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ABSTRACT 

  

In modern oil industry, it is common that a variety of data are available for 

reservoir modeling. These data include core and log data, seismic attributes, and 

conceptual geological models. Data scale, reliability, coverage and availability must 

be taken into account in integrating these data into numerical reservoir models. 

Geostatistical reservoir models can be built at different scales for different purposes, 

such as a large scale model for resource estimation and a fine scale model of 

heterogeneity for flow simulation. Different modeling techniques and different usage 

of the input data usually cause inconsistency between the models at different scales. It 

is desired that all the models are scale consistent. The scale consistent reservoir 

modeling scenario developed in this thesis aims to build reservoir models that are 

scale consistent and reproduce the data at different scales.  

The basic idea is to construct a large scale model by integrating all available data, 

and then downscaling or upscaling for different modeling purposes. The downscaling 

must reproduce exactly the large scale model to ensure consistency. There are three 

major steps: (1) construct a large scale model over the entire lease by integrating 

multivariate information; Gaussian-based Bayesian updating technique can be used; 

local uncertainty assessment is provided, (2) perform petroleum resource estimation 

with global uncertainty assessment from the large scale model; a spatial/multivariate 

simulation approach can be used to account for the spatial and multivariate 

correlations among the local uncertainties, (3) construct fine scale 3-D models of 
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heterogeneity that are consistent with the large scale model and well data using the 

exact downscaling techniques. 

This modeling scenario is developed from the oil sands geostatistical modeling 

projects for the Surmont lease, Alberta, Canada. An application of the modeling 

techniques to the Surmont will be presented.  
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R(u)  the random residual at the simulated location u 

L   the lower matrix  

So  oil saturation 

Sw  water saturation  

U  the upper matrix 

u   location vector in A 

w  A vector of uncorrelated standard normal values  

p VV   pore volume 

b VV   bulk volume of the rock 

VZ   block value  

vZ   value in the model cells. 

v sZ   previously simulated data in the model cells  

Z •   point data 
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1 CHAPTER 1 

INTRODUCTION 

 
Reservoir management and development planning rely on accurate reservoir 

description. Heterogeneous reservoirs are difficult to model accurately with limited well 

data and geological information. It is impossible to exactly describe subsurface 

formations with available data. Uncertainty exists at unsampled locations. The 

uncertainty and heterogeneity of a reservoir are often modeled by geostatistical 

techniques. Geostatistical techniques are practical tools that are used to construct 

reservoir models by statistical inference from available data. Realistic heterogeneities are 

introduced in the reservoir models that reproduce input data and their spatial correlations. 

A measurement of uncertainty in the models is generated for the quantification of risks in 

making decisions. Modern reservoir management requires an assessment of these 

uncertainties and risks associated with heterogeneity. 

Generally, a realistic assessment of uncertainty can be established by numerical 

modeling that integrates all available data and expert knowledge into reservoir models. 

Geostatistical techniques and numerical modeling continue to be developed for improved 

reservoir modeling. Data integration is a challenging task because there are different 

types of data from different sources at different times. These data have variable 

reliability, coverage and measurement scale.  

Geostatistical reservoir models are commonly built for static reservoir properties 

such as porosity, permeability, initial fluid saturations, and lithofacies. Other geological 

properties such as structural surfaces and net pay thickness are sometimes modeled 

(Deutsch, 2002). The data used for modeling come from a variety of sources including 

core, well logs, seismic, well testing, production history and conceptual geological 

models. Well data are generally sparse laterally and dense vertically. Seismic data have 

extensive lateral coverage but with less vertical resolution than well data. Dynamic data 
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such as well testing and production data may provide information in the interwell regions 

at a large scale. Seismic and dynamic data do not directly measure the reservoir 

properties of interest. Often, the seismic data are used as secondary data while the well 

data are used as primary data in reservoir modeling. Then, the dynamic data are used to 

verify or update the model by inversion techniques with history matching (Wen et al., 

2005).  

A difficult problem in data integration is that the scales of different data types are 

very different (see the left part in Figure 1-1). Core data are usually measured in 

laboratory at a scale of a few centimeters. Well log data usually represent properties at a 

decimeter scale. Seismic data represent a much larger scale. Well test and production data 

have an even larger scale. They usually are all different from the model scale. Accounting 

for the different data scales greatly increases the complexity of reservoir modeling. Pre-

processing to bring all the data to the model scale can simplify the multiscale modeling to 

single scale modeling. Upscaling is relatively straightforward, but downscaling does not 

give a unique solution. Practitioners tend to ignore scale differences or use approximate 

methods to simplify the scale problem; however, using well data to represent grid blocks 

that are hundreds or thousands times bigger than the data scale, or assigning large scale 

data to small grid blocks greatly reduces the accuracy of the reservoir model. A 

quantitative approach to relate different scales must be established. A scale consistent 

modeling technique that appropriately accounts for all scales is required for more 

accurate reservoir description.  

A reservoir sometimes is modeled at more than one scale. Consistency of models at 

different scales is important. The model scale is usually chosen based on the different 

modeling purposes, the area to be modeled, available techniques and computational cost 

(see the right part in Figure 1-1). In Canada’s heavy oil reservoirs, it is common to build 

a full reservoir model at a large scale for reserve estimation and build a detailed 3-D 

model at a fine scale for flow simulation. The two models rarely reconcile with each 

other when the fine scale model is scaled up to the large scale (Ren et al. 2004a; Ren et 

al., 2005c). As an example, a cross plot of 2-D model versus the vertical averages of 3-D 

model of porosity is shown in Figure 1-2. A poor correlation coefficient of 0.011 
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indicates an inconsistency between the 2-D and 3-D models. Different modeling 

techniques and different usages of the input data contribute to such inconsistency 

between models. To avoid this situation, a scale consistent modeling scenario is proposed 

for more accurate reservoir modeling.  

 

 
Figure 1-1: Schematic illustrations of the data and model scales for reservoir modeling. The modeling 
objects are taken from a heavy oil scenario in Northern Alberta. 
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Figure 1-2: The cross plot of 2-D model versus the vertical averages of 3-D model of porosity in % 
(from Ren et al., 2005c). 

1.1. Proposed Modeling Method 

The proposed scale consistent reservoir modeling scenario consists of three main 

steps: (1) build a full reservoir model at a large scale to account for geological trends, 

large scale seismic information and upscaled well data, (2) assess global resource 

uncertainty from the large scale reservoir model, and (3) exactly downscale the large 

scale model to the target scale using small scale well data. 

A field scale reservoir model can help to understand the entire reservoir, to provide 

resource estimation and to identify the areas of interest where have the most potential to 

develop. Building a model at a large scale is relatively straightforward because all data 

can be upscaled to the model scale or converted to 2-D. The advantage of large scale 

modeling is that geologic trends can be easily captured. It is important to capture the 

large scale trends in a reservoir model because they have significant influence on flow 

performance (Lasseter et al., 1986; Weber, 1986; Kelkar and Perez, 2002). Large scale 

data such as seismic data and production data also provide information on large scale 
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variability. The key aspect of large scale modeling is to integrate all available data to 

reduce the uncertainty at each location. Bayesian updating technique will be introduced 

for this purpose. A non-stationary Bayesian updating technique is developed by 

accounting for locally varying correlation and data quality. The theory and 

implementation will be presented.  

Petroleum resource over an entire lease or a large area always associates with a large 

uncertainty, or in geostatistical term: global uncertainty. Assessing global uncertainty on 

resource estimation is important for reservoir management and decision making. 

Upscaling the local uncertainties from the large scale models to the large area provides a 

global uncertainty that is consistent with the local uncertainties. A spatial/multivariate 

simulation approach is proposed for the assessment of global uncertainty.  

Once the areas of interest are defined from the large scale model, a fine scale 3-D 

model is normally required for flow simulation or horizontal well placement. There are 

many techniques for using large scale data to construct fine scale models including co-

kriging, collocated co-kriging, and using the large scale data as locally varying mean 

(Goovaerts, 1997; Deutsch, 2002). Although these methods constrain the fine scale model 

with the large scale data, they do not exactly match the large scale data. To avoid any 

biases in the downscaling, and to ensure consistency in the models at different scales, an 

exact downscaling technique is needed so that the large scale data can be exactly 

reproduced. An exact downscaling technique is developed in the thesis. The large scale 

model can be exactly downscaled to smaller scales so that the reservoir models at all 

scales are linked together and completely consistent. The exact downscaling technique is 

developed based on direct block kriging and direct sequential simulation (DSS). The 

theory and implementation will be presented.   

Application of the techniques to the Surmont lease of the McMurray Formation will 

be used to demonstrate the applicability and usefulness of the proposed technique.  
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1.2. Outline of The Thesis 

The scale consistent modeling for reservoir characterization relies on integration of 

multiscale data. The second chapter presents a brief review of multiscale data and 

important data features, such as different sources, availability, coverage, reliability, and 

scales. Data integration techniques for the most common data: well, seismic, and 

dynamic data are also reviewed. Chapters 3 and 4 focus on large scale modeling. The 

theory of the Bayesian updating technique and the enhanced Bayesian updating technique 

with locally varying correlation and locally varying quality are presented in Chapter 3. In 

addition, simulation approaches with Bayesian updating are also introduced in Chapter 3. 

The implementation details of the Bayesian updating techniques for large scale 2-D 

mapping are presented in Chapter 4. The technique of resource estimation with 

assessment of global uncertainty from the mapping results is provided in Chapter 5. 

Chapters 6 and 7 focus on the exact downscaling techniques. The theory of the exact 

downscaling with direct kriging and the exact downscaling with direct sequential 

simulation are presented in Chapter 6. Chapter 7 shows the implementation details of the 

exact downscaling techniques. Some issues related to histogram reproduction and 

accounting for the proportional effect in DSS are addressed. A case study of scale 

consistent modeling for the McMurray Formation in the Surmont lease is presented in 

Chapter 8. Conclusions and recommendations are provided in the last Chapter. 
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2 CHAPTER 2 

MULTISCALE DATA AND DATA INTEGRATION 

 
There are a variety of data available for reservoir modeling. Accounting for all of the 

data simultaneously in a reservoir model is a big challenge because of different data 

features. This chapter reviews some important data features and data integration 

techniques.  

2.1 Data Sources 

The data for reservoir modeling are normally classified into three categories: 

geological, geophysical and engineering data. Most of the data are listed in Table 2-1. 

The table is built based on the information from Satter et al. (1994) and Reza (2003). All 

of these data will not be available for any particular reservoir modeling exercise. Because 

core, well logs, seismic, well test and production data (Table 2-2) are the most commonly 

used data for reservoir modeling, these data are considered in this thesis.  

These common data may be a complex combination of different data sources. Well 

log data, for example, can be obtained from a variety of logging measurements including 

Gamma ray, resistivity, or a combination of different logs (see the partial list in Table 

2-2). The resolution of each data source is potentially different. Other data features such 

as data availability, coverage, and reliability are also different. The data coverage is the 

proportion of a reservoir that is actually measured by the same type of data. Data 

reliability relates to the precision of the data measurement. 
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Geological Data Geophysical Data Engineering Data

Core description 2D seismic Well logging analysis

Thin-sections 3D seismic Conventional core analysis

Microscopes image analysis 4D or time-lapse 3D seismic Special core analysis

X-ray 4C or multicomponent seismic Pressure transient well tests

Stable isotope analysis Cross-well tomography Production history

Depositional models Vertical seismic profile Well tracer test

Diagenetic models Shear-wave logging Computed tomography scan

Structural modeling Isochrons for structure tops Nuclear magnetic resonance

Maps, cross sections

Remote sensing  

Table 2-1: Different data sources for reservoir modeling (summarized based on Satter et al., 1994 
and Reza, 2003) 

Data Types Data Sources  Vertical Resolution Data Description

1 ft of 4-in. core 12 in.

1x2-in. plug 1 in.

Density 15 in.

Neutron 24 in.

Microelectrical log 2 in.

Gamma ray 20 in.

MWD resistivity 6 in.

MWD bit resistivity (oil-based mud) 1 in.

2D seismic

3D seismic

4D or time-lapse 3D seismic

4C or multicomponent seismic

Drawdown/buildup test

RFT test

Variable rates test

Gas well test

Multiple wells test

Recorded seismic waves contains travel 
time and amplitudes. Structures, velocity, 
impedance, density can be inferred by 
inversion techniques

logs

core

seismic 

Recorded pressure curve P(t), Inversion 
techniques applied to get effective kh, 
distance to boundary, fault information.

0.2 in.

interwell

function of depth        
> 10 m

Unaided human eye on a 1/3 slab of 
4-in core from a distance of 24 in. Direct measurements of porosity, 

permeability, fluid saturations, and 
lithofacies

well test

Recorded logs, need interpretation to get 
porosity, permeability, fluid saturations, 
and lithofacies

Measured pressure P(t), flow rates q(t), 
and fluid samplesproduction interwellProduction well

 

Table 2-2: Common data for reservoir characterization (based on Kelkar and Perez, 2002 and Wen 
et al. 2005) 
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2.2 Data Availability, Coverage and Reliability 

2.2.1 Data availability 

Data are not all available at the same time. They become available during the course 

of reservoir development. According to Johnston (1992), the field management of a 

reservoir consists of four phases. At the beginning, the predevelopment phase, delineation 

is the main focus to maximize the reserves. Very limited core and well log data are 

available in this phase. Seismic data if available will be very helpful for defining 

reservoir boundaries. In the second phase, the initial development phase, the placement of 

production wells is the main focus to maximize the oil recovery. A complete geologic 

model of the reservoir with description of gas cap, oil zones and aquifer is required. A 

fair amount of well data and seismic data should be available for this purpose. When 

entering the operating phase, as the production wells begin to produce, dynamic data such 

as well test and production data become available. The integration of the reservoir 

performance data into the geological model is important for reservoir surveillance. 

Automatic history matching (Wen et al., 2005, Tran et al., 1999) will improve the 

reservoir prediction through reservoir flow simulation, providing information for 

adjusting depletion strategy and applying secondary recovery processes. The last phase, 

the enhanced recovery phase, requires a high resolution reservoir model because reliable 

knowledge of small scale heterogeneity and anisotropy is critical for the success of 

expensive Enhanced Oil Recovery (EOR) methods. Integration of all available data with 

precise consideration of data scales is the key for such detailed reservoir models. New 

data become available at different times. Updating the reservoir model with the new data 

will approach a more accurate reservoir description. 

2.2.2 Data coverage 

Data from different sources have different coverage on a reservoir. Well data provide 

detailed information along the wells, but with limited lateral coverage. Wells are widely 

spaced compared to the scale of geologic variability. On the contrary, the 3-D seismic 
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data have more complete lateral coverage, but limited vertical resolution relative to well 

data. Well test and production data extend well coverage to the drainage volumes near the 

wells, and perhaps provide some information about reservoir boundaries.  

2.2.3 Data reliability 

Not all data are direct measurements of the reservoir properties being considered. 

Some data provides indirect information on these properties. They must be treated 

differently according to their different levels of precision. The well data (core and well 

logs) are very close to direct measurements. Measurement errors are often ignored. Well 

data are considered as the most reliable data, or hard data. Seismic data are acoustic 

measurements of formation properties. These indirect information or soft data are 

normally treated as secondary data in reservoir modeling. The seismic-derived properties 

such as porosity are not precise, and this imprecision needs to be explicitly accounted for 

(Deutsch et al., 1996). The dynamic data such as production rates and bottom-hole 

pressure are important reservoir performance data. The static properties can not be 

directly inferred from the dynamic data. Inversion techniques with flow simulation must 

be applied. The non-uniqueness of the inversion solution and the simplifications in the 

flow model are such that the derived reservoir property models may not be reliable even 

when a good history match is reached (Wen et al., 2005, Tamhane et al., 1999). 

Nevertheless, they often provide useful information that is closely related to the reservoir 

performance variables being predicted.  

