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Comparing three popular optimization algorithms by considering 

advantages and disadvantages of each of them using a field case study 

Vahid Dehdari 

Final goal of reservoir management is finding a high net present value during the forecast period of reservoir 

assessment. The first step in reservoir management is history matching. Even if we have a good history matched 

model, without a robust production optimization algorithm, high value of NPV cannot be found. Field-scale 

optimization problems consist of a highly complex reservoir model with many control variables as unknowns. So 

finding a high value for NPV in a reasonable time depends highly on the efficiency of optimization algorithm. There 

are many optimization algorithms and in this paper we study three efficient algorithms for doing optimization. 

These are steepest ascent (SA), sequential quadratic programming (SQP) and interior point (IP) methods. In 

petroleum, steepest ascent is a very popular method in maximizing NPV of reservoirs due to the small optimization 

cost. This method is an unconstrained optimization and due to the nature of this algorithm, it cannot find a high 

NPV. In contrast, sequential quadratic programming (SQP) is a robust constrained optimization algorithm and it 

can find a high NPV after about 20 iterations, but computation cost of each iteration is significant and it is not 

comparable with steepest ascent method. In this paper we introduce another optimization algorithm i.e. interior 

point method. Although final NPV in this method is not as high as SQP, but it is much more than steepest ascent 

method and computation cost of each iteration is similar to the steepest ascent method. For better realizing 

advantages and disadvantages of each algorithm, we consider application of these methods to the Brugge field 

which is a synthetic model and contains 4560 total fluid rate constraints which is pretty large.  

 

Introduction 

Closed loop optimization consists of two parts: 1-History matching 2-Production optimization. For predicting 

reservoir behavior, and due to the uncertainty in the reservoir parameters, history matching can be used for 

estimating true values of them using production data. The goal of production optimization is maximizing NPV by 

adjusting production from individual completions through inflow control valves in smart wells. Closed loop 

optimization means simultaneous history matching and production optimization. The final goal of closed loop 

optimization is maximizing NPV. Recently, closed loop optimization has been used widely for history matching and 

optimization (Brower et al., 2004; Sarma et al., 2005a,b, 2006; Saputelli et al., 2006; Van Essen et al., 2009; Chen et 

al, 2009; Chen and Oliver, 2010; Wang et al., 2009; Lorentzen et al., 2009).  

Even if we have a good history matched model, without having an efficient optimization algorithm, high 

NPV cannot be obtained at the end of closed loop optimization. Although efficiency of optimization algorithm is 

very important, computation cost of algorithm is another challenge during optimization. An efficient method 

should attain to high NPV with the reasonable computational cost. Very fast method without attaining a high NPV 

is not desirable. Also a very robust algorithm that attain to high NPV with high computational cost is not desirable 

too.  

Generally, optimization algorithms can be divided into two groups: 1-Unconstrained algorithms 2-

Constrained algorithms. Each of these methods can be used as gradient-based methods or non-gradient-based 

methods. Examples of gradient-based methods are adjoint (Brower and Jensen, 2004; Sarma et al., 2005a,b, 2006; 

Naevdal et al., 2006; Saputelli et al., 2006; Van Essen et al. 2009; Van Doren et al., 2006; Kraaijevanger et al., 2007; 

Sarma et al., 2008), ensemble-based methods (Nwaozo, 2006; Chen et al., 2009; Chen and Oliver, 2009, 2010; 

Chaudhari et al., 2009; Su and Oliver, 2010; Wang et al., 2009; Odi et al., 2010) or simultaneous perturbation 

stochastic approximation (SPSA) which used by Bangerth et al., 2006; Gao et al., 2007 and Wang et al. 2009. All of 

these methods are based on the computing gradient of objective function respect to variables for converging to 

the local minima or maxima. Chen and Oliver (2009) showed that localization can be used in ensemble-based 

methods to reduce the effect from spurious correlations resulting from a small ensemble on the estimate of 

gradient. Also Chaudhri et al. (2009) showed that conjugate gradient direction can be used for faster convergence 

to the final solution.  
Examples of non-gradient-based methods are genetic algorithm (Harding et al., 1998; Yeten et al., 2003; 

Tavakkolian et al., 2004), particle swarm or simulated annealing. 

