Latin hypercube stratification scheme is applied to enforce univariate uniformity.  A 

comparison of realization sets generated by MCS, LHS and LHSMDU for ρ = 0.85 in the same form as 

Figure 1 is shown below (Figure 7).   

 The same OOIP simulation study was repeated, only this time a specified correlation matrix 

(Equation 7) was used.  For this correlation matrix, variable 1 is A, variable 2 is T and so on.  The median e 

value as a function of the number of realizations is again plotted for the three sampling methods (Figure 

8).  The equations fit to the realized values have the same form as Equation 6 with b ≈ 0.5 for each 

method.   
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The correlated simulation study showed that LHS and LHSMDU improved on MCS comparable to the 

improvements for the uncorrelated OOIP study.  Imposing a correlation structure did not affect the 

relative performance of either LHS or LHSMDU relative to MCS.   

 

Conclusions 

Three sampling techniques have been discussed for generating an L x N input matrix for a computationally 

expensive geostatistical model: MCS, LHS and LHSMDU.  MCS is the classical random method for sampling 
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the model while LHS and LHSMDU are both marginally stratified to achieve univariate uniformity in an 

attempt to produce a better than random input model.  The concept of multidimensional uniformity, 

which is an extension of the univariate uniformity enforced by LHS, shows potential for improving model 

inputs as implemented in the LHSMDU algorithm.  The program lhsmdu implements a realization 

elimination scheme to impose a degree of multidimensional uniformity.   

 For the small OOIP simulation study in this note, LHSMDU demonstrated significant 

improvements over LHS and MCS.  The improvement is attributed to the greater degree of 

multidimensional uniformity achieved by the LHSMDU sampling matrix.  Correlation structures were 

imposed using a LU decomposition of the correlation matrix.  The improvements of LHSMDU were not 

affected by imposing a correlation structure.   

 

Limitations and Future Work 

LHSMDU suffers from the same principle problem as LHS.  Both techniques require the user to know the 

number of realizations they want to run prior to running the realizations.  This prevents the 

implementation of an early stopping criterion and does not make allowances for running additional 

realizations with ease.  MCS does not have these conditions, however, as suggested by the small study 

conducted, will require many more total realizations compared to LHS or LHSMDU to achieve the same 

accuracy.   

 Future work would see the implementation of all three techniques into a larger scale study with 

many input variables.  Ideally this study would be non-trivial but not so computationally demanding that 

only a small number of realizations could be run.  LHS and LHSMDU could then be graded based on their 

relative efficiency compared to MCS.   
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Appendix 1 

The lhsmdu program follows standard GSLIB convention in that it requires no direct user input but 

references a parameter file, an example of which is given below.   
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The user specifies the number of variables, number of realizations and M discussed in this paper in lines 5 

through 7.  A random number generator seed for the ACORNI generator and output file names for the 

matrices are specified in lines 8-11.  Line 12 allows the user to specify a file for output of the entropy of 

the lhsmdu design matrix.  To enable this output, the user should consult the documentation in the 

Fortran code of lhsmdu and recompile as instructed.  If the user wishes to consider correlated variables, 

line 13 is set to 1, otherwise the variables are assumed independent.  The correlation matrix for the N 

variables is then specified if desired.   

 Each of the MCS, LHS and LHSMDU sampling matrices are output in the format shown below 

which can easily be read by any GSLIB compatible software.   

 
Appendix 2 

The original oil in place (OOIP) simulation shown in this note used the following reference histograms for 

the drawing of input values.   
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Letting C=1 m
-3

 gives the OOIP distribution obtained below using 10 million realizations.   

 
The deciles used in the calculation of e values were drawn from this distribution.  The correlated OOIP 

distribution was also calculated (not shown) and the deciles drawn in an identical manner.   

 

 

 
Figure 1: Comparison of realization sets generated by MCS, LHS and LHSMDU algorithms. 

 
Figure 2: Illustration of e value calculated based on maximum deviation of the sample CDF from the true 

CDF at each of the 9 deciles.   
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Figure 3: Cumulative probability plots of e-values from OOIP study for different sampling techniques. 

 
Figure 4: Median simulated e values as a function of the number of realizations 

 
Figure 5: Equivalent number of MCS realizations to have the same median e value as a number of 

realizations using one of the techniques studied   
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Figure 6: Median e value from LHSMDU as a function of different M values.  

 

 
Figure 7: Comparison of realization sets generated by MCS, LHS and LHSMDU with ρ = 0.85 

 

 
Figure 8: Median e values as a function of the number of realizations for correlated OOIP simulation 