2.3 Data Scale and Model Scale 

The data scale is the size of rock volume from which the property is measured. It is 

different from the coverage that focuses on the whole reservoir. The model scale is the 

size of grid block of a model being constructed. 
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2.3.1 Data scale 

Data from different sources have different scales. Core data are usually measured in 

a laboratory at the scale of a few centimeters (Table 2-2). Conventional well log data 

usually represent rock properties at a decimeter scale. Certain high resolution well logs 

could have smaller scale. Seismic data have a vertical resolution related to seismic 

wavelength which is a function of velocity and dominant frequency. Resolution decreases 

rapidly with depth (Sheriff, 1992). Even the smallest resolution is larger than the core and 

log data. A nominal scale is about 10 meters. Well test and production data provide 

average information for the drainage volume around the wells. The well test derived 

permeability may represent ten billion times larger than the core volume (Haldorsen, 

1986). The geological description, such as a sequence stratigraphic interpretation, gives 

the information at a reservoir scale 100s to 1000s of meters. These scale differences must 

be appropriately accounted for in reservoir modeling. 

2.3.2 Model scale  

The model scale is normally different from any of the data scales. It is chosen based 

on the size of the modeled area, modeling techniques and computational cost. 

Geostatistical models are often constructed at a scale larger than well data and less than 

the reservoir model for flow simulation.  

Flow simulation typically demands more CPU time than that required for 

geostatistical modeling. Computational efficiency requires the input reservoir models at a 

coarser scale than the geostatistical model. The model scale may even be larger than the 

seismic data (Tamhane et al., 1999). The input reservoir models are usually generated by 

upscaling the fine scale geostatistical models; however, in some special cases, the input 

model for flow simulation may be required to have a very fine scale. For example, in the 

McMurray Formation of Alberta, Canada, where the advanced heavy oil recovery 

technique, Steam Assisted Gravity Drainage (SAGD) process (Butler, 1991) is commonly 

used for oil sands recovery, the flow simulation of horizontal well pairs or an individual 

SAGD pad is very important. The detailed flow simulation of selected small areas 
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requires input models at a very fine grid size. Downscaling of geostatistical models may 

be required.  

The variability of reservoir properties varies by scale. Data variability usually 

increases as the scale decreases; extreme high and low values are more likely at fine 

scale. This small scale variability averages out at coarser scales. The different data 

variability must be accounted for in reservoir modeling at different scales. 

2.4 Reservoir Heterogeneity at Different Scales 

Reservoir heterogeneity is spatial variation of reservoir properties and always refers 

to different geological structures. If a property such as permeability is constant over the 

whole reservoir, it is homogeneous. Real reservoirs are seldom homogeneous. Most 

reservoirs have very complex patterns of heterogeneity. Figure 2-1 shows seven 

important reservoir heterogeneity types selected by Weber (1986). Flow performance is 

directly affected by reservoir heterogeneity; therefore, the accuracy of a reservoir model 

depends on an adequate description of reservoir heterogeneity.  
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Figure 2-1: Classifications of reservoir heterogeneity types (from Weber, 1986). 

Reservoir heterogeneity is scale dependent. Based on the common data scales and 

model scale, the heterogeneity in a reservoir can be roughly classified into four scale 

categories (Haldorsen, 1986; Hewett and Behrens, 1990). They are elaborated in Table 

2-3 and shown in Figure 2-2. The largest heterogeneity scale is the gigascopic or 

reservoir scale. Heterogeneity at this scale appears as large geological trends and major 

faults that can be detected from seismic surveys. The data variation at the large scale 

normally is low. However, if large scale trends or major faults are presented, the data 

variation may be high. Primary oil recovery that relies on the natural energy depletion 

may not be affected significantly by small scale heterogeneity but certainly will be 

limited by a sealed fault nearby. Large scale heterogeneity has significant influence on 
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reservoir performance. Inaccurate modeling of large scale heterogeneity can mislead the 

prediction of any recovery process (Kelkar and Perez, 2002). The next scale is the 

megascopic or grid block scale used for a reservoir model. Heterogeneity at this scale 

appears as permeability zonation that can largely affect the sweep efficiency of 

waterflooding and is a major cause for bypassed oil. Some well logs and seismic data can 

measure the heterogeneity at this scale. The third scale is the macroscopic scale of core 

plugs and flow properties measured in a laboratory. The heterogeneity at this scale such 

as cross lamination is directly observed from core and should be honored in reservoir 

models. The smallest scale is the microscopic or pore level scale. This is the scale that 

fluids actually flow. Heterogeneity at this scale has to be observed through microscope to 

capture the connectivity of pores and the variation in rock lithology, mineralogy and 

grain-size distribution. This microscopic heterogeneity is a major cause for trapped oil in 

the reservoir. The adequate characterization of the effective behaviour of microscopic 

heterogeneity is critical for EOR methods.  

There have been many attempts to model reservoir heterogeneity at all scales. 

Hewett (1986) brought Mandelbrot’s fractal geometry theory into reservoir modeling and 

presented a methodology of using fractal geometry and fractal statistics to characterize 

reservoir heterogeneity. Fractal geometry can be used to describe many natural objects on 

all scales. Fractals are shapes or phenomena that are scale invariant. Their shapes remain 

unchanged if you zoom in or out; the whole looks like the parts. This character of fractal 

phenomena is often referred to as self-similarity. Mathematical self-similarity leads to 

significant numerical advantages. The variance at any scale can be determined from the 

variance measured at any other scale and a limited number of parameters. 

Numerous studies have been conducted on fractal simulation (Hewett and Behrens, 

1990, Fang et al., 1992, Kentnell et al., 1999, Yeten and Gumrah, 2000); however, due to 

important limitations, fractal simulation has not been widely used. In practice, the self-

similarly of fractals only holds true for three or four scales. The reservoir model 

constructed by fractal simulation cannot reproduce local data. Post conditioning 

techniques, such as conditioning by kriging (Journel and Huijbregts, 1978, Ren et al., 

2004) are required. 
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Figure 2-2: Schematic illustration of the scales of data, heterogeneity and model. The data and model 
scales are same as in Figure 1-1; they are related to the heterogeneity in the middle column. 

 

Table 2-3: Scales of reservoir heterogeneities (from Kelkar and Perez, 2002) 
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Appropriately accounting for the scale difference of data will help the reservoir 

model capture the heterogeneity at all relevant scales. Multiscale data and information 

need to be brought to the model scale. A quantitative means must be established to relate 

different scales.  

2.5 Scale Relationships of Data 

Most static properties such as porosity, fluid saturations, layer 

thickness, and facies proportions scale linearly, that is, the large scale 

value is the arithmetic average of the small scale values. For example, 

porosity is the fraction of pore volume p VV over the bulk volume of the 

rock b VV . Discretizing the bulk volume into n equal-sized small 

volumes, b vV , the block porosity value Vφ  is exactly the average of the 

small scale porosities v iφ : 

1

1 1

1 1

n

p v i n n
p V p v ii

V v i
b V b v b vi i

V
V V
V n V n V n

φ φ=

= =

= = = =
∑

∑ ∑         (2-1) 

where p v iV  is the pore volume in the small volumes. 

The same property of linear scale averaging is true for fluid saturations and layer 

thickness.  

Lithofacies are categorical variables. This linear scaling relationship applies to their 

proportions. Proportions should be used carefully in lithofacies modeling because the 

estimated lithofacies proportions may not sum to one if the lithofacies are modeled 

separately. 

Permeability has a complex relationship between scales. The scale relationship is 

linear only in an ideal case of the constant permeability layers that are parallel to the flow 

direction. When the layers are series to the flow direction, it is a harmonic average rather 

than an arithmetic average. In most cases, permeabilities vary in different directions and 

exhibit a strong anisotropy (Lake, 1988). The non-linear scale relationship can be 

expressed approximately by the incomplete layer method (Cardwell and Parsons, 1945). 
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A power law transformation could be used to make the arithmetic averaging applicable to 

the transformed permeability (Zanon et al. 1999, Deutsch, 2002).  

The linear scale relationship can be easily handled with geostatistical modeling 

techniques. The linear scale relationship must be preserved in the multiscale modeling 

techniques. Non-linear transforms such as normal score transform or logarithmic 

transform do not preserve the linear scale averaging relationship; therefore, sequential 

Gaussian simulation (SGS) and other Gaussian-based geostatistical techniques cannot be 

used directly for multiscale modeling. 

Upscaling and downscaling are often required to bring multiscale data to the model 

scale so that the Gaussian-based techniques can be used. With the linear relationship, 

upscaling is straightforward; but downscaling is a problem because of non-uniqueness. 

One can simplify the downscaling problem by using a simple duplication method that 

duplicates the block datum to each small cell in the large scale block; however, the small 

scale variation is ignored. Covariances can be used to relate all the scales together and 

appropriately account for data variation at different scales in the multiscale modeling.  

2.6 Volume Averaged Covariance  

In the common geostatistical modeling techniques such as kriging and sequential 

simulation, spatial correlation is defined by two-point statistics: covariance or variogram 

(Journel and Huijbregts, 1978; Isaaks and Srivastava, 1989; Goovaerts, 1997). The 

covariance (top of Figure 2-3) is used to establish how any two points relate together. A 

point and a block can be linked together using a point-to-block covariance (middle of 

Figure 2-3). The point-to-block covariance is the volume averaged covariance between 

any particular point and all the points in the block. The volume averaged covariance was 

introduced with block kriging (Journel and Huijbregts, 1978; Isaaks and Srivastava, 

1989; Goovaerts, 1997). It is interesting to note that the block estimate using the point-to-

block covariance is identical to the average of all the point estimates using the point-to-

point covariance in the block (Isaaks and Srivastava, 1989; Goovaerts, 1997). It means 

the linear scale relationship can be preserved in a model when we use volume averaged 

covariance to relate multiscale data. 
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The block-to-block covariance (bottom of Figure 2-3) can also be calculated from 

the point-to-point covariance. Numerical discretization is required. The number of 

discretizing points should be larger than 4n, where n is the dimension number, in order to 

get an accurate point-to-block covariance and block-to-block covariance (Isaaks and 

Srivastava, 1989; Goovaerts, 1997). 

 

Figure 2-3: The volume averaged covariance models, where v is for the point scale volume and V is 
for the block scale volume. 

Volume averaged covariances must be calculated from the point scale covariance. 

Inferring the point-to-point covariance from the block-to-block covariance does not give 

unique solution (Kupfersberger et al., 1998).  

Volume averaged covariances can be used for multiscale data to avoid explicitly 

scaling data. Accounting for different data scales and other data features in multiscale 

modeling requires advanced geostatistical techniques.  
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2.7 Data Integration Techniques 

A number of techniques have been developed to integrate multiscale data in reservoir 

models. The techniques for integration of well, seismic and dynamic data are reviewed in 

the following sections.  

2.7.1 Well data  

Well data is almost always available in reservoir modeling. It includes core 

measurements and well logs. The core plugs used for laboratory measurement are usually 

a few centimeters. The measurement is normally taken at surface temperature and 

pressure, so the measured petrophysical properties may not be same as that in subsurface 

conditions. Core expansion, water evaporation and imbibition must be considered and 

some corrections are required (Zwicky and Eade, 1977). Despite those factors, core data 

are the best subsurface information available. Core data are more expensive than well 

logging therefore we normally have more log data. Well logs are measured at subsurface 

conditions, but the measurements are electrical, radioactive, acoustic and other properties 

of rock near the wellbore. The lithofacies and petrophysical properties are interpreted 

from the measurements. The wellbore condition, mineralogy and fluids will affect the 

interpretation. Some corrections are required. Calibration of the log and core data is also 

necessary. The vertical resolution of conventional logging data is larger than the core data 

scale. High resolution logging may match the core data scale. The core-log calibration 

results provide small-scale heterogeneity information for reservoir modeling (Coll et al., 

1999).  

The well data scale is sometimes referred to as the point scale or quasi-point scale. It 

is smaller than the geological model scale, but in conventional geostatistical reservoir 

modeling, well data are used at the model scale. The missing scale difference between the 

well data and the model scale can be large. Scaling laws (Deutsch, 2002; Frykman and 

Deutsch, 1999) can be used to obtain the correct variogram and correct target histogram 

for geostatistical simulation when well data scale and model scale are different.  
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Well data are always very sparse. To model the reservoir using only well data, either 

an interpolation methods such as kriging or stochastic simulation methods are used. The 

interpolation techniques are normally used for volume calculations where the average is 

critically important. Simulation is mainly used for flow simulation where the extreme 

values are important. Kriging and sequential simulation are developed in many books 

(Journel and Huijbregts, 1978; Goovaerts, 1997; Deustch, 2002). Following is a summary 

to show the basics.  

2.7.1.1 Kriging for reservoir mapping  

Kriging is a linear regression technique to provide a Best Linear Unbiased Estimate 

(BLUE) at unsampled locations. The “Best” means the kriging estimator has minimum 

error variance. The “Unbiased” means the expected value of the error is zero.  

Consider a random function Z that is stationary over the volume of interest, A. With 

n available data { }( ) , 1 . . . ,i iz i n A= ∀ ∈u u , where ui is a vector representing the locations 

in A. The simple kriging estimator is given for any unsampled location u: 

[ ]
1

( ) ( ) ( )
n

i i
i

z m z mλ∗

=

− = −∑u u u           (2-2) 

and the weights λi(u) are calculated from the simple kriging system that considers data 

closeness, redundancy and spatial correlation: 
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i
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where C(ui−uj) is the covariance between data z(ui) and z(uj), and C(u−uj) is the 

covariance between location being estimated z(u) and data z(uj). The covariance function 

is usually inferred from a variogram model that describes the spatial structure of the data. 

The kriging variance or minimum error variance is calculated by 

2 2

1

( ) ( ) ( )
n

s k i i
i

Cσ σ λ
=

= − −∑u u u u           (2-4) 

where σ2 is the data variance. 
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With the mean of z*(u) and variance of 2
s kσ , a distribution of uncertainty can be 

defined in a multivariate Gaussian context. 

Ordinary kriging is slightly different from the simple kriging shown above. It 

constrains the sum of the weights equal to 1. 

1

( ) 1
n

i
i

λ
=

=∑ u              (2-5) 

Although kriging provides estimates with minimum error-variance, the variability of 

the kriging estimates is less than the data. Therefore, kriging maps are smooth with less 

detailed variations and extreme values compared to the original data. Stochastic 

simulation is needed to generate realistic realizations. 

2.7.1.2 Stochastic simulation for reservoir heterogeneity 

Sequential simulation corrects the smoothing problem. It adds a random component 

to the kriging estimate to reproduce the variation at the model scale. Multiple equally-

probable realizations, or stochastic images, of reservoir heterogeneity can be produced by 

drawing a set of random components. Moreover, the set of realizations provide a directly 

usable visualization of the uncertainty about the reservoir properties (Journel, 1990). 

The most popular simulation technique is sequential Gaussian simulation (SGS). It 

adopts a multivariate Gaussian distribution for simplified calculation and global 

histogram reproduction. The normal transform of data is required before the simulation, 

and the simulation realizations are transformed back to real units at the end. When 

dealing with multiscale data, the normal transform is problematic because the non-linear 

transform does not preserve the linear scale relationship of data (Tran et al., 2001). 

Multiscale modeling has to be done in original units. The direct sequential simulation 

(DSS) algorithm could be considered.  

A model of covariance can be reproduced without using the Gaussian model 

(Journel, 1994; Leuangthong, 2005). Sequential simulation can be performed in direct 

space (original units). Numerous studies have been conducted on DSS (Bourgault, 1997; 

Caers, 2000; Soares, 2001; Deutsch et al., 2001). Simple kriging is the heart of DSS. 
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However, the kriging estimate and variance are insufficient to describe local distributions 

because the distribution shapes are not known and the data values dependent nature of 

conditional variances is not considered. Two major challenges with the direct approach 

for simulation are histogram reproduction and the proportional effect. Deutsch et al. 

(2001) proposed a method of building a look-up table of local distributions for histogram 

reproduction in DSS. Local conditional cumulative distribution functions (CCDF) were 

determined by using the Gaussian transform of global histogram under a multivariate 

Gaussian distribution. Manchuk et al. (2005) proposed an analytical method for 

histogram reproduction using the lognormal distribution. Both methods showed some 

promising results for histogram reproduction. Natural data always show a relationship 

between the data mean and variance. This phenomenon is commonly referred to as the 

proportional effect (Journel and Huijbregts, 1978). Because the kriging variance is 

independent of kriging estimate, reproducing the proportional effect becomes an issue. 