The focus of this work is on the production optimization using gradient-based methods. For this reason 

we consider application of three optimization algorithms on the Brugge field which is a synthetic model designed 
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by TNO.  Algorithms that we want to consider in this paper are 1-Steepest ascent method (SA) 2-Sequential 

quadratic programming method (SQP) and 3-Interior point method (IP). The first two methods have been used 

widely for finding optimal controls of reservoir in petroleum engineering.  

Steepest ascent method is an unconstrained optimization algorithm. In terms of efficiency, this algorithm 

cannot find very high NPV, because at each iteration, after finding updated control values, they should be 

truncated based on the optimization problem constraints. In contrast, in terms of computation cost, this algorithm 

is very fast. Nwaozo (2006), Lien et al. (2008) and Su and Oliver (2010) used this algorithm for maximizing NPV 

during water flooding project. Also Chen et al. (2009), Chen Oliver (2010) and Wang et al. (2010) used steepest 

ascent algorithm in closed loop optimization for maximizing NPV at the end of forecasting period for models with 

uncertainty.  

Sequential quadratic programming is another efficient method which has been used by several authors. 

Davidson and Beckner (2003) used this method for maximizing oil rate and minimizing water rate simultaneously. 

They called this method Optimized Rate Allocation (ORA) and tested this method on both black oil and 

compositional models. Diez et al. (2005) tested this method for maximizing field oil production by adjusting gas lift 

injection rates and chock opening on small number of wells. Alhuthali et al. (2007) used this method for 

maximizing sweep efficiency and delaying water breakthrough. Also Lorentzen et al. (2009) used this method for 

maximizing NPV of Brugge field with uncertain model parameters in a closed loop optimization. Due to the 

significant cost of optimization, they reduced the number of control variables by using reactive control strategy in 

which a zone is shut-in at the optimized maximum water cut. Dehdari and Oliver (2011) used this algorithm for 

maximizing NPV of Brugge field on a single realization during water flooding project. In order to make it possible to 

use this method for solving large optimization problems, they added different options to the optimization 

algorithm. QR update, MPI for matrix multiplications, eliminating non-negative constraints and localization for 

improving gradient approximation was the options they used for decreasing cost of optimization. They showed 

that SQP can attain significantly higher NPV than steepest ascent method. Even by adding these options, still 

computation cost of this algorithm was significantly higher than steepest ascent method. 

The interior point method is another optimization method. Phale and Oliver (2011) used this method in 

constrained EnKF for reservoir history matching. In this paper for the first time we introduce this method for 

solving a petroleum optimization problem during forecast period. We show that although final NPV of this method 

is not as high as SQP, but it is significantly higher than steepest ascent method. Also, computation cost of this 

method is negligible which is desirable for us. 

 

Methodology 

In this part, we consider formulation of all of these methods. After that we talk about method we use for 

estimating gradients. In this paper we consider a case study which only has inequality constraints. For this reason, 

we only consider derivations for inequality constrained optimization problem. 

 

Steepest ascent method 

This method is an efficient unconstrained optimization method and after finding the search direction and step 

length � at each iteration, values of control variables can be updated. Then, these values should be truncated 

based on constraints on wells or completions (Chen et al., 2009). Updating formula for steepest ascent method is 

���� = �� +
1
�� 	
,
	
,�. 

We can approximate covariance matrices from ensembles. We use 	
,
 as a filtering (smoothing) matrix for making 

changes of control variables smoother. Also 	
,� is covariance between control variables and NPV. In above 

formula, covariance functions can be found from the following formula: 
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After updating initial solution, objective function can be found by running reservoir simulator. This procedure 

should be terminated whenever difference between objective function in two iterations is less than the stopping 

criteria.  