This remains a big challenge for DSS. 

2.7.2 Seismic Data  

Seismic data are records of sound energy reflected back from subsurface rock layers. 

Two-way travel time and amplitude are two basic components in seismic records. 

Computer processing is applied to remove noise and provide a realistic image of 

subsurface. Inversion techniques may be applied to extract useful information. Seismic 

interpretation techniques based on the travel time are mainly for determining the 

geometry of a reservoir unit, such as reservoir limits and thickness. The amplitude-based 

stratigraphic inversion techniques are used for inferring the stratigraphic surfaces, and 

reservoir properties. Other seismic data such as acoustic impedance, velocity, and density 

are inversed from travel time and amplitude (Laurence and Rachel, 2004). The seismic 

data are band-limited and inversion techniques are inherently non-unique. Seismic data is 

often calibrated to well data that have both high and low frequency components. 

Seismic data contain indirect information about reservoir properties. For example, 

the amplitude values often relate to lithology, abnormal pressure, fluid content and 

temperature. The lateral changes in amplitude measurements relate to the locations of 
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hydrocarbon accumulations and changes in stratigraphy, porosity and thickness (Sheriff, 

1992). Although the information is indirect, it is very useful to improve the accuracy of 

reservoir models. 

3-D seismic data provide dense and regular spaced information. It is an important 

supplement to sparse well data. Several geostatistical techniques have been introduced or 

developed for the integration of different types of data. Based on their applications, these 

geostatistical techniques are reviewed in the following sections in two groups: one group 

is 2-D mapping; another group focuses on 3-D modeling. 4-D (time-lapse) seismic data 

are usually treated as dynamic data, and will be addressed in the dynamic data section.  

2.7.2.1 Seismic data integration for 2-D mapping 

Due to the poor vertical resolution of seismic data relative to well log data, it is 

convenient to use the seismic data over a stratigraphic layer and the vertical well average 

data for mapping reservoir parameters. These maps could be used for reserve estimation 

and well placement where the details of 3-D heterogeneity are not necessarily required.   

The traditional geostatistical technique of cokriging was first introduced for the 

integration of 3-D seismic data by Doyen (1988) for mapping porosity. Before that, 

conventional regression methods were commonly used for estimating porosity from 

seismic data. Doyen (1988) showed the porosity mapping using three different methods. 

One was kriging with well data. The other two methods were conventional linear 

regression and cokriging using the seismic transit time and well data. The results showed 

that the kriged map was smooth between wells and failed to predict the porosity far away 

from wells. The porosity map from the linear regression was better than the kriged map, 

but the well data were not honored and the data were treated as spatially independent. 

The cokriged map showed a great improvement from the kriged map, especially in the 

sparsely drilled area. The cokriging estimates were also much better than the porosity 

estimates from the linear regression. The well data were honored and the spatial 

correlations were accounted for. The cokriging technique was applied in the Taber-Turin 

reservoir, Alberta, Canada. Cross validation at the wells indicated that the cokriged 

model was 20% more accurate (in mean square error) than a standard regression model. 



24 

However, the tedious cross covariance/variogram inference and the computational burden 

of solving big cokriging matrices kept the cokriging algorithm from being widely used. A 

linear model of coregionalization is required and problems of matrix stability exist (Xu et 

al. 1992) in the implementation of cokriging. Many methods were developed from the 

cokriging technique to overcome these shortcomings.  

Xu et al. (1992) demonstrated two geostatistical techniques: kriging with external 

draft and collocated cokriging for seismic data integration. In the external draft method, 

the seismic data is assumed to be linearly related to the local average of the primary data. 

The property map closely resembles the map of seismic data. The reliability of the 

estimates largely depends on the reliability of the linear relationship obtained from the 

collocated primary and secondary data; however, the linear relationship is hard to justify 

with the limited well data.  

Collocated cokriging uses only the collocated secondary datum in estimation. It is a 

good approximation of full cokriging because the collocated datum screens out the 

influence of the secondary data away from the estimated location. Collocated cokriging 

significantly simplifies the cokriging matrix. Moreover, the cross covariance is also 

simplified by applying another Markov screening rule, that is, the collocated primary 

datum screens out the influence of any other data on the secondary datum. The 

correlation coefficient of the collocated primary and secondary data is used to scale the 

primary covariance to the cross covariance. Kriging with external draft and collocated 

cokriging were used for mapping a saltdome structure with dense 3-D seismic data 

(traveltime) and sparse well data. Both methods work well although the validation 

showed that collocated cokriging performed slightly better. 

Doyen et al. (1996) proposed a simplified implementation of collocated cokriging 

using a Bayesian Updating technique. The kriging estimates are linearly updated with 

collocated secondary data to get the cokriging estimate. The technique eliminates the 

inference of cross-covariance and no need for solving the cokriging system. The 

advantage of the Bayesian Updating technique is separating the influences of primary 

data and secondary data. This allows the analysis of interwell regions more 

straightforwardly. The technique was demonstrated to integrate seismic impedance and 
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well data for mapping the porosity for the Ekofisk Field, North Sea. There was a high 

correlation between the acoustic impedance and the well porosity data so that additional 

information was revealed in the vast interwell region. They also mentioned the need to be 

further constrained by another secondary variable such as structural elevation. Deutsch 

and Zanon (2004) showed the Bayesian Updating technique in a new format that is much 

easier to use multiple secondary variables simultaneously to constrain the final estimates. 

The technique will be expanded on in the next chapter.  

2.7.2.2 Seismic data integration for 3-D modeling 

Dynamic flow simulation requires a 3-D model with an adequate description of 

heterogeneity. 3-D modeling is more complex than 2-D mapping because the vertical 

scale difference between well data and seismic data has to be appropriately accounted for. 

Several techniques have been proposed to build 3-D models based on the techniques 

successfully applied for 2-D mapping or directly using the 2-D maps. 

Yang et al. (1996) demonstrate building 3-D reservoir models by integration of 3-D 

seismic amplitude, or the inverted seismic impedance with well logs. Sequential Gaussian 

Co-simulation (SGS with collocated cokriging) was used. The data were brought to a 

common scale but did not mention which method was used. Gorell (1995) proposed a 

method to build 3-D models given areal maps of seismic-derived average petrophysical 

properties. The 3-D reservoir was divided into a series of layers. In each layer, cokriging 

was applied with the average of well logs in the layer and the seismic derived 2-D maps. 

After all layers were mapped, a linear rescaling was applied to ensure the summary of all 

layers were consistent with the given 2-D maps. This method honors the wells and 2-D 

average maps, but not the deviated wells, and the data histogram was distorted.       

Deutsch et al. (1996) reviewed the conventional geostatistical techniques for seismic 

data integration, and pointed out that the precision and scale of seismic data must be 

simultaneously accounted for. They proposed a simulated annealing-based technique to 

construct a 3-D model. The misfit between the vertical average of 3-D model and the 

seismic derived 2-D maps was reduced to below a user-defined tolerance to account for 
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precision of seismic data. But this technique requires significant CPU time and 

experience with the simulated annealing technique. 

Behrens et al. (1998) proposed a sequential Gaussian simulation with block kriging 

to build 3-D model. Seismic-derived 2-D maps were used as direct measurement of the 

arithmetic average of the primary data at the scale of seismic data. Well data were used as 

quasi-point data to construct the 3-D model. Conventional block kriging was used to 

account for the difference in scale between well data and seismic derived data. The well 

data were honored and the seismic derived map reproduced exactly; however, the low 

precision of the seismic derived data was ignored. Moreover, non-linear Gaussian 

transform of multiscale data cannot preserve the linear scale relationship.  

Doyen et al. (1997) proposed a Bayesian updating technique to build seismically 

constrained 3-D models. The simple kriging estimates were updated with seismic average 

likelihood estimates. The Bayesian updating is equivalent to the block kriging. A small 

change was applied to the updated function to make the 3-D model vertical averages 

approximately match the seismic derived average porosity map. The conventional 

Bayesian updating technique requires a Gaussian environment and a Gaussian transform 

of the data. 

Yao and Journel (2000) proposed a method to build 3-D models by addressing both 

the scale and precision problem. This method was developed from sequential Gaussian 

simulation (SGS) with block kriging (Behrens et al., 1998). Direct sequential simulation 

(DSS) was used instead of SGS to preserve the linear scale relationship between the 

block data (seismic-derived vertical averaged values) and the point data (well log). Block 

kriging was used to account for the scale difference. The seismic-derived 2-D porosity 

maps were generated by cokriging. The error variance of cokriging estimates was added 

in the block kriging to account for precision of the seismic derived data. They used a 

lognormal distribution for the “unknown shape” of the kriged local distributions in DSS. 

The histogram of simulated values matched the lognormal well data histogram 

reasonably well. The proportional effect was not addressed.  
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2.7.3 Dynamic data 

Dynamic data are time dependent data. They include well test, production and 4-D 

seismic data. Well test and production data are wellbore pressure, flow rates or fractional 

flow rates such as water cut and gas oil ratio (GOR) measured at production wells. These 

data provide valuable information about the drainage volume around wells; however, 

they are not linearly related to the static reservoir properties. Flow simulations are 

necessary to link them together. Correct input models of reservoir properties should have 

output production matching real production history. History matching is an inversion 

problem. Good history match does not mean the input models are correct because the 

inversion solutions are non-unique. However, a history match is considered necessary.  

Many people have studied and developed inverse techniques for dynamic data. The 

classical manual iteration method can be replaced by automatic history matching that 

estimates reservoir properties from dynamic data. Production data can be divided into 

three main groups: single well test, multiple well test, and production history data (Wen 

et al., 2005). For each group, the inversion techniques are very different. A thorough 

review of the dynamic data inversion techniques can be found in the monograph by Wen 

et al. (2005) and the PhD thesis by Reza (2003). Among the techniques, the authors 

particularly illustrated the Sequential Self-Calibration (SSC) method for multiple well 

data. It is a geostatistics-based iterative method. Multiple coarse grid 2-D permeability 

realizations can be generated by closely matching the production data. Then, the 2-D 

coarse grid permeability maps can be used as constrains in generating fine scale 3-D 

reservoir models. Tran et al. (1999) demonstrated the construction of coarse scale 3-D 

models using 3-D SSC with streamline simulation. Then, the coarse grid models were 

downscaled using SGS with block kriging or SGS with Bayesian Updating. The 

downscaling technique was modified to use DSS instead of SGS in a later paper by Tran 

et al. (2001). They did not address two major problems with DSS: histogram 

reproduction and proportional effect. And the exactness of downscaling using DSS was 

not considered. 

4-D seismic data can indicate pressure and saturation changes. It is particularly 

useful to locate bypassed oil and undrained compartments. Like production data, it can be 
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used for checking the accuracy of the reservoir model through flow simulation and it can 

assist modeling porosity and saturations (Waggoner, 1998; Tran et al., 1999; Phan and 

Horne, 2002). 
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3 CHAPTER 3 

LARGE SCALE MODELING 

 
Large scale models are required for modeling large areas such as an entire lease or 

reservoir. Building fine scale models for such large areas is neither practical nor 

necessary. For example, 100 realizations of one variable for the Surmont lease at a scale 

of 20 m by 1 m by 1m would require over 1000 GB storage. This is a significant amount 

of storage and it takes time to process and understand the resulting models. A 2-D model 

for the Surmont lease at a scale of 100m by 100m only takes a few MB. Furthermore, as 

described in Chapter 1, it is difficult to generate fine scale models consistent with all 

large scale data. 

Large scale models are useful for resource estimation at the early phases of field 

development. Resource estimation focuses on volume averages rather than detailed 

heterogeneity. Fine scale 3-D models of heterogeneity are useful for flow simulation but 

not necessary for resource estimation. Reliable large scale models are appropriate for 

resource estimation and selecting areas of interested. Fine scale 3-D models can be 

constructed in these areas when they are needed.  

The advantage of modeling at a large scale is that smaller scale data can be upscaled 

to the model scale so that the multiscale modeling is converted to single scale modeling. 

Gaussian-based techniques can be used without concern for non-linear averaging. 

Converting data to 2-D summaries further simplifies multiscale modeling. 2-D mapping 

is the most common approach to large scale modeling, and will be used for the first step 

in the scale consistent modeling approach.  

For scale consistent modeling, an important step is to construct a large scale model 

as accurate as possible by integrating all available data. There are several geostatistical 

techniques that can be used to integrate different data into a geological model including 

Gaussian-based Bayesian updating, indicator cokriging, and full cokriging. The Bayesian 
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updating approach will be presented in detail due to its reliability and simplicity in data 

integration. The contribution of the primary and secondary information on the updated 

results can be easily understood. In this method, well data including core and well log 

data are considered as primary data that we have the most confidence.  The seismic data, 

geologic trends, structural information, geological interpretations and other indirectly 

measured data are used as secondary data to reduce the uncertainty at unsampled 

locations.  

Bayesian updating uses all related information to generate local distributions of 

uncertainty. For large areas or areas have complex heterogeneity, the modeling may be 

improved by accounting for non-stationarity in correlations and data precision. This 

chapter focuses on the theory of Bayesian updating, and provides the methodologies of 

(1) Bayesian updating using locally varying correlation and locally varying quality, and 

(2) simulation with Bayesian updating. The implementation details of the Bayesian 

updating technique are presented in the next chapter.  

3.1. Bayesian Updating Technique for 2-D Mapping 

Conventional geostatistical 2-D mapping is done by kriging the well data to 

interpolate between the well locations. Under a multivariate Gaussian model, local 

uncertainty in the estimates is given by the kriging variance that accounts for the 

closeness and redundancy of the well data. Sparse well data lead to significant 

uncertainty in the interwell regions. It is necessary to integrate secondary information 

such as seismic and geological data to improve the 2-D modeling. Cokriging and 

collocated cokriging (Xu et al., 1992) are common to integrate different types of data; 

however, inference of the cross-covariance model(s) is demanding from the perspective 

of professional effort and computational time.  

Recently, the Bayesian updating technique (Doyen et al., 1996) was introduced for 

data integration. The technique decomposes the collocated cokriging estimate into two 

models: prior and likelihood. The prior model is built from well data, and the likelihood 

model is built from all secondary information. The definition could be reversed with a 
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different interpretation. The prior model is then updated with the likelihood model to 

build the final posterior or updated model. Deutsch and Zanon (2004) applied the 

Bayesian updating technique to predict reservoir performance. They showed the approach 

in a new format that has the advantage of easy implementation in mapping multiple 

primary variables using multiple secondary variables. It has been successfully applied in 

the McMurray formation (Ren et al., 2006a and Ren et al., 2006c), and a non-stationary 

Bayesian updating approach was developed to account for locally varying correlations 

and data quality in Bayesian updating 2-D mapping (Ren et al., 2006b).  

3.1.1. Theory of Bayesian Updating 

Consider a random function Y that is stationary over the area of interest, A.  It is the 

primary variable of interest. There are m random functions Xj, j = 1…m over the same 

model area. They are the secondary variables. Assume Y and Xj (j = 1…m) are jointly 

multi-Gaussian after univariate transformation. 

Suppose there are n data of the primary variable available in the area of interest: 

{ }( ) , 1 . . .iy i n=u , where ui is the location vector in A. In the context of this thesis, the 

results of simple kriging using only the primary data are considered as a prior distribution 

of uncertainty parameterized by the kriging mean and variance. The kriging mean is 

calculated by: 

1

( ) ( )
n

i iP
i

y yλ
=

= ∑u u            (3-1) 

where u is the location being estimated and the weights λi, (i =1…,n) are calculated from 

the well known normal equations: 

1

( ) ( ) , 1,. . .
n

i i k k
i

C C k nλ
=

− = − =∑ u u u u         (3-2) 

where C(ui − uk) is the covariance between the two primary data y(ui) and y(uk), and C(u 

− uk) is the covariance between estimated location y(u) and primary data y(uk). The 

kriging variance is given by 



32 

2

1

( ) 1 ( )
n

P i i
i

Cσ λ
=

= − −∑u u u           (3-3) 

The simple kriging leads to the parameters of a Gaussian conditional distribution 

conditioning to the primary data. A conditional distribution is predicted at each 

unsampled location. 

In general, secondary data are available at every location in the modeled area: 

{ }( ) , 1,. . . ,jx j m A= ∀ ∈u u . The results of prediction with all collocated secondary data 

provide another conditional distribution. This distribution is related to the likelihood 

distribution in a Bayesian context. It has been called the likelihood distribution; this 

thesis retains that name. The non-standard Gaussian likelihood distribution is fully 

defined by a mean and variance. 

The likelihood mean is calculated by: 
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( ) ( )
m

j jL
j

y xλ
=

= ∑u u            (3-4) 

Here, the weights λj (j=1, … n) are also given by the well-known normal equations: 

, ,0
1

, 1,. . .
m

j j k j
j

k mλ ρ ρ
=

= =∑           (3-5) 

where ρj,k is the correlation between different types of secondary data, and ρj,0 is the 

correlation between the secondary data and primary data. The likelihood variance is then 

given by: 

2
,0

1

( ) 1
m

L j j
j

σ λ ρ
=

= −∑u            (3-6) 

The two conditional distributions (prior and likelihood) can be merged together to 

get the updated distribution. The mathematic combination is derived from the Bayesian 

statistical analysis of the posterior distribution. The posterior distribution of uncertainty at 

estimated location u is a conditional distribution conditioning to both primary and 

secondary data: 
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{ }1( ) | ( ) , ( ) ,. . . ( )nP y X y yu u u u          (3-7) 

where ( )1 2( ) ( ) ( ) ( ) T
mX x x x=u u u u"  is a vector of the collocated secondary data. 

Under the assumption that collocated secondary data screen the influence of other 

secondary data that are further away (Journel, 1999), only collocated secondary data are 

considered. This distribution is equivalent to the results of collocated cokriging.  

In the context of Bayesian statistical analysis, the posterior distribution can be 

decomposed into a product of two distributions (Doyen et al., 1996; Besag, 1986): 

{ } { } { }1 1( ) | ( ) , ( ) ,. . . ( ) ( ) | ( ) ( ) | ( ) ,. . . ( )n nP y X y y f X y P y y y∝u u u u u u u u u    (3-8) 

where { }1( ) | ( ) ,. . . ( )nP y y yu u u  is the prior distribution only conditioning to primary data. 

As shown before, the prior distribution is a non-standard Gaussian distribution with 

simple kriging mean ( )Py u  and variance 2 ( )Pσ u . We have 
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    (3-9) 

The proportionality constants that are independent of y(u) are eliminated. 

The { }( ) | ( )f X yu u  in Equation (3-8) is the likelihood function that is simplified by 

only conditioning to the collocated primary data under the assumption of a Markov 

model that the collocated primary data screen the influence of other primary data that are 

further away (Journel, 1999). Under the assumption of a multivariate Gaussian model, it 

is the density function of a multivariate Gaussian distribution parameterized by the 

conditional mean vector { }( ) | ( ) ( )E X y y=u u ρ u  and m x m conditional covariance matrix 
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Σ , where ( )1 0 2 0 0
T

nρ ρ ρ=ρ "  is the vector of correlation coefficients between the 

primary variable and secondary data. The location u is dropped from the notation for 

simplicity. The covariance matrix can be converted to the matrix of correlation 

coefficients: 

1 1 1 1 0 1 0 1 0 0
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Since the secondary data are known, the likelihood function is actually a function of 

y(u). Eliminating the proportionality constants that are independent of y(u), we have: 
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Multiplying the equations (3-9) and (3-10) gives the posterior distribution: 
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This equation is in the form of ( )2e x p A x B x− + , where the constants A and B 

define the mean and variance of a Gaussian kernel: 
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From Equation (3-5), the vector of weights can be expressed as: 1t
i j

−=λ ρ ρ . Thus, the 

likelihood mean and variance are: 1( ) ( )t
i jLy X−=u ρ ρ u  and 2 1( ) 1 t

L i jσ −= −u ρ ρ ρ . Then, the 

updated mean is 

1 2 1 2 2

1 2 1 2 2 2 2

( ) ( ) ( ) (1 ) ( ) ( ) ( ) ( )
( )

( ) (1 ) ( ) ( ) ( ) ( )

t t
i j P i jP P LL P

U t t
i j P i j P P L L

X y y y
y

σ σ σ
σ σ σ σ σ

− −

− −

+ − +
= =

+ − − +

ρ ρ u u u ρ ρ ρ u u u u
u

ρ ρ ρ u ρ ρ ρ u u u u
 (3-12) 

And the updated variance is: 
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These results give the parameters of a posterior non-standard Gaussian distribution 

called the updated distribution of uncertainty.  

A schematic illustration of the Bayesian updating technique is given in Figure 3-1.  
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Figure 3-1: Schematic illustration of the Bayesian updating technique. The block dots are data, and 
the yellow square is a location being estimated. 

3.1.2. Some interesting aspects of Bayesian Updating 

The updated distribution obtained by merging the prior and likelihood distributions is 

non-convex because it does not always fall between the two distributions. Table 3-1 

shows the updated mean changes with increasing of prior means. The global distribution, 

a standard Gaussian distribution N(0,1) has an effect on whether the updated distribution 

falls between the two distributions. If the prior and likelihood distributions are on each 

side of the global distribution, the updated distribution will always fall in between. If the 

two distributions are both above the global distribution or both below the global 

distribution, the updated mean fall in between only when the means of the prior and 

likelihood distributions are far away enough (see cases 6 and 9 in Table 3-1). When the 

two distributions are very close, the updated mean will not fall in between (see cases 7 

and 8 in Table 3-1). The updated distribution tends to be close to the distribution further 

away from the global mean (Figure 3-2).  
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Case 1 2 3 4 5 6 7 8 9 
Prior Mean Py  -2.00 -1.50 -1.00 -0.50 0.00 0.50 1.00 1.50 2.00 

Likelihood Mean Ly  1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Updated Mean Uy  -0.63 -0.31 0.00 0.31 0.63 0.94 1.25 1.56 1.88 
 

Table 3-1: The Bayesian updating calculation showing the changes of updated mean (4th row) with 
increasing prior mean (second row). The variances of prior and likelihood are 0.4 for all cases. 

 

Figure 3-2: Schematic illustration of the location of updated distributions in Bayesian updating 
technique.  

The updated variance is only affected by the prior and likelihood variances. It has the 

characteristic Gaussian property of homoscedasticity. Table 3-2 shows the updated 

variance increases with increasing of prior variances. The updated variance is always the 

smallest variance among the three distributions. As shown in Figure 3-2: Schematic 

illustration of the location of updated distributions in Bayesian updating technique., the 
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width of the updated distribution is always the narrowest, which indicates the uncertainty 

is reduced after Bayesian updating.   

Case 1 2 3 4 5 6 7 
Prior Variance 2

Pσ  0.10 0.30 0.40 0.50 0.60 0.70 0.90 

Likelihood Variance 2
Lσ  0.40 0.40 0.40 0.40 0.40 0.40 0.40 

Updated Variance 2
Uσ  0.09 0.21 0.25 0.29 0.32 0.34 0.38  

Table 3-2: The Bayesian updating calculation showing the increasing of updated variance (last row) 
with increasing of prior variance (second row). 

The Bayesian updating technique relies on the multivariate Gaussian assumption. 

Under this assumption, all marginal and conditional distributions are Gaussian, and can 

be fully defined by an appropriate mean and variance. Therefore, the updated mean and 

variance provide a non-standard Gaussian distribution of uncertainty at the estimated 

location. Natural data may not follow Gaussian distribution. Normal score transformation 

is required to transform all the variables into normal scores at the beginning. The normal 

scores that have the most of values between 3 and -3 are referred as in Gaussian units in 

this thesis. After Bayesian updating, the local conditional distribution of uncertainty must 

be back transformed to original units. This will be shown in the next chapter.  

The multivariate Gaussian assumption also provides that all multivariate 

relationships are linear and can be characterized by correlation coefficients. The 

correlation coefficients obtained from the wells are considered to measure the true 

relationship of each pair of variables over the model area and applicable to the interwell 

regions under the assumption of stationary. However, in practice, the multivariate 

relationships may not be linear or stationary. Thus, the global correlation coefficient may 

not be representative of the true relationship. The reliability of secondary data should also 

be considered in the correlation with the primary data. Modifications are introduced to 

account for possible non-stationarity, complex multivariate relationships and quality of 

the secondary data in local uncertainty assessment. 
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3.2. Enhanced Bayesian Updating Technique 

In the Bayesian updating technique, a representative correlation coefficient is critical 

for integration of secondary information. To obtain a representative correlation 

coefficient, we must consider that: (1) it is a measure of linear dependence; (2) it is 

sensitive to outliers and sparse data; and (3) it is location dependent. 

Consider a primary variable Y and a secondary variable X, the correlation coefficient 

is calculated using all data at n well locations:  
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1 ( ) ( )
1,1

n

i x i y
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      (3-14) 

where m and σ are the mean and standard deviation calculated by: 
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Because all variables are standard normal distributions (m = 0, σ = 1) after normal score 

transform, the equation can be simplified to: 
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1

1 ( ) ( ) 1,1
n

xy i i
i

x y
n

ρ
=

= ∈ −∑ u u         (3-16) 

The correlation coefficient measures the linear relationship between two variables. 

Cross plots show all of the information between two variables. The correlation coefficient 

is a summary statistic and extracts the linear information. If the bivariate relationship is 

non-linear, the correlation coefficient is not representative (Figure 3-3). It is more 

reasonable to assume the local relationship is linear rather than the global relationship. 
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Figure 3-3: Cross plot of two variables that have a non-linear bivariate relationship. 

A second well-known problem with the correlation coefficient is that it is sensitive to 

outliers. Figure 3-4 shows that two outliers make a big difference (from 0.590 to 0.728) 

in the correlation coefficient. The two extreme values are possibly caused by local 

geological features or errors in the measurement. If it is local geological features, the 

assumption of stationary is questionable; a local correlation coefficient would be more 

representative.  

 
Figure 3-4: Cross plot of two variables with two outliers in the blue circle gives a correlation of 0.590 
(left). And cross plot of two variables without the two outliers gives a correlation of 0.728 (right). 

The correlation coefficient may be location dependent and sensitive to sparse data. 

Even in cases with no outliers, the correlation coefficient may be varying locally. An 

example is given in Figure 3-5 and 3-6. The maps of two variables and the cross plot of 

64 pairs of data are shown in Figure 3-5. A global correlation coefficient of 0.533 is 

calculated from the 64 pairs of data extracted from the locations shown in block circles. 
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However, using 9 data at the upper-left and lower-right corners, the local correlation 

coefficients are -0.555 and 0.775, respectively (middle column in Figure 3-6). Of course, 

only 9 sparse data may not provide the true correlation coefficient. The cross plots of 

exhaustive data in the two areas indicate that the upper-left area actually has a correlation 

coefficient of about 0.16, and the lower-right area is about 0.64 (right column in Figure 

3-6). The local correlations are different from the global correlation coefficient. Non-

stationarity or local geological features cause the difference. In practice, we may not 

know whether non-stationary features exist in the model area with limited information 

available. The local correlations allow accounting for the local non-stationary features 

and non-linear relationship. Therefore, using local correlations will be more 

representative for multivariate correlations, especially for large areas. 

 

 
Figure 3-5: The maps of primary (left) and secondary (middle) variables and their cross plot (right) 
which indicates a global correlation coefficient of 0.533. 
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Figure 3-6: The data locations and the cross plots for the upper-left corner (upper row) and the 
lower-right corner (lower row). The middle column shows the cross plots of the nine data shown in 
the location map. The right column shows the cross plots of exhaustive data in these corners.  

3.2.1. Locally Varying Correlation (LVC) 

To calculate locally varying correlation coefficients, it is important to have sufficient 

data pairs to calculate a representative correlation. Using a moving window method with 

a large window size may suffice; however, there will be artifact discontinuities caused by 

the windows. To avoid the artifacts, a weighted correlation coefficient is proposed. 

Inverse distance weighting is a simple and robust method for weighting data pairs. All 

data pairs are weighted based on their distance from the location of interest.  

The inverse distance weights are calculated by the equation below: 
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            (3-17) 
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where d is the distance between a datum and the estimated location. The c is a constant 

value used to avoid computational problems when estimating at data locations. And the p 

is the power of the distance. The inverse distance weights are non-negative and sum to 

one: 
1

1, 0, 1,
n

i i
i

w w i n
=

= ≥ =∑ … . 

Using the inverse distance weights, the locally varying correlation coefficient can be 

calculated by: 
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where the weighted mean and variance of variable X are given by: 

1

2 2

1

( ) 1, ...

( ( ) ) 1, ...

n

x i i
i
n

x i i x
i

m w x i n

w x m i nσ

=

=

= =

= − =

∑

∑

u

u
        (3-19) 

It is same for the variable Y. Figure 3-7 shows the locally varying correlation map 

for these two variables shown in Figure 3-5. The local correlations are low in the upper-

left corner and high at the lower-right corner. This is consistent with the local correlations 

in Figure 3-6.  

 
Figure 3-7: The locally varying correlation map of the two variables in Figure 3-5.  
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The locally varying correlation map for the case of two pairs of extreme values 

(Figure 3-4) is shown in Figure 3-8. The maps of the two variables are shown on the left 

of the figure. The two outliers are from a channel in the secondary data. The locally 

varying correlation captures the two data. It also shows that the correlation is high in the 

upper-left of the area, which is a low-valued area in both maps.  

 
Figure 3-8: The maps of two variables (left and middle) and their locally varying correlation (right) 
for the case of two pairs of extreme values shown in Figure 3-4. 

The locally varying correlations are highly dependent on the weights from the 

inverse distance method. The weights, in turn, are dependent on the values used for the 

power p and the constant c in Equation 3-10. Firstly, with the constant c fixed, as the 

power increases, the weights become more dissimilar; the data far away will have less 

weight (Isaaks and Srivastava, 1989), and the variation of local correlations will increase. 

As the power decreases, the weights are more similar, and the variation of local 

correlations becomes smaller. When the power reaches zero, the local correlations 

become the global correlation. Now, consider the power as fixed. As the constant 

increases, the weights are more similar, and the variation of the local correlations is less. 

In calculation of locally varying correlations, all of the data need to be taken into 

account. To avoid giving too much weight to the closest datum, the constant is normally 

fixed at the average well spacing. Then, the power is adjusted to generate locally varying 

correlations that change smoothly. Figure 3-9 shows the maps of locally varying 

correlations calculated with constant of 400 m and different powers. The well spacing is 

400m. The power of 0.8 gives a very smooth map of locally varying correlations. The 
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maps using powers larger than 1.0 are showing some bull-eye shapes around wells that 

are considered unreliable. 

3.2.2. Data impact on local correlation 

Outliers can dramatically affect the correlation between two variables. Although 

those outliers can be revealed in the local correlations, it would be convenient to 

automatically identify those data pairs and investigate. To identify them, a measure of the 

impact of each data pair on the local correlation is introduced here. This measure is 

named Average Correlation Difference (ACD). 

The calculation of the ACD is based on a jackknife type method. Firstly, a base 

locally varying correlation (LVC) map is generated using all data pairs. Then, a data pair 

is taken out and the rest of data pairs are used to generate a new locally varying 

correlation map. The difference between the two locally varying correlation maps is 

averaged over the entire model area: 

1

100 n

Bi JKi
i

ACD
n

ρ ρ
=

= −∑           (3-20) 

where the ρB is the base local correlation, the ρJK is the new local correlation, and the n is 

the number of cells in the model area. Repeat this for another data pair at a time until the 

ACD for each data pair is calculated. Data with high differences can be investigated. A 

map of ACD may be useful to identify the data pairs with large impact.  
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Figure 3-9: The locally varying correlation (LVC) maps with different powers. 