 

Sequential quadratic method 

Suppose we want to minimize some objective or cost function,  ���, subject to constraints !���� ≥ 0  for 

$ = 1,2, …	, (. 

Minimize  ��� 
Subject to:  !���� ≥ 0  for  $ = 1,2, …	, ( 

 ��� can be a linear or nonlinear objective function. !���� are constraints which are functions of � and can be 

nonlinear.  ��� and !���� ≥ 0 are assumed to be continuous and have continuous second partial derivatives, and 

the feasible region of this problem is assumed to be nonempty. Solution of this problem can be found by writing 

Karush-Kuhn-Tucker conditions and solving this system of equations (Nocedal, 2006; Antoniou, 2007): 

∇
ℒ��, +� = 0     for  , = 1,2, …	, ( 

!���� ≥ 0 

+ ≥ 0 

+�!���� = 0 

In above equations ℒ��, +� is Lagrangian and can be defined as below: 

ℒ��, +� =  ��� −�+�!����
-

���
 

Where + is vector of Lagrange multipliers.  For solving this system of equation, we should write Taylor series 

expansion for each of these conditions and after linearizing them a new system of equation can be found which is 

KKT conditions of the following optimization problem: 

 

Minimize 
�
. /012/ + /032 

Subject to:  42/ ≥ −	2   for  $ = 1,2, …	, ( 

In above optimization problem, 12  is Hessian of Lagrangian, 32  is gradient of objective function respect to 

variables, 42 is Jacobian of constraints and 	2 is matrix of constraints at �2  where 5 is iteration index. Using this 

method, nonlinear optimization problem converted to a quadratic optimization problem. As a result, in each 

iteration instead of solving a nonlinear optimization problem, only a quadratic optimization problem should be 

solved. This is the reason that this method has been called sequential quadratic programming. By solving this 

problem, / which is search direction of original optimization problem can be found. This inequality quadratic 

optimization problem can be solved by converting it to the equality optimization problem by considering only 

active constraints. After that, this equality constraint optimization problem can be solved by converting it to the 

unconstrained optimization problem using variable elimination method (Antoniou, 2007). Optimized values of 

unconstrained optimization problem can be found easily by finding its derivative and setting it equal to zero. Initial 

solution can be updated using the following formula: 

�2�� = �2 + �2/2 

In order to update solution we should know how far we can move along the search direction to stay in the feasible 

region. For finding value of � the following one-variable multi-dimensional optimization problem should be solved: 

67��� =  ��2 + �/2� −��+2����!���2 + �/2�
-

���
 

Solving this problem could be possible using different methods such as Strong Wolfe conditions (Oliver et al., 

2008). For solving this problem, we need to know the values of Lagrange multipliers. Lagrange multipliers can be 

found by solving the following equation which is based on linearizing the first KKT condition. 

+2�� = �4824820�9�482�12/2 + 32�. 
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After finding search direction and step length, initial solution can be updated. This procedure should be terminated 

whenever the difference between the objective function in two iterations is less than the stopping criteria. 

Interior point method 

Again, the optimization problem that we want to solve is similar to the SQP problem. For converting inequality 

constraints to the equality constraints, slack variables should be added (Antoniou, 2007): 

 

Minimize  ��� 
Subject to:  !���� −	:� = 0  for  $ = 1,2, …	, ( 

:� ≥ 0  for  $ = 1,2, …	 , ( 

In above equations, inequality constraints are converted to equality constraints by adding slack variables :� , but 

still there are some nonnegative constraints related to slack variables. For eliminating these constraints, a 

logarithmic barrier function (Antoniou, 2007) can be added to the objective function. Using this method, the new 

optimization problem has the following form: 

Minimize		 ��� − A� ln:�
-

���
 

Subject to:  !���� −	:� = 0  for  $ = 1,2, …	, ( 

In this formulation A > 0 is the barrier parameter. For solving this optimization problem the KKT conditions should 

be written and by solving that system of equations, the optimization problem can be solved. Based on the 

objective function and constraints, the Lagrangian formulism can be defined as the following formula: 