Figure 3-10 shows the histogram and kriged map of the ACD for the 64 data pairs of 

the two variables in Figure 3-5.  The ACDs are very small with a maximum of 3.04. No 

outliers exist. Figure 3-11 shows the histogram and kriged map of the ACD for the 64 

data pairs of the two variables in Figure 3-8. The two extreme high ACDs are the outliers 

shown in Figure 3-4. 
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Figure 3-10: The histogram and kriged map of ACD for the two variables shown in Figure 3-5. 

 
Figure 3-11: The histogram and kriged map of ACD for the two variables shown in Figure 3-8. The 
two wells are the two outliers shown in the cross plot in Figure 3-4. 

In the Bayesian updating technique, secondary data are required over the entire 

model area. The correlations calculated from the wells are applied in the interwell regions 

based on the assumption that the secondary data are equally accurate over the entire area. 

However, in practice, the qualities of secondary data are not always the same. This 

locally varying quality must be accounted for explicitly to improve the estimation and 

uncertainty assessment.  
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3.2.3. Local Varying Quality (LVQ) 

The quality of secondary data is different when they come from different sources. 

Dense secondary data may come from different 3-D seismic surveys or from kriged 2-D 

seismic lines or geologic mapping. The secondary data at well locations have the best 

quality if they are calibrated with well picks. The quality will almost always be less away 

from the wells. Different 3-D seismic surveys may have different qualities depending on 

different survey techniques and conditions. 2-D seismic data usually has less quality than 

3-D seismic data. 2-D seismic lines should have better quality than the estimated 

locations. Treating them all the same could mislead the final updated estimate and local 

uncertainty results. The locally varying quality of secondary data must be appropriately 

accounted for. 

The locally varying quality defines our confidence in the data. 3-D seismic data can 

be assumed to have the same quality in the same survey area. The different qualities for 

different 3-D surveys must be defined based on expert knowledge. When the secondary 

data is generated from a kriging-type method, the local varying quality can be calculated 

using kriging variance as below: 

[ ]2( ) 1 ( ) 0, 1kQ C σ= ⋅ − ∈u u         (3-21) 

where the C is the maximum quality, which is the quality of data used in kriging. If the 

data are secondary data at wells, the C is 1; if the data are 2-D seismic lines, the C is 

always less than 1. The 2
kσ  is the kriging variance, which is the error variance of kriging 

estimates.  

Equation 3-21 is derived from kriging with one datum. The simple kriging system 

gives the following relationship between the kriging variance and the correlation ρ  

between the datum and the estimate: 

22 1 ρσ −=k             (3-22) 

If the variance is low, the correlation is high, and the estimate is closer to the true datum; 

the quality of the estimate will be high. 
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Figure 3-12 shows the curve of data quality versus kriging variance. At well 

locations, the kriging variance is zero and the quality is 1. As the kriging variance 

increases, the data quality drops. 
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Figure 3-12: The curve of data quality versus kriging variance when the maximum quality C is 1. 

3.2.4. Bayesian Updating with LVC and LVQ 

The locally varying quality affects the correlation between the secondary data and 

primary data. Usually, secondary data are calibrated with well data so that the secondary 

data at wells are assumed to have 100% quality. Away from the wells, the quality is less. 

Assume the quality of secondary data is caused by random errors in the data, then the 

correlations calculated from the wells may be higher than the correlations at the estimated 

locations. A locally varying effective correlation between secondary and primary data can 

be used. It is calculated by multiplying the LVQ and the LVC:  

,0 ,0ˆi iQρ ρ= ⋅              (3-23) 

The data quality may also affect the correlations between different secondary 

variables. But the effect is less important and is difficult to quantify. The locally varying 

correlations calculated from wells are assumed applicable to the estimated locations. 
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Applying the locally varying correlations and effective correlations in Bayesian 

updating is straightforward. They are used in the likelihood calculation. The global 

correlations between secondary and primary data are replaced with the locally varying 

effective correlations, and the global correlations between different secondary data are 

replaced with the LVC in Equations 3-5 and 3-6. The new likelihood system is: 
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j i j i
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i nλ ρ ρ
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⋅ = =∑ …            (3-24) 

The likelihood variance is: 
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With the new likelihood results, the prior is updated using same Equations 3-7 and 3-

8. The local uncertainty will be affected by the locally varying quality. The likelihood 

variance is calculated using the weights and the effective correlations that are all related 

to the secondary data quality. If the quality drops, the likelihood variance will increase 

fast. So does the updated variance.   

The locally varying matrices of weighted correlations must be positive semi-definite 

to ensure a positive likelihood variance and a unique solution to the weights λj, j=1,…, m 

in Equation 3-24. The proof of positive definiteness of the new weighted correlation 

matrix is given below:  

For all the secondary variables Xj, j = 1…m, the m x m LVC matrix is 
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where the weighted correlation coefficient is i j

i j
i j

x x
x x

x x

C
ρ

σ σ
=

⋅
, where C is the weighted 

covariance and 0, 1,...
ix i mσ > = . Thus, the LVC matrix can be rewritten as 
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,T=ρ Y CY where the m x m diagonal matrix ( )T diag= =Y Y h  with a vector 

1

1 1

m

T

x xσ σ
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h " on the diagonal.  

We know that if A is positive semi-definite matrix, so is TY AY , where Y is 

arbitrary matrix. Therefore, we only need to prove the positive semi-definiteness of the 

weighted covariance matrix C as shown below: 
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where 1 1 1( ( ), , ( )) ; ( ( ), , ( )) ; ( , , ) ;T T T
i i i n j j j n nx x x x w w= = =X u u X u u w… … … ( )diag w  
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Thus, the covariance matrix C  can be rewritten as ( ( ) )T Tdiag= −C X w ww X , 

where 1( , , )m=X X X… . Again, we only need to prove that the matrix ( ) Tdiag −w ww  is 

positive semi-definite. Based on McCullagh and Nelder (1989), the matrix 
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( ) Tdiag −w ww  is a positive semi-definite matrix if 
1

1, 0, 1,
n

k k
k

w w k n
=

= ≥ =∑ … . 

Since the inverse distance weights meet the condition, the matrix ( ) Tdiag −w ww  is 

positive semi-definite. So are the covariance matrix C and the locally varying correlation 

matrix ρ . 

3.2.5. Small example 

The Bayesian updating and enhanced Bayesian updating techniques are performed 

using the two variables in Figure 3-5 and one additional secondary variable, seismic 

amplitude. The primary variable supposes to be unknown except at the 64 well locations. 

The image of the primary variable will be used as a reference to validate estimations from 

Bayesian updating techniques. The exhaustive secondary variable is used as one 

secondary data. Another secondary data, seismic amplitude, is generated from both 3-D 

and 2-D seismic. Suppose a 3-D seismic survey is conducted in the upper-left area, and a 

2-D seismic survey is conducted for the rest of model area. Kriging is performed using 

the 2-D seismic lines to generate an amplitude model for the 2-D survey area, and then it 

is combined with the amplitude model from 3-D seismic results. The final map of the 

amplitude and the associated LVQ map are given in Figure 3-13. In generating the LVQ 

model, the quality of 3-D seismic area is 100%, and the quality of 2-D seismic lines is 

90%. The kriged estimates have different qualities from 60% to 90%. The global 

correlation coefficients of amplitude to primary and secondary variables are 0.593 and 

0.483, respectively (Figure 3-14). The locally varying correlations are also given in 

Figure 3-14. The locally varying correlation of amplitude to primary variable is high in 

the upper-left area and low in the rest of area, especially in the upper-right corner. 
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Figure 3-13: The map of amplitude and its local varying quality (LVQ). The upper-left area is the 3-
D seismic area, and the rest of the area is modeled by kriging using 2-D seismic lines.   

 
Figure 3-14: The global correlation and the map of locally varying correlation (LVC) between 
primary and amplitude (left column) and between secondary and amplitude (right column). 

The results of Bayesian updating and enhanced Bayesian updating are given in 

Figure 3-15 and Figure 3-16. The left column shows the reference, prior and updated 
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models for visual comparison. The right column shows the secondary data, amplitude 

data, and likelihood model. The likelihood model of enhanced Bayesian updating fits the 

high and low correlated areas better, especially in the upper-left area, the enhanced 

Bayesian updating results show more detailed heterogeneity with more high and low 

values.  

 
Figure 3-15: The results of Bayesian updating using global correlation coefficients. 
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Figure 3-16: The results of enhanced Bayesian updating using LVC and LVQ. 

The updated maps of Bayesian updating and enhanced Bayesian updating are 

compared with the reference. The maps of difference between each updated result and the 

reference are shown in Figure 3-17. The differences in the upper-left area are less in 

enhanced Bayesian updating estimates (less red and blue) because of using high local 
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correlations with amplitude data. The upper-right corner is also improved in enhanced 

Bayesian updating estimates (less yellow) because of using the lower local correlations.  

 
Figure 3-17: The maps of the difference between the Bayesian updating (BU) results and the 
reference (left) and the difference between the enhanced Bayesian updating (EBU) results and the 
reference (right). 

Both cross validation results (Figure 3-18) and the cross plots of exhaustive 

estimates versus the reference (Figure 3-19) indicate that the enhanced Bayesian updating 

is performing better than the Bayesian updating. And the Bayesian updating is 

performing better than kriging. The enhanced Bayesian updating estimates are the closest 

to the true values.  

 
Figure 3-18: The cross validation of simple kriging (left), Bayesian updating (middle) and enhanced 
Bayesian updating (right). 
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Figure 3-19: The cross plots of the estimates versus the reference for simple kriging (left), Bayesian 
updating (middle), and the enhanced Bayesian updating (right). 

Secondary information, locally varying correlation and quality are used in Bayesian 

updating to improve the local estimation. However, regardless of how fine-tuned the 

estimates are, there are errors and uncertainties. Bayesian updating technique provides 

uncertainty distributions at all of locations. The mean values of updated distributions 

cannot be used as a realization because of smoothness. Simulated realizations are 

required for constructing fine scale models.  

3.3. Simulation with Bayesian Updating 

Under the multivariate Gaussian model, Bayesian updating can be performed within 

sequential Gaussian simulation (SGS). The basic procedure is to perform simple kriging 

sequentially using input data and previously simulated values (Equations 3-1 to 3-3) to 

build local prior distributions, and establish the updated distribution using the prior 

distribution and the likelihood distribution (Equations 3-4 to 3-6) from collocated 

secondary data. Then, draw randomly from the updated distribution (Equations 3-12 and 

3-13) to get the simulated value:  

( ) ( ) ( ) ( )s u uy w yσ= +u u u u          (3-30) 

where w(u) is a random number drawn from a standard normal distribution, ( )uσ u  and 

( )uy u  are the Bayesian updated standard deviation and mean, respectively. 
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For computing efficiency, rather than performing Bayesian updating sequentially, we 

can perform Bayesian updating to build local uncertainty distributions and use a 

simplified simulation approach, P-field simulation (Srivastava, 1992), to generate 

simulated realizations. P-field simulation starts with a probability field, that is, a set of 

spatially correlated probability values uniformly distributed between 0 and 1. Then, 

simulated values are drawn by sampling the local conditional distributions using the 

corresponding probability values. 

The implementation of P-field simulation with Bayesian updating is to draw a set of 

standard normal deviates that are spatially correlated within the field A, and then 

condition these standard normal values with the Bayesian updated mean and standard 

deviation to get simulated values as shown in Equation 3-30. The only difference is that 

the w(u) is the spatially correlated value from standard normal distribution. 

Both SGS with Bayesian updating and P-field simulation with Bayesian updating are 

performed using the primary and secondary data in Figure 3-5. Multiple realizations are 

generated. The P-field simulation realizations #1, #5 and #10 are shown together with the 

reference image, secondary data, and updated estimates in Figure 3-20. The SGS with 

Bayesian updating simulation realizations are shown in Figure 3-22. Figure 3-21 and 

Figure 3-23 shows the cross plots of reference versus the simulation realizations #1, #5 

and #10. The collocated co-simulation (CC-SGS) is also performed to compare the two 

Bayesian updating simulation realizations. The collocated co-simulation is performed 

using the SGSim program from GSLIB (Deutsch and Journel, 1998). A variance 

reduction factor of 0.6 is used to correct the variance inflation. The reference and the 

collocated co-simulation realizations #1, #5 and #10 are shown in Figure 3-24. And the 

cross plots of the reference versus the CC-SGS realizations #1, #5 and #10 are shown in 

Figure 3-25. The variances of all simulation realizations are close to the variance of 

reference data. P-field simulation shows no variance inflation. SGS with Bayesian 

updating shows slightly higher variances. CC-SGS realizations would show much higher 

variances if no variance correction applied. The correlations between the reference and P-

field simulation realizations are the highest among the three simulation methods. The 

other two simulation methods show similar correlations between reference and simulation 
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realizations. SGS with Bayesian updating is slightly better. The P-field simulation 

realizations may be used to construct fine scale 3-D models. 

 
Figure 3-20: The primary variable (reference) and secondary variable used for Bayesian updating 
are in the top row. The Bayesian updated estimates and P-field simulation realizations are shown in 
the middle and bottom rows. 
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Figure 3-21: The cross plots of the reference versus the P-field simulation realizations #1, #5 and #10. 

 
Figure 3-22: The primary variable (reference, up-left) and the SGS with Bayesian updating 
simulation realizations. 
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Figure 3-23: The cross plots of the reference versus the SGS with Bayesian updating simulation 
realizations #1, #5 and #10. 

 
Figure 3-24: The primary variable (reference, up-left) and the collocated co-simulation realizations.  
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Figure 3-25: The cross plots of the reference versus the collocated co-simulation realizations #1, #5 
and #10. 
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4. CHAPTER 4 

IMPLEMENTATION OF BAYESIAN UPDATING 

 
The Bayesian updating technique has been successfully applied for 2-D mapping in 

McMurray formation (Ren et al., 2006a and Ren et al., 2006c). The implementation 

details of Bayesian updating will be demonstrated with a large example. The example is 

aimed to characterize a bitumen-bearing zone for Steam Assisted Gravity Drainage 

(SAGD) process (Butler, 1991). 

The large scale 2-D mapping using Bayesian updating techniques consists of three 

main steps. 1) Data assembly including careful selection of the reservoir parameters for 

mapping and preparation of secondary data. 2-D summaries of some reservoir parameters 

are calculated from wells, and secondary data are normally generated from seismic data 

and geological mapping. 2) 2-D mapping using the Bayesian updating or enhanced 

Bayesian updating techniques. The prior, likelihood, and updated models are modeled 

separately. 3) Validating the model results using cross validation and new wells. It is 

important to validate the large scale model to ensure the model is reliable for resource 

estimation and scale consistent modeling. 

4.1. Selection of Primary and Secondary Variables 

Several reservoir parameters are crucial for screening a reservoir for SAGD. The 

thickness of net pay or net continuous bitumen, porosity (φ), oil saturation (So), and 

bitumen quality over the net continuous bitumen are all related to the recoverable 

resources of bitumen. A complete project usually requires the mapping of 20 to 30 

variables. For demonstration purposes, only three primary variables are selected. 

The primary variables are 2-D summary of the reservoir parameters and are 

calculated at each well. The SAGD recoverable bitumen thickness (SBT) that accounts 
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for the basic requirements of SAGD process is an important variable. Development of 

steam chamber requires no thick shale barriers. Therefore, SBT is calculated for the net 

continuous thickness up to the top surface or a shale barrier thicker than a threshold 

chosen by production data or flow simulation (say 3 m). The porosity and water 

saturation over the SBT are also modeled. They can be combined together to calculate the 

recoverable resources by SAGD process.  

Secondary variables should be reliable and highly correlated with the primary 

variables. They should have a physical connection with the primary variables, such as 

impedance for modeling porosity. These data are not always available. Structural data can 

be used as secondary data because they are usually quite reliable. They are the 

fundamental variables for all geological models, and they are usually derived from a 

variety of different sources. The secondary variables in the example are primarily 

structural variables that are generated from well logs, sequence stratigraphy and seismic 

data. Two structural surfaces are selected: (1) the bottom surface of the bitumen-bearing 

zone (BOT), (2) the top surface of the bitumen-bearing zone (TOP). The seismic 

amplitude is also added for improved porosity modeling. The amplitude data are vertical 

averages over the bitumen-bearing zone (APL). They are standardized by dividing the 

maximum value to be between 1 and –1. The selected variables for the example are listed 

below: 

1 2 3 4 5 6
TOP BOT APL SBT SPhie SSw

Secondary Data Primary Data

 

Some basic data analysis must be performed before modeling. Histograms are 

plotted to check the data distributions and assess some basic statistics. The data need to 

be checked to see if they are in valid data range. And the secondary data need to be 

checked to see if they are consistent with well data. If there are large differences in some 

wells, these wells need to be reviewed. If the differences are small, the secondary data 

may be modified by using the conditioning by kriging technique to ensure the 

consistency between secondary data and well data. 
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The model area in the example is 9660m by 9660m. A synthetic data set is created 

based on real data from the Surmont Project. There are 161 wells in the area. The location 

map of the wells is given in Figure 4-1 with the histograms of the three primary variables. 

The maps of three secondary data are shown in Figure 4-2. The TOP and BOT are depth 

in meters, and the APL is standardized value. 

 

 
Figure 4-1: The well locations and histograms of the primary data from the wells. 
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Figure 4-2: The maps of the secondary variables: top and bottom surfaces are depth in meters, and 
the vertical averaged amplitude is standardized to be values between 1 to -1. 

 

4.2. Bayesian Updating 2-D Modeling 

Bayesian updating is applied under a multivariate Gaussian model. All of the 

primary and secondary data must be transformed into normal scores at the beginning. 

Prior model and likelihood model will be built using these normal scores. At the end, the 

results are back transformed into original units. A workflow for the Bayesian updating 

techniques is given in Figure 4-3. The implementation details of each step are presented 

in the next four sections.  
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Figure 4-3: The work flow for Bayesian updating 2-D mapping techniques. 

4.2.1. Prior models 

Simple kriging is used to construct the prior models of uncertainty for each primary 

variable. There is an implicit assumption of stationary in kriging and other geostatistical 

techniques. Stationarity means the spatial statistics are constant over the model area. 

Trends in the model area will require special treatment. It is important to check the trend 

at the beginning of the modeling. If large scale trends exist, we must make sure the trend 

is captured in the final updated maps. Usually a large amount of data will ensure that the 
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trend is reproduced in the prior model. Secondary data with a reasonable correlation will 

also capture trend information and ensure that it is reproduced in the likelihood model. 

Thus, the updated maps normally show the trend. However, if the trend is not captured in 

the updated maps, simple kriging with non-stationary mean (Deutsch, 2002) or other 

trend modeling techniques may be used to rebuild a prior model.  

 
Figure 4-4: The trend maps of the primary variables: the SAGD Bitumen Thickness (SBT) is in 
meters, and the porosity and Sw are in percentage. 

The trend map is used to determine if there are large scale trends in a primary 

variable over the model area. The trend map is created by simple or ordinary kriging 

using data in real units. A variogram with a large range of correlation and a small nugget 

effect is used. It allows trends shown in sparse wells area. Trends generated from a large 

amount of data are reliable. Trends in sparse wells area need to be adopted with care 

because we do not want to over constrain the model. The trend maps of the primary 

variables are shown in Figure 4-4. All trend maps indicate some trends in the area. They 
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will be compared with the updated maps to see if the trends are captured in the final 

models.  

The well data are clustered in the center of the study area. The trend maps also 

indicate that the clustered wells are preferentially drilled in the high SBT, high porosity 

and low Sw area. The histograms of the well data (Figure 4-1) do not represent the true 

distributions of the primary variables in the model area. Declustering should be used to 

obtain more representative distributions. Cell declustering (Deutsch, 2002) is used. An 

appropriate cell size must be defined to generate declustering weights. The calculated 

declustered means at different cell sizes (100m to 3000m) are cross-plotted in the left 

column of Figure 4-5. The declustered mean of SBT drops at the large cell sizes. The 

declustered means of the other two variables change slightly. Because the clustered data 

in high SBT area, we expect a lower mean for SBT. The location map (Figure 4-1) 

indicates there is approximately one datum per section in the sparse well areas. 

Therefore, the cell size is fixed at 1610m to calculate declustering weights. The 

histograms of the declustered distributions from the weights and data are plotted in the 

right column of the Figure 4-5. There is a large change in the distribution of SBT. These 

declustered distributions are used for transforming the primary data into normal scores.  
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Figure 4-5: The declustering results of the three primary variables. The left column shows the 
declustered mean at different cell size range from 0 to 3000m. The red lines are the selected cell size 
at 1610m. The right column is the declustered distributions of the primary variables: the SAGD 
Bitumen Thickness (SBT) is in meters, and the porosity and Sw are in percentage.  

The spatial correlation of a reservoir parameter is measured by the variogram model. 

The variogram model is generated from the experimental variogram. The experimental 

variogram is calculated from the normal scores. Variogram map may be used to 

determine the major and minor directions for variogram calculation. The experimental 

variograms can be modelled using a semi-automatic variogram fitting algorithm. The 

variogram models of the primary variables are shown in Figure 4-6.  
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Figure 4-6: The major and minor principal directional variograms of SBT (top), porosity (middle) 
and water saturation (bottom). 

The prior maps are the kriged maps of the primary variables (Figure 4-7). Using the 

normal scores and the corresponding variogram, simple kriging is performed and the 

result is a prior model that yields an uncertainty distribution at each location. The local 

uncertainty is a non-standard normal distribution defined by the kriged mean and 

variance. The maps of kriged mean are shown in the left column and the maps of kriging 
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variance are shown in the right column in Figure 4-7. The variance at wells is zero (blue 

dots). The trends in the prior maps match well with the trend maps (Figure 4-4). The 

values on these maps are only conditional to surrounding data of the same type; we must 

also consider the secondary data. 

 
Figure 4-7: The prior maps of the primary variables. The left column is prior mean in Gaussian units 
and the right column is prior variance. 
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4.2.2. Likelihood models 

Multiple secondary data are combined to generate a likelihood model for each 

primary variable. Representative correlations between the primary variable and the 

secondary variables are vital in building likelihood model. Checking the data and 

understanding the extreme values are important to obtain representative correlations. The 

cross plot and the ACD map of each pair of the variables are used to check the data. 

Problem data should be reviewed and perhaps eliminated to obtain a more representative 

correlation between the variables. Figure 4-8 shows the cross plots of all the pairs of the 

variables. One value in the red circle in the cross plot of porosity versus bottom surface is 

questionable. This extreme value is also indicated in ACD map (middle in Figure 4-9).   

 
Figure 4-8: The cross plots of each pair of variables. 
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Figure 4-9: The ACD maps of each pair of variables. 

The ACD map is used to identify data pairs of extreme values that can affect the 

local correlation between two variables. The ACD is calculated for each well by the 

method introduced in Section 3.2.2 of previous chapter. Then, they are mapped using 

kriging to identify the data pairs with large impact.  

The questionable well is taken out. Thus 160 wells are actually used for the 2-D 

modeling. The final global correlation coefficients are summarized and shown in a 

correlation matrix (Figure 4-10). It is symmetric. The SBT is highly correlated with 
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bottom surface with a correlation of –0.83. The porosity is highly correlated with the 

amplitude with a correlation of –0.61. Water saturation is correlated with both bottom 

surface and amplitude. These secondary data will influence the estimation at unsampled 

locations. Bottom surface and amplitude will play important roles. Top surface is less 

important than the other secondary variables.  

 

 
Figure 4-10: The correlation matrix of all the variables. 

Locally varying correlations are required for the enhanced Bayesian updating 

technique. They are calculated at each location from all the wells with the weights from 

inverse distance method. Figure 4-11 shows only the locally varying correlation maps of 

the primary variables versus the secondary variables. The locally varying correlations 

will be used in the likelihood calculation. Locally varying qualities are not used in this 

example. 
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Figure 4-11: The locally varying correlations between primary variables and secondary variables.  

With the correlations between a reservoir parameter and multiple secondary 

variables, we can use the secondary data to calculate the likelihood model for the 

reservoir parameter. The likelihood models provide an uncertainty distribution at each 

location conditional to collocated secondary data of multiple types. Both the global 

correlations and the locally varying correlations are used. The likelihood models from the 

global correlations are shown in Figure 4-12. The left column is the maps of likelihood 

means, and the right column is the likelihood variances. The variance is constant over the 

entire area. The likelihood models from the locally varying correlations are shown in 

Figure 4-13. The means look very similar to the means shown in Figure 4-12, but the 

variances are varying locally. 
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Figure 4-12: The likelihood maps of the primary variables from the global correlations. The left 
column is likelihood mean in Gaussian units and the right column is likelihood variance. The 
variances are constant over the model area. 
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Figure 4-13: The likelihood maps of the primary variables from the locally varying correlations. The 
left column is likelihood mean in Gaussian units and the right column is likelihood variance. The 
variances are varying over the model area. 

4.2.3. Updated models 

Bayesian updating merges the prior models and likelihood models to generate 

updated models. The resulting model accounts for both primary and secondary 

information. The distribution of uncertainty is defined at each location in the form of a 
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non-standard normal distribution given by the updated mean and variance. The updated 

maps of primary variables using the Bayesian updating method are shown in Figure 4-14, 

given by the updated mean and variance in Gaussian units. The results using the 

enhanced Bayesian updating method are shown in Figure 4-15. The differences between 

the two results are very small so that they look very similar at this colour scale. 

 
Figure 4-14: The updated maps of the primary variables from Bayesian updating method. The left 
column is updated mean in Gaussian units and the right column is updated variance. 
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Figure 4-15: The updated maps of the primary variables from enhanced Bayesian updating method. 
The left column is updated mean in Gaussian units and the right column is updated variance. 

The updated distributions must be back transformed to real units to show the 

uncertainty at each location. The back transformation of the non-standard normal 

distribution is accomplished using a large number of quantiles. The mean can not be back 

transformed directly; the back transformed value would be a biased estimate of the mean 

in real units because the transformation is non-linear. Quantiles can be back transformed 

with no bias. 
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4.2.4. Local uncertainty 

It is common to summarize uncertainty with a set of maps that show the P10, P50 and 

P90 values. The P10 values provide a conservative estimate since there is a 90% 

probability of being larger than this value. The P50 values correspond to the median 

estimate of the reservoir parameter at each location, and provide a measure of central 

tendency.  The P90 values provide an optimistic estimate as there is a 90% probability of 

being less than this value. The map of local P10 values can be used to identify the high 

valued areas since the high P10 values reflect areas that are surely high. The map of local 

P90 values can be used to identify the low valued areas since the low P90 values reflect 

areas that are surely low.  

The P10, P50 and P90 maps for the primary variables from the Bayesian updating 

method are shown in Figure 4-16. The P10, P50 and P90 maps from the enhanced Bayesian 

updating method are not shown because they are very similar to Figure 4-16. The yellow 

areas in the P10 map of SBT indicate where there is a 90% chance to have more than 55 

meters. The P90 map of SBT shows there is a small area with 90% chance to be less than 

10 meters. The P50 map shows the median value of the SBT in the model area. 
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Figure 4-16: The P10/P50/P90 maps of SBT in meters (top), porosity (middle) and water saturation 
(bottom) are in percentage. 

4.3. Model Validation 

Reservoir modeling consists of many interdependent modeling steps with many 

opportunities for mistakes or unreasonable use of erroneous data. It is impossible to 

completely validate models; however, there are some basic checks that can be used to 

identify problem data or errors in the geostatistical modeling. Cross validation is used to 

estimate the variables at locations where we know the true value. The actual data are 

deleted one at a time and re-estimated from the remaining neighbouring wells. Then, we 
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can check the accuracy of the estimation and the predicted distributions of uncertainty to 

evaluate the goodness of modeling parameters. 

The accuracy of the estimation can be checked by the cross plots of the well data 

versus the estimates from cross validation. For Bayesian updating techniques, the prior, 

likelihood and updated results versus the true data can be used to check each step. The 

mean and standard deviation of the estimates should be close to the mean and standard 

deviation of true data. The updated results should be the best. The correlation between the 

updated means and true values is expected to improve if the secondary information is 

useful. The cross plots together with the histograms of SBT, porosity and water saturation 

from Bayesian updating are shown in Figures 4-17 to 4-19. The data are all in Gaussian 

units. The histograms of the updated means are closer to the histograms of true data than 

the histograms of prior and likelihood means. The standard deviations of the updated 

means are all very close to the standard deviation of the true data. The maximum and 

minimum values are improved. It indicates that the secondary information adds variation 

in the updated means. The correlations between the updated means and true values are all 

improved. The cross plots together with the histograms of SBT, porosity and water 

saturation from enhanced Bayesian updating are shown in Figures 4-20 to 4-22. The 

correlations between the updated means and true values are higher than the Bayesian 

updated results. 

An accuracy plot is used to check the goodness of the uncertainty model. It shows 

the percentage of true data falling in symmetric probability intervals. The width of 

symmetric probability intervals is plotted on the abscissa axis. The fraction of true values 

within the interval is plotted on the ordinate axis. If the points fall on the 45o line, the 

uncertainty distributions are appropriate. If above the line, the uncertainty distributions 

are too wide. If below the line, the uncertainty distributions are too narrow. The accuracy 

plots of cross validation of Bayesian updating results for the primary variables are shown 

in Figure 4-23, and the accuracy plots for enhanced Bayesian updating results are shown 

in Figure 4-24. The uncertainty distributions of SBT are slightly too narrow. The 

uncertainty from the enhanced Bayesian updating is slightly better than Bayesian 

updating results for SBT. The porosity and water saturation are close to the 45o line.  
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Good cross validation results do not necessary mean the model is good. It is 

important to check the models with additional data (new wells) if available. The cross 

plots and accuracy plots using new data can be plotted to check the estimates and the 

uncertainty models. 

If satisfied with the model validation results, we can use the local uncertainty results 

to assess global uncertainty over the entire area, which is addressed in the next chapter. 

We can also use them to generate simulation realizations using the P-field simulation 

approach that described in Section 3.3. Then, the simulation realizations will be used to 

construct the fine scale 3-D models using the exact downscaling techniques, which will 

be addressed in Chapters 7 and 8.  
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Figure 4-17: The cross validation of Bayesian updating results for SBT in Gaussian units. 
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Figure 4-18: The cross validation of Bayesian updating results for porosity in Gaussian units. 
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Figure 4-19: The cross validation of Bayesian updating results for water saturation in Gaussian units. 
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Figure 4-20: The cross validation of enhanced Bayesian updating results for SBT in Gaussian units. 
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Figure 4-21: The cross validation of enhanced Bayesian updating results for porosity in Gaussian 
units. 
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Figure 4-22: The cross validation of enhanced Bayesian updating results for water saturation in 
Gaussian units. 
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Figure 4-23: The accuracy plots of the SBT (left), porosity (middle) and water saturation (right) from 
Bayesian updating method. 

 

 
Figure 4-24: The accuracy plots of the SBT (left), porosity (middle) and water saturation (right) from 
enhanced Bayesian updating method. 
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5. CHAPTER 5 

RESOURCE ESTIMATION 

 
With limited data and geological information, there is always uncertainty in resource 

estimation. Assessing the uncertainty is important for reservoir management and decision 

making. The Bayesian updating techniques has been introduced in Chapter 3 to construct 

local uncertainty models of reservoir parameters. These local uncertainty models can be 

used to assess the uncertainty in petroleum resources over a large area; however, the 

upscaling of local uncertainties to global uncertainty is a challenge because both the 

spatial correlations between different locations and the multivariate correlations between 

the different variables that go into resource calculation must be accounted for.  