ℒ��, :, D, A� =  ��� − A�ln:�
-

���
− D0[!��� − :] 

In the above equation, D  is the Lagrange multiplier. Using Lagrangian formula, KKT conditions can be written as: 

∇
ℒ = ∇ ��� − 40���D = 0 

∇Gℒ = −AY9�e + D = 0 

∇Iℒ = !��� − : = 0 

In above equations, 4��� is the jacobian of constraints:  

4��� = [∇!���� ⋯ ∇!-���]0 

Y = diag{:�, :. , … , :-} 
e = [1 1					… 1]0 

At the kth iteration, the set of vectors {�2 , :2 , D2} is updated to {�2��, :2��, D2��} as 

�2�� = �2 + �2Δ�2  

:2�� = :2 + �2Δ:2  

D2�� = D2 + �2ΔD2  

 

Δ�2, Δ:2  and ΔD2  can be found after writing the Taylor series expansion for the nonlinear terms in the KKT 

conditions, linearizing them and solving the new system of equation. 

Also �2 in each iteration can be found by minimizing a merit function: 

 

6Q,R��, :� =  ��� − A�ln:�
-

���
+ S
2 ‖!��� − :‖. 

 

In this equation, S is a sufficiently large number greater than or equal to zero. 

After finding the search direction and step length, the initial solutions can be updated. This procedure should be 

terminated whenever difference between objective function in two iterations is less than the stopping criteria. 

 

Method for estimating the gradient 

Computing the gradient matrix is the most time consuming part of field optimization as it generally requires 

running the reservoir simulator many times. In this study, we approximate the gradient matrix from the 

ensembles. For this reason, we need to generate different realizations from Gaussian distribution and by applying 

these realizations to the reservoir model and by running the simulator we can calculate NPV of each realization. 
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Using this method, the gradient matrix can be approximated from the following formula (Nwaozo, 2006; Chen, 

2008, Dehdari and Oliver, 2011): 

 

3 = 	
,
9�	
,��
�. 
where 

〈��〉 =
1
�
�

���,�
���

���
, 

and 

〈�����〉 =
1
�
�

�����,��
���

���
, 

Definition of covariance matrices is similar to the definitions in the steepest ascent method. 	
,
9� can be found 

using singular value decomposition method. Computing the Hessian matrix from an approximate gradient and 

using modified BFGS algorithm is easy. In this problem, we used 50 realizations of control variables to estimate 

the gradient of the objective function with respect to control variables. The number of realizations and random 

numbers were the same for all of three methods. 

 

Problem statement 

For comparing efficiency of different methods, the Brugge field is considered as a test case. Brugge field is a 

synthetic water flooded model designed by TNO. This model has been used in SPE applied technology workshop on 

closed loop optimization in June 2008 at Brugge, Belgium. Different groups worked on this model to discuss their 

history match and production strategies from a common basis. Objective of this contest was maximizing NPV at 

the end of forecast period, but accuracy of history matching had effect on results of optimization. Peters et al. 

(2010) compared results of different participants by comparing final NPV they obtained to show the efficiency of 

methods they used for optimization. Between all of the methods, the best optimization results were related to the 

participants that used gradient-based algorithms for production optimization. All of these groups also used EnKF 

for history matching. This field has 10 injectors and 20 producers with a total of 84 separate completion intervals, 

each of which can be controlled separately. All producers and injectors are smart wells with vertical flow control. 

All injectors have 3 completion intervals and each producer has at most 3 completion intervals. The optimization 

starts at the end of year 10 when the reservoir has been under peripheral water flood for about 8 years. Forecast 

period assumed to be 20 years. During forecast period, the total number of control steps is 40, as we only allow 

the controls to be adjusted at 6 month intervals. The total number of control variables in optimization is equal to 

84 × 40 = 3360. There are different constraints on each well. During the forecast period, the bottom hole 

pressure constraint on the wells is 725 ≤ ]^_ ≤ 2611	`a$ and fluid rate constraint on each well is 3000	bbc/ef: 

for each producer and 4000	bbc/ef: for each injector. The reservoir simulation model contains 60,048 gridblocks, 

44,550 of which are active. The dimension of simulation model is 139 × 48 × 9. 104 realizations provided by TNO 

for using in history matching.  