Petroleum resources are calculated from several reservoir parameters. For example, 

the Original Oil In Place (OOIP), which is a function of three variables: 

OOIP A NP (1 )wSφ= × × × −           (5-1) 

where A is a constant that calculated from the area of model cell, oil formation volume 

factor and unit converter, NP is the Net Pay thickness, and the other two variables are 

porosity (φ) and water saturation (Sw). The three variables may be correlated. When the 

porosity is low, the oil saturation is also often low. Treating the variables independently 

will lead to underestimation of the uncertainty in OOIP: high values average out with low 

values. The correlations between these variables must be accounted for in the resource 

estimation. For the resources over a large area, local uncertainty cannot simply be 

summed to obtain the joint uncertainty at larger scales; the spatial correlation must also 

be considered. Assessment of global uncertainty over a large area requires a simulation 

method to combine all the local uncertainties and correlations between multiple variables 

accounting for spatial correlation. A spatial/multivariate simulation approach is 

introduced for this purpose. Global uncertainty is consistent with the local uncertainty 
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from the large scale models. Methodology and implementation are presented in the 

chapter.  

5.1. Methodology of Global Uncertainty Assessment 

The methodology of global uncertainty assessment will be presented in two steps: (1) 

the joint uncertainty at each location considering only the multivariate correlations; (2) 

the global uncertainty over a large area considering both multivariate and spatial 

correlations.  

5.1.1. Local resource estimation and joint uncertainty 

Assessment of local uncertainty in a derived variable (such as OOIP) requires 

simulation to combine the uncertainties in constituent variables. Accounting for the 

multivariate correlation can be achieved by applying LU simulation. LU simulation has 

been used for many years, but popularised in geostatistics by Alabert (1987). The 

conventional LU simulation is applied to simulate a single variable using information 

from multiple locations. It is suitable when the locations are less than 5000. Here the LU 

simulation is used for assessing the uncertainty in a derived variable by jointly simulating 

multiple variables at the same location. Because the number of variables is relatively 

small (3 to 30) and working in a Multivariate Gaussian environment, the LU simulation is 

always applicable.  

The implementation of the LU method to simulate multiple dependent variables is 

straightforward. The matrix of correlation coefficients is used instead of the spatial 

covariance matrix in the conventional implementation (GSLIB). The matrix of locally 

varying correlations could be used if the constituent variables are modeled using the 

enhanced Bayesian updating technique. The matrix C is decomposed by Cholesky 

decomposition: C=LU. The L is the lower matrix and the U is the upper matrix. A vector 

of uncorrelated standard normal values w(u) is generated by a random number generator, 

then the correlated values are calculated by: 

( ) ( )us =Y u Lw u            (5-2) 
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The unconditional simulated values yus are standard Gaussian and have the correct 

correlation structure. Each value should follow the local conditional distribution of the 

corresponding variable. Therefore, the simulated value is calculated by non-standardizing 

with the local mean and variance: 

( ) ( ) ( ) ( )s us u uy y yσ= +u u u u          (5-3) 

The simulated realizations of non-standard values ( )sy u  can be back transformed to 

original units and calculate the derived variable. 

Figure 5-1 and Table 5-1 show the multivariate LU simulation for OOIP in a single 

cell. The local uncertainties of the Net Pay thickness (NP), porosity (φ) and Water 

saturation (Sw) are modeled from Bayesian updating. The correlation matrix of the three 

variables is used for LU simulation. Multiple realizations (say 100) of the three variables 

are drawn using LU simulation accounting for the correlation between the variables 

(yellow shaded squares in Table 5-1).  Then, the OOIP is calculated with each set of 

numbers. The local estimate and uncertainty in the OOIP (or any other derived property) 

can be assembled from the realizations; a histogram of the final OOIP values is created.  

 
Figure 5-1: A schematic illustration of joint uncertainty of OOIP from local uncertainty models of 
constituent variables. The square with black line is the estimated location. 
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Realization 
Number NP φ Sw Calculated 

Local OOIP 
1 10 0.30 0.25 1600 bbl 
2 9 0.28 0.22 1300 bbl 

… … … … … 
100 11 0.27 0.23 1550 bbl  

Table 5-1: A tabulated illustration of joint uncertainty calculation for local OOIP in barrels.  

5.1.2. Resource estimation and global uncertainty 

There is often interest in resource estimation over a large area such as a lease 

boundary or pad location. The global uncertainty in such estimation cannot be calculated 

by simply summing the local uncertainties. The spatial continuity of the variables must be 

considered. If the variables are very discontinuous, then the uncertainty decreases quickly 

with scale. If the variable is continuous, then the uncertainty decreases slowly, but fewer 

data are needed to constrain the uncertainty. Therefore, to estimate the resource over a 

large area and to assess the global uncertainty, we must account for the spatial correlation 

over the area of interest as well as the multivariate correlation between variables. 

A full cosimulation approach could be used to assess the global uncertainty; 

however, this is cumbersome to implement because of the complicated cross-variograms 

calculation and expensive computing time. 

A spatial/multivariate simulation approach is proposed for assessing the global 

uncertainty from the local uncertainties that has been described in Chapter 3. This 

approach is based on the P-field simulation technique (Srivastava, 1992) combined with 

the LU simulation presented in the previous section. Assessing global uncertainty over a 

large area requires drawing values of each variable simultaneously over many grid nodes. 

There is correlation between the different variables and spatial correlation between the 

locations of interest. The LU simulation method could also be used to model this joint 

multivariate and spatial correlation; however, the number of variables and locations 

quickly becomes large and computationally expensive. For this reason, the P-field-like 

simulation technique is used to account for the spatial correlation. The P-field simulation 
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is combined with the LU simulation to perform the spatial/multivariate simulation. Most 

common geostatistical assumptions also apply to this approach, such as assuming that the 

data are representative, and the statistical properties of the data are the same over the 

entire model area. An assumption of multivariate Gaussianity is critical for this approach. 

The spatial/multivariate simulation for global uncertainty assessment consists of the 

following steps: 

1. Build the local conditional distributions with the updated mean and variance 

for each variable.  

2. Generate a set of standard normal values that are spatially correlated for each 

variable: { }( ), , 1, 2,....iw A i n∈ =u u        

where u is a location vector in the field A, and wi(u) is the standard normal 

value for the ith variable at location u.  

3. Determine the global or local correlation matrix, ρ, for the n variables and 

perform Cholesky decomposition: T= =ρ LU LL . 

4. Obtain the multivariate correlated standard normal values of n variables: 

    ( ) ( )us =Y u Lw u          

where Yus(u) is the vector of the multivariate correlated normal deviates at 

location u. and w(u) is the vector of the standard normal values from step (2). 

5. Obtain the conditional simulated values:       

   ( ) ( ) ( ) ( )si usi i iy y yσ= +u u u u        

where σi and iy  are the updated standard deviation and mean, respectively, 

for the ith variable. 

6. Back transform the simulated values to real units, and assemble the 

distribution of uncertainty over any volume using the joint 

spatial/multivariate realizations.  
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A schematic illustration of the spatial/multivariate simulation work flow is shown in 

Figure 5-2. Virtually all of this work must be performed in Gaussian space; this requires 

that all the data (primary and secondary) must first be transformed into normal scores.  

Step 1 of the methodology can be achieved by Bayesian updating to generate local 

distributions of uncertainty. Step 2 requires running unconditional simulations using 

sequential Gaussian simulation with the appropriate variograms. These variograms are 

calculated based on the normal scores of each data. Use of the variogram ensures that the 

set of normal deviates for each variable is spatially correlated. Steps 4 and 5 can be 

implemented together; the simulation generates the spatial and multivariate correlated 

simulation values in Gaussian units. Finally, these simulated values are back transformed 

to original units. OOIP can now be determined from the n simulated values at each 

location. Summing them over any area of interest gives a simulated value of the global 

resource. With multiple realizations, we can assess the global uncertainty over any area 

of interest. 
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Figure 5-2: Work flow of the spatial/multivariate simulation approach for assessment of global uncertainty from local uncertainty. 
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5.2. Example 

This approach has been applied on real reservoirs (Ren et al., 2005a). This synthetic 

example was created to demonstrate the entire process from modeling local uncertainties 

to assessing global uncertainty. 

In this example, the global uncertainty is for the OOIP over a study area, which is 

about 4 sections (each section is 1 mi2): 3200m x 3200m. The OOIP is calculated using 

Equation 5-1, and A is the local area of 20m x 20m. For simplification, let us consider 

φSo as one variable. 

64 well data are available at a spacing of 400 m. The well locations and the 

histograms of NP and φSo are shown in Figure 5-3. To assess the local uncertainties of the 

two variables, we also have three secondary variables available (Figure 5-4): three 

sequence boundaries (1 to 3) from seismic data and geological interpretation.  

 
Figure 5-3: The location map of the 64 wells with the colour scale showing the net pay thickness in 
meters (left), and histograms of Net Pay thickness in meters (centre) and φSo in fraction (right). 

 
Figure 5-4: Maps of three secondary variables in Gaussian unit: sequence boundary 1 (left), sequence 
boundary 2 (centre) and sequence boundary 3 (right). 
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The correlations between each primary variable and each secondary variable are 

summarized in the correlation matrix in Figure 5-5. The variograms of the two primary 

variables, NP and φSo, are also shown in Figure 5-5. The prior, likelihood and updated 

maps are shown in Figure 5-6. The prior maps only show the primary information from 

well data. The likelihood maps show the secondary information based on a combination 

of all secondary data. The updated maps show the combination of the primary and 

secondary information. After transforming the updated results back to real units, the P10, 

P50, P90 quantiles were plotted to show the uncertainties in NP and φSo (Figure 5-7). An 

east-west cross-section for each quantile map was extracted and plotted together to show 

the uncertainty of NP thickness in 1-D (Figure 5-8). It is interesting to see that the P10 

and P90 curves are not symmetric at P50. The uncertainty is varying at different locations 

and is zero at well locations. The P10 values are high around 1600 m so that the NP is 

most likely to be high. The P90 values are low between 800 m and 900 m, the NP is most 

likely to be low over there.  

 
Figure 5-5: Variogram for two primary data (left and centre) and the correlation matrix between the 
primary and secondary variables (right). 
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Figure 5-6: Prior (left), likelihood (centre) and updated (right) maps for NP (top) and φSo (bottom) in 
Gaussian unit. 

 

 
Figure 5-7: Final maps of uncertainty for Net Pay thickness in meters (top row) and φSo in fraction 
(bottom row): P10 (left), P50 (centre) and P90 (right). Note the east-west section lines in the Net Pay 
thickness final maps are plotted in Figure 5-8, and the black circles represent well locations. 
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Figure 5-8: Uncertainty of Net Pay thickness in an east-west section: P10 (bottom line), P50 (middle 
line), and P90 (top line). The location of y=1810m is shown in the top row of Figure 5-7. 

 

Using the local uncertainties from the updated models, the spatial/multivariate 

decomposition simulation approach was used to generate 100 realizations. Realizations 5, 

50 and 95 are arbitrarily chosen for illustration in Figure 5-9. In each realization, all 

values are spatially correlated over the model area. At each location, the two variables, 

NP and φSo are statistically correlated and were used to calculate the OOIP at that 

location (Figure 5-10). Two areas of interest and the whole model area were selected to 

assess the OOIP (values are posted below the maps). Using the 100 realizations, we can 

assess the global uncertainties in OOIP in these three areas (Figure 5-11). These 

distributions of global uncertainty look similar to a normal distribution. The global 

uncertainty in area 1 shows a mean of 38.41 million cubic meters and a standard 

deviation of 4.17. The global uncertainty in area 2 shows a mean of 40.93 million cubic 

meters and a standard deviation of 4.93. Area 1 is smaller than area 2, but the OOIP mean 

and variance are very close. The global uncertainty in the whole model area shows a 

mean of 203.29 million cubic meters and a standard deviation of 10.23. 
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Figure 5-9: Realizations 5, 50 and 95 of the spatial/multivariate simulation. In each realization, all 
values are spatially correlated over the model area and the Net Pay thickness in meters (top row) and 
φSo in fraction (bottom row) are also correlated. 

 

 
Figure 5-10: Calculated OOIP from the two variables shown in Figure 5-9. The colour scale shows 
the OOIP in cubic meters. Two areas of interest (in black box) and the whole model area were 
selected to estimate the global OOIP. The global OOIP in the three areas in million cubic meters are 
shown below the maps for each realization. 
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Figure 5-11: Global uncertainty distribution of the OOIP in the Area 1 (left), the Area 2 (centre), and 
the Whole Model Area (right). 
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6. CHAPTER 6 

EXACT DOWNSCALING TECHNIQUES 

 

A major task of geostatistical modeling is to build reservoir models of petrophysical 

properties for reservoir flow simulation. When the target is the entire reservoir, upscaling 

of geostatistical reservoir models is often required because geostatistical models often 

have a finer scale than the reservoir simulation models. When the target is a small area, 

downscaling of geostatistical models may be required. In the McMurray Formation, 

where the SAGD technique is commonly used for bitumen recovery, the flow simulation 

of horizontal well pairs or individual SAGD pads is very important. The detailed flow 

simulation of selected small areas requires input models at a very fine grid size.  

The previous chapters have demonstrated that reliable geostatistical models can be 

constructed at a large scale. Using the large scale model to generate a fine scale model is 

a downscaling process. Co-kriging, collocated co-kriging, and trend modeling techniques 

can be used to generate fine scale models; however, the fine scale model may not be 

completely consistent with the large scale model (Ren et al., 2004a and Ren et al., 

2005c). Exact downscaling techniques are introduced to generate fine scale 

heterogeneous models. The term “exact” means the fine scale model would exactly 

reproduce the large scale model if it was scaled up. Exact downscaling techniques are 

developed using direct kriging and direct sequential simulation (DSS) techniques.  

The background and theory of the two exact downscaling techniques are presented in 

this chapter. Theoretical and numerical proofs of exact reproduction of block data in the 

techniques are provided. The practical aspects and detailed implementation of the 

downscaling methods will be presented in the next chapter. 
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6.1. Background  

Consider a block volume V with an arbitrary 

shape as shown by the solid black line in the sketch 

to the right. The block is composed of a great number 

of points (the black dots). If a property scales 

lineally, the block value VZ  can be calculated from 

the point data by this equation:  

1 ( )VZ Z d
V •= ∫ u u          (6-1) 

where ( )Z • u is the point value at location u in the block V. 

If the block can be discretized into n equal-sized cells with small volume v (the 

squares drawn with dashed lines), the block value can be expressed as a discrete sum: 

1

1 ( )
n

V v i
i

Z Z
n =

= ∑ u          (6-2) 

where ( )v iZ u  (i = 1…n) are the values in the small cells. If the small volume is 

discretized by m points, the cell value ( )v iZ u can be expressed as:  

1

1( ) ( ' )
m

v i j
j

Z Z
m •

=

= ∑u u          (6-3) 

where ( ' )jZ • u  (j = 1…m) are the point data in the small cell. 

Now consider a large domain A (or a large model area) in which the multiscale data 

are stationary. Thus, the statistical properties such as mean, variance, covariance of data 

at each scale are constants over the entire area; and the statistical properties of data at 

different scales follow same relationships over the entire area. As stated in Section 2.5, 

most static properties have a linear scaling relationship. Under the assumption of 



107 

stationary, the mean is the same for all the scales. The data variance decreases as the 

scale increases. The volume averaged covariances apply to any scale. 

In the large model area, the block data are exhaustively available for the entire area. 

A certain number of point data are also available. Statistical properties at the block and 

point scales can be calculated from the available data. We are interested in the statistical 

properties at the model scale, which can be any scale between the block and point scales. 

The mean at the model scale can be inferred from the block data. Because the block data 

covers the whole model area, the mean of block data is the true mean for all the scales: 

V vZ Z Z •= =           (6-4) 

where the subscript V represents the block scale, v represents the model scale, and • 

represents the point scale. 

The variance of data at the model scale is the dispersion variance of the data in the 

large domain A, 2 2 ( , )v D v Aσ = . Similarly, the variance of point data is: 2 2 ( , )D Aσ• = • . 