Figure 1 shows a side view of reservoir. From this view, the main fault location in the north of reservoir 

can be seen. Colors show the depth of top of the reservoir. Based on the location of the main fault, it is obvious 

that water injection from the well on the right of the fault cannot sweep oil in the locations which are left of the 

fault. Figure 2 can gives us a better understanding of fault location and also depth of layers at different locations 

(there is exaggeration in the z direction). 

The goal of this paper is comparing results of different optimization algorithms. For this reason we 

assumed that geology of reservoir is known a priori and just one of these realizations has been selected randomly. 

For this reason, results of this paper are not comparable with results in Peters et al. (2010) and Chen and Oliver 

(2010) which are based on history matched model. The objective of this work is maximizing NPV. Because SQP and 

interior point optimization algorithms are minimization algorithms, objective function changed to minimizing the 

negative of the NPV. As a result, objective function is 

 

���� = �hijik��� − hljlk���
�1 + mR�nk/R

�o

���
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where $ is the time step index, �n is the total number of control steps, mR  is the discount rate in terms of time span 

A, p�  is the cumulative time since the start of the production, hl and hi are the price of oil and the cost of water, 

jlk  and jik  are the total oil and water production over the time step Δp�,  and � is vector of control variables. In 

this problem we assumed Oil price is 80	bbc and water injection or production price is 5	bbc. Also discount rate is 

10% per year with reference year of year 10. 

 

Results and discussion 

Computation cost of optimization can be divided into two parts: 1-Gradient estimation 2-search direct and step 

length computations. As we mentioned before, adjoint method can be used for gradient estimation with just two 

simulation runs. If there is only one realization this method is better than other methods, but for closed loop 

optimization, which is doing history matching and optimization simultaneously, gradient information in history 

matching can be used for optimization. For this reason ensemble-based method is more efficient than adjoint 

method. As an advantage, using ensemble-based methods, reservoir simulator can be used as a black box, and 

there is no need to access simulator source code, and any type of simulator can be used for estimating gradient. In 

this paper we try to find an optimization method which is fast and have good results which can be used in closed 

loop optimization. In closed loop optimization, optimization code should be called several times and finding a fast 

optimization code is very important. For this reason we use ensemble-based method for estimating gradient. 50 

realizations used for this purpose. BHP constraints set on the simulator. For each well in each time step there is 

one constraint. Total number of well constraints for 30 wells during 40 time steps is 1200. Also there is one non-

negative constraint for each completion, because completions cannot have negative rate. Total number of non-

negative constraints is 84 × 40 = 3360. As a result total number of constraints is 4560 which is pretty large. 

Steepest ascent method is an unconstrained optimization method which does not depends on the number of 

constraints. At each iteration, after finding ascent direction and updating controls, their values should be truncated 

based on the constraints. For this reason this method is very fast and doesn’t depend on the number of 

constraints. SQP is very efficient optimization method, but it depends highly on the number of constraints. 4560 

constraints is pretty large number and computational cost of this method is very high. Effect of number of 

constraints on the interior method is not significant. Increasing the number of constraints can increase size of 

matrices that should be worked with them numerically. The most important cost in each iteration of this method is 

related to the matrix multiplications. Dehdari and Oliver (2011) showed that using MPI and Lapack library, this cost 

can be decreased significantly, for this reason cost of matrix multiplications in this method is not significant. As an 

advantage of this method, large number of constraints can be used without any significant effect on the 

computation costs. For comparing efficiency of these methods, we run different methods with the same seed 

number. Ensemble-based methods depend on the seed number, because gradient can be estimated using 

stochastic method. By changing the seed number, final NPV would be different. Figure 3 shows results of different 

methods for two different seed numbers. There are two stopping criteria in these three methods: 1-maximum 

number of iterations which is 20 in this case. 2-amount of increasing NPV at each iteration which if ��_rs�i −
�_rl�t�/�_rl�t ≤ 5 × 109u algorithm will stop.  

As you can see in Figure 3a, the best result is related to SQP method and the worst result is related to the 

steepest ascent method. Steepest ascent method stopped at iteration 8. This stopping may have one of these two 

reasons: 1-insufficient increase in NPV compare to the previous iteration 2-not having increase in NPV at iteration 

9 due to the truncating controls after updating them. This truncation can cause decrease in NPV compare to the 

previous iteration. Stopping steepest ascent algorithm in Figure 3a is because of the second reason. Based on my 

experience, stopping SQP and interior point methods due to the insufficient increase in NPV is very rare. Especially 

in the SQP method, always there is increase in NPV which is above the stopping criteria, although it is not 

significant. Due to the computational cost, we stopped running SQP algorithm at the end of iteration 20. Even 

computational cost of 20 iterations is significant. Later you can see that cost of each iteration in steepest ascent 

and interior point methods is not significant compare to the SQP method. Figure 3b shows result of these methods 

for 20 iterations. In this case result of SQP and interior point are significantly better than steepest ascent method. 

Result of interior point is not as good as SQP, but still it’s about 0.1 billion dollar better than steepest ascent 

method. Although final NPV in interior point is lower than SQP, but later you can see that computational cost of 

interior method is so much less than SQP method. Rate of NPV increase at early iterations in SQP method is higher 

than two other methods, but rate of increase in other two methods are comparable with each other. 
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Although we compared results of these methods for two different seed numbers, but using these two set 

of runs, we cannot draw any conclusion about efficiency of these two methods. For this reason we run each 

method for 40 different seed numbers. Figure 4 show results of these runs.  In Figure 4, the bounds of each box are 

25% and 75% quantiles, the whiskers are the extremes and the line in the box is the median. The first box plot 

(from left) in this figure is related to the results of the steepest ascent method. The second and third plots are 

related to the results of the SQP and the interior point methods. This figure shows results of steepest ascent 

method depends highly on the seed number. As you can see its results show wide range of NPV change with 

changing the seed number. Dependency of SQP and interior point methods to the seed number is less than 

steepest ascent method. Based on the results of Figure 4, as we expected, SQP can reach to the higher NPV than 

interior point method.  In average, results of interior point is 0.1 billion dollar better than steepest ascent, and 

result of SQP is 0.05 billion dollar better than interior point method.  

Usually, the most efficient method is not the method that finds the highest NPV. Most of the time there is 

deadline for doing a project and by delaying start of a field development project we may loss lots of money in that 

field. Especially in closed loop optimization, optimization and history matching code should be called several times 

for considering uncertainty during field development. For this reason we considered running time of each method 

separately. In Table 1, you can see the average running time of each method for one iteration using one or five 

processors. These computation costs are excluding gradient computation cost. As you can see, the fastest method 

is steepest ascent method. In this method after finding gradient, there is not any other time consuming step in 

updating value of controls. Although SQP can achieve to the highest NPV compare to the other methods, 

computation time of this method in only one iteration is significant. Using MPI with 5 processors computation cost 

can be decreased a little bit, but still it is significant. Consider a case that we need to call optimization code several 

times for considering reservoir uncertainty, for each run SQP needs around 15 iterations for finding high NPV 

values. Total computational time would be significant. In closed loop optimization, for increasing speed it is 

desirable to compute gradient using MPI and after that using each processor, run the optimization code 

separately. In this case, it is important for us to use a method that work fast with only one processor. Interior point 

method is a fast method and only by improving mathematical operations, using Lapack library (Anderson et al., 

1999), we can decrease its computation cost significantly. In this method, even using only one processor, we can 

update controls very fast. Brugge is a synthetic 2 phase back oil model and simulation running time of this method 

is very fast. We used 50 realizations for computing gradients and the total running time was about 20 minutes 

(using 5 processors). 

 

Table 1: Running time of each method for one iteration 

Method 
CPU time (minute) 

1 Processor 5 Processor 

Steepest ascent 2 2 

SQP 221 147 

Interior point 15 11 

 

In all above results, we used only one realization to test different optimization algorithms. Most of the time 

efficiency of algorithm does not depend on the model we use. But for making sure about efficiency of different 

methods, we tried another realization for confirming above results. Generally, this realization has higher porosity 

and permeability in different layers. Figure 5 shows permeability maps of these two realizations for active cells of 

two different layers. 

Figure 6 shows results of different methods for two different seed numbers. Similar to the first realization, 

in this case the best results belong to the SQP and the worst result is related to the steepest ascent method. In 

steepest ascent method, due to truncating controls at each iteration, stopping algorithm is a common problem due 

to the insufficient increase in NPV. For better understanding about the results of different methods, in Figure 7 you 

can see results of running different methods for 20 different seed numbers.  Again the results are similar to the 

first realization. Range of changing NPV by changing seed number is similar to the first realization too. It shows 

that efficiency of these methods does not depend on the realization we use for optimization. 
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Summary and conclusions 

In the past years, different optimization methods have been used for finding a suitable schedule during forecast 

period of petroleum reservoirs. Steepest ascent method is the first one which is an unconstrained optimization 

method and value of controls should be truncated at the end of each iteration based on the constraints. Advantage 

of this method is its computational cost which is very low compare to the other methods. Unfortunately due to the 

truncating controls, high value of NPV cannot be obtained using this method. For improving the results, different 

persons tried to use constrained optimization methods. Between all of them SQP method is very popular and using 

this method, high NPV can be obtained. The only problem related to this method is its computational cost which is 

significant for each iteration. Dehdari and Oliver (2011) showed that by adding different options to this method, 

computational cost can be decreased significantly. Even by adding these options, computational cost of each 

iteration is significant and it’s not comparable to the steepest ascent method. For this reason, finding a method 

that give high NPV value with reasonable computation cost was one the biggest challenges in petroleum 

engineering. In this paper, we introduced interior point method in optimization during the forecast period for the 

first time. This method can attain to the high NPV with reasonable computational cost for using in closed loop 

optimization. In closed loop optimization, optimization algorithm should be called several times and using SQP is 

very difficult and time consuming. As an advantage, this method does not depend on the number of constraints 

highly, and by increasing the number of constraints, computational cost will not change significantly, but increasing 

number of constraints can increase computational cost of SQP significantly.  As a disadvantage, interior point 

method cannot reach to the high NPV as quick as SQP method. 

In this problem we used ensemble base method for computing gradients. This method is very suitable for 

using in closed loop optimization and allows us to use reservoir simulator as a black box. In this paper we 

considered Brugge field as a case study for comparing results of different methods. Brugge is a synthetic 2 phase 

model. For this reason, running simulator and computing gradient is not very time consuming. Probably for large 3 

phase models which gradient computation dominate other optimization costs, SQP is a better method, but if 

model is not 3 phase or when we have 2 phase model with large number of constraints, interior point method is 

more efficient than SQP method. In all cases, steepest ascent method which is based on unconstraint optimization 

is not a very efficient method. 
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Figure 1: Depth of top of the reservoir 

 

 
Figure 2: Main fault of reservoir 

 

  

(a) Seed A 

 

(b) Seed B 

Figure 3: Results of different methods for 2 different seed numbers 
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Figure 4: Results of different method for 40 different seed numbers 

 

  

(a) Layer 2 realization 1 

 

(b) Layer 4 realization 1 

  

(c) Layer 2 realization 2 
(d) Layer 4 realization 2 

Figure 5: Permeability maps for 2 different layers for each realization 
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(a) Seed A 
(b) Seed B 

Figure 6: Results of different methods for 2 different seed numbers (realization 2) 

 

 

 

 

Figure 7: Results of different method for 20 different seed numbers (realization 2) 
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