Krige’s Relation (Journel and Huijbregts, 1978) gives the variance at the model scale: 

2 2 2( , ) ( , ) ( , )D v A D A D v= • − •         (6-5) 

where the dispersion variance of the point data in the model scale volume can be 

calculated from the Volume-Variance Relation (Journel and Huijbregts, 1978): 

2 2( , ) (0) (0) (0)v v v vD v C C Cσ•• •• = − = −       (6-6) 

where the (0)C••  and (0)v vC  are the volume averaged covariances between a datum and 

itself at the point and model scales. Therefore, the variance at the model scale is actually 

the volume-averaged covariance at the model scale: 

2
v vv Cσ =           (6-7) 

As stated in Section 2.7, the covariance at the model scale can be inferred from the 

covariance at point data through the volume-averaged covariance relationship.  
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• •
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⎧ ⎫⎪ ⎪= −⎨ ⎬
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u u+h

u u+h
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h u u h u u h

x x y y

x y x y

x y x y

x y x y

h '
( ) ( )

)
v v
∑ ∑

u u+h

    (6-8) 

Similarly, we can get the block scale covariance, block-to-model covariance, block-

to-point covariance, and model-to-point covariance so that a total of five covariance 

models from the point scale covariance.  

The block scale covariance: 

{ } { } { } 2
( ) ( )

1( ) ( ) ( ) ( ) ( ) ( ' )V V V V V V
V V

C E Z Z E Z E Z C
V

••= × + − + = ∑ ∑
u u+h

h u u h u u h h  (6-9) 

The block-to-model covariance: 

{ } { } { }
( ) ( )

1( ) ( ) ( ) ( ) ( ) ( ' )V v V v V v
V v

C E Z Z E Z E Z C
V v ••

+

= × + − + = ∑ ∑
u u h

h u u h u u h h  (6-10) 

The block-to-point covariance: 

{ } { } { }
( )

1( ) ( ) ( ) ( ) ( ) ( ' )V V V
V

C E Z Z E Z E Z C
V

• • • ••= × + − + = ∑
u

h u u h u u h h   (6-11) 

And the model-to-point covariance: 

{ } { } { }
( )

1( ) ( ) ( ) ( ) ( ) ( ' )v v v
v

C E Z Z E Z E Z C
v• • • ••= × + − + = ∑

u

h u u h u u h h   (6-12) 
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After establishing the correlations between different scales, we can use them to 

account for the different volume supports of the conditioning data in the multiscale 

modeling using direct kriging or direct sequential simulation framework. 

 

6.2. Theory of Exact Downscaling with Direct Kriging  

 

Assuming a data domain A is stationary. Let { }( ' ) , 1,. . . , 'i iz i n A• = ∀ ∈u u  be the 

available point data, and let { }( " ) , 1,. . . ' , "V j jz j n A= ∀ ∈u u  be the block data that is 

exhaustively available over A. The block and point data can be used with simple kriging 

to estimate the values at the model scale:  

'

' '
1 ' 1

( ) ( )( ( ' ) ) ( ) ( ( " ) )
n n

v i i V i V i
i i

Z m Z m Z mλ λ∗
• •

= =

− = − + −∑ ∑u u u u u        or 

' '

' ' '
1 ' 1 1 ' 1

( ) ( ) ( ' ) ( ) ( " ) 1 ( ) ( )
n n n n

v i i V i V i i V i
i i i i

Z Z Z mλ λ λ λ∗
• • •

= = = =

⎡ ⎤
= + + − −⎢ ⎥

⎢ ⎥⎣ ⎦
∑ ∑ ∑ ∑u u u u u u u

  (6-13) 

where ' ( )V iλ u is the kriging weight for block data ( " )VZ u , and λ•  is the weight for point 

data ( ' )Z • u . More precisely, this formalism can be referred to as simple block kriging.  

By minimizing the error variance, the simple block kriging system is written as:   
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'

' ' '

'

( )'
' 1 1

'

( )'
' 1 1

1,. . . '

' 1,. . .

i j i j j

j i j i j

n n

V V V v VV i i
i i
n n

V vV i i
i i

C C C j n

C C C j n

λ λ

λ λ

••
= =

• • • ••
= =

⎧
+ = =⎪

⎪
⎨
⎪ + = =⎪
⎩

∑ ∑

∑ ∑

u

u

     (6-14) 

And the minimum error variance or the simple block kriging variance can be expressed 

as: 

'
2 2

( ) ( )'
1 ' 1

( ) i i

n n

v V vs b k v i V i
i i

C Cσ σ λ λ••
= =

= − −∑ ∑u uu       (6-15) 

where σv
2 is the variance at the model scale and can be calculated by Equation (6-7).  

In the downscaling process, the block is expected to be reproduced exactly so that 

the fine scale model is consistent with the large scale model and no bias is introduced by 

the scaling process. A theorem on the exact reproduction of block data using the direct 

simple block kriging is developed below. 

Theorem I: simple block kriging with block data and point data is an exact 

downscaling method: 

' '

' ' '
1 ' 1 1 ' 1

( ) ( ) ( ' ) ( ) ( " ) 1 ( ) ( )
n n n n

v i i V i V i i V i
i i i i

Z Z Z mλ λ λ λ∗
• • •

= = = =

⎡ ⎤
= + + − −⎢ ⎥

⎢ ⎥⎣ ⎦
∑ ∑ ∑ ∑u u u u u u u  

that is, the estimated values of the small cells in a block exactly reproduce the block 

value: 

* *

1

1( ) ( ) ( )
n

V V
i

Z Z Z
n =

= =∑ iu u u         (6-16) 
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6.2.1. Proof of Theorem I 

Consider a block consisting of k small cells, and there are n point data available. 

Then, for each small cell at uj (j=1 … k), the kriging estimates are: 

' '

' ' '
1 ' 1 1 ' 1

( ) ( ) ( ' ) ( ) ( " ) 1 ( ) ( ) 1,. . . ,
n n n n

v j i j i V i j V i i j V i j
i i i i

Z Z Z m j kλ λ λ λ∗
• • •

= = = =

⎡ ⎤
= + + − − =⎢ ⎥

⎢ ⎥⎣ ⎦
∑ ∑ ∑ ∑u u u u u u u  

and the kriging system is  

( ) ( )j j=C λ u C u  or in matrix format: 

1 1 1 2 1 ' 1 1 1 2 1

2 1 2 2 2 ' 2 1 2 2 2

' 1 ' 2 ' ' ' 1 ' 2 '
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n n n n n n n n
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n n
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Summarizing all the k kriging systems together, we get  

1 1

( ) ( )
k k

j j
j j= =

=∑ ∑C λ u C u  

From the volume averaged covariance relationship, we know that: 

( )
1

( )
1

1 1,2,. . . '

1 1,2,. . .

i j i j j

i j i j j

k

VV V v
j

k

V v
j

C C i n
k

C C i n
k

=

• •

=

= =

= =

∑

∑

u

u

  .  

Then, the matrix becomes: 
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The right side is k multiplied by the first column of the covariance matrix. Thus, the 

solution is: 

1

2 3 '

1 2
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1 1 1

1 1 1

0

0

n
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V V V
j j j
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= = = =⎨
⎪
⎪
⎪ = = = =⎪
⎩

∑

∑ ∑ ∑

∑ ∑ ∑

      (6-17) 

This solution is unique because it is a kriging system. This solution indicates that the 

total weight to the collocated block is the number of cells in the block, and the total 

weights to the point data and other block data are zero.  

Using this solution, the block value calculated from all the estimates is: 
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Therefore, the block data is always reproduced exactly with the simple block kriging. It 

can be referred to as exact downscaling with direct kriging (EDDK) from a downscaling 

point view. A small example is given in the next section to demonstrate the exact 

reproduction of block data. 

6.2.2. Small example 

Consider three block data at scale of 

4m x 4m x 4m in a row, and three point 

data in a vertical well close to the blocks. 

The center block is downscaled into 8 

small cells at scale of 2m x 2m x 2m. 

Three sets of block and well data used for the downscaling are listed in the table 

below. The center block datum is changed in all three sets. The two adjacent block data 

change in sets 1 and 2, while the well data are kept same. Then, the well data change in 

sets 2 and 3, while the two adjacent block data are kept same.  

Location Set 1 Set 2 Set 3

Left 0.50 0.80 0.80

Center 0.25 1.00 4.00

Right 0.10 1.20 1.20

A 0.70 0.70 0.50

B 0.50 0.50 1.20

C 2.00 2.00 3.00

Block

Well
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An exponential variogram model is used for the downscaling: ( ) 1
h
ah eγ

−
= − , where 

h is the distance between two data locations. To check the block datum reproduction 

under different variograms, three different variogram ranges are used as shown in the 

table below. 

Variogram γ1(h) γ2(h) γ3(h) 

Range, a 4 9 16  

The results of kriging using the three sets of data with different variogram models 

are given in Table 6-1. The center block values are given in the first row. The estimated 

values in 8 small cells are listed in the middle, and the block average of the small cells is 

calculated in the last row for each case. The block datum is exactly reproduced in all 

cases, which numerically confirms the theorem presented above. The changes in block 

data, well data and variogram models affect estimates in small cells, but do not affect the 

exact reproduction of block datum. 

Cell γ1 γ2 γ3 γ1 γ2 γ3 γ1 γ2 γ3

1 0.18 0.15 0.14 0.95 0.93 0.93 3.99 4.06 4.11

2 0.28 0.26 0.25 1.01 0.98 0.95 3.96 3.83 3.75

3 0.17 0.14 0.13 0.94 0.93 0.93 3.99 4.09 4.15

4 0.26 0.24 0.23 1.00 0.97 0.95 3.97 3.88 3.82

5 0.22 0.24 0.25 0.98 1.01 1.04 4.02 4.12 4.18

6 0.35 0.39 0.40 1.08 1.10 1.09 4.02 3.92 3.86

7 0.21 0.22 0.23 0.97 1.00 1.03 4.02 4.14 4.22

8 0.32 0.36 0.38 1.06 1.08 1.08 4.02 3.96 3.91

Zavg 0.25 0.25 0.25 1.00 1.00 1.00 4.00 4.00 4.00

Set 1: Zcb = 0.25 Set 2: Zcb = 1.00 Set 3: Zcb = 4.00

 

Table 6-1: The table of EDDK results with different cases. The collocated block values are given in 
the first row. The estimated values in 8 small cells are listed in rows 1-8, and the block averages of 
the estimates are listed in the last row. 

Kriging estimates are smooth. A simulation approach is needed to generate 

realizations with the correct variability. 
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6.3. Theory of Exact Downscaling with Direct Sequential Simulation  

Considering the same data domain A is stationary. Let { }( ' ) , 1,. . . , 'i iz i n A• = ∀ ∈u u  

be the available point data, and let { }( " ) , 1,. . . ' , "V j jz j n A= ∀ ∈u u  be the block data that 

are exhaustively available over A. Direct sequential simulation uses the block, point data 

and previously simulated data to simulate the values at the model scale:  

'

' ' '
1 ' 1 1 ' 1

( ) ( ' ) ( ) ( " ) 1 ( )
n n n n

v s V V v i v s i i i V v i i
i i i i

Z Z Z Z m Rλ λ λ λ λ λ• • •
= = = =

⎡ ⎤
= + + + − − − +⎢ ⎥

⎢ ⎥⎣ ⎦
∑ ∑ ∑ ∑u u u u u  (6-18) 

where ( ' )VZ u  is the collocated block value. Note only the collocated block datum is 

used because the previously simulated data are used. And ( " )Z • u  is the point data, 

( )v s lZ u  is the previously simulated data, R(u) is the random residual at the simulated 

location u.  

The kriging system is written as: 

'

'

' ' '

'

( )'
1 ' 1

'

( )'
1 ' 1

'

( )' ' '
1 ' 1

, 1,. .

, ' 1,. . '

i i

j i j i j j

j i j j

n n

V V V v V V vV v i i
i i

n n

V v v v v v vV v i i
i i

n n

V v vV v i i i j
i i

C C C C

C C C C j n

C C C C j n

λ λ λ

λ λ λ

λ λ λ

••
= =

••
= =

• • •• • •
= =

⎧
+ + =⎪

⎪
⎪
⎪ + + = =⎨
⎪
⎪
⎪ + + = =⎪
⎩

∑ ∑

∑ ∑

∑ ∑

u

u

u

   (6-19) 

And the simple block kriging variance is  

'

'
2 2

( ) ( ) ( )'
1 ' 1

( ) i i

n n

V v v v vs b k v V v i i
i i

C C Cσ σ λ λ λ ••
= =

= − − −∑ ∑u u uu     (6-20) 

where σv
2 is the variance at model scale.  
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Theorem II: Direct sequential simulation with block data and point data is an exact 

downscaling method: 

'

' ' '
1 ' 1 1 ' 1

( ) ( ' ) ( ) ( " ) 1 ( )
n n n n

v s V V v i v s i i i V v i i
i i i i

Z Z Z Z m Rλ λ λ λ λ λ• • •
= = = =

⎡ ⎤
= + + + − − − +⎢ ⎥

⎢ ⎥⎣ ⎦
∑ ∑ ∑ ∑u u u u u  

that is, the simulated values of the small cells in a block can exactly reproduce the 

block value:  

1

1( ) ( ' ) ( )
n

V s v s i V
i

Z Z Z
n =

= =∑u u u        (6-21) 

 

6.3.1. Proof of Theorem II 

Consider a block consisting of k small cells, and there are n point data are available. 

Perform DSS to simulate the cells in the block following a random path; the previously 

simulated cells are added into the conditioning data for simulating the next cell, until 

reach the last cell at uk, the simulated value is:  

' '

' ' '
1 ' 1 1 ' 1

( ) ( ' ) ( ) ( " ) 1 ( )

1,. . . ,

n n n n

v s k V V v i v s i i i V v i i k
i i i i

Z Z Z Z m R

k k

λ λ λ λ λ λ• • •
= = = =

⎡ ⎤
= + + + − − − +⎢ ⎥

⎢ ⎥⎣ ⎦
=

∑ ∑ ∑ ∑u u u u u
 

where among the n previously simulated cells, there are k-1 of them inside the block. The 

kriging system in matrix format: 
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From the volume averaged correlations, we can get: 

1

1
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Then, the kriging system becomes: 
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This kriging system gives a unique solution: 

'

1, 1, .. 1
0, , ..
0, ' 1, .. '

V

vi

vi

i

k
i k
i k n
i n

λ
λ
λ
λ•

=⎧
⎪ = − = −⎪
⎨ = =⎪
⎪ = =⎩

        (6-22) 

Now, let’s check the variance:  

'

' 1
2 2

( ) ( ) ( ) ( )'
1 ' 1 1

( )
1

( )

0

i i k k i k

i k
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∑
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u
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 (6-23) 

Thus, the random residual at the last cell ( ) 0kR ≡u  because it follows a distribution with 

zero mean and zero variance. Then, the simulated value at the last location is 

1

1

( ) ( )
k

v s k V v s i
i

Z k Z Z
−

=

= −∑u u         (6-24) 

This equation indicates that the simulated value in the last cell is actually the block 

value multiplied by the number of cells in the block and subtracted by all the previously 

simulated cells in the block. Therefore, the block average of simulated values is always 

the block value: 

1 1 1

1 1 1

1 1( ) ( ) ( ) ( )
k k k

V s v s i v s k v s i V v s i V
i i i

Z Z Z Z k Z Z Z
k k

− − −

= = =

⎡ ⎤ ⎡ ⎤
= + = + − =⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
∑ ∑ ∑u u u u  

The block data is always exactly reproduced in direct sequential simulation. This exact 

downscaling technique is named exact downscaling with direct sequential simulation 

(EDDSS). Again, a small example is given to show the exact reproduction of block data 

in EDDSS numerically. 
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6.3.2. Small example 

Consider downscaling a block at scale of 16 m by 16 m into 16 small cells at scale of 

4 m by 4 m as shown in the figure below. There are also four point data at scale of 1 m by 

1 m close to the block.  

 

EDDSS is performed using the block and point data. The results are shown in Table 

6-2. The 16 small cells are simulated with a random path. The weights of data in each cell 

are given in the 16 columns. The kriged estimate and variance are listed in the last two 

rows. The table shows the block value is exactly reproduced. 

type x y z value 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
block 8 8 0.5 48.10 0.88 1.23 0.03 -0.20 2.21 1.49 1.33 0.13 4.68 1.80 3.55 3.76 2.86 5.58 8.10 16.37 53.80
point 20.5 20.5 0.5 58 -0.04 0.01 0.32 -0.03 0.05 0.01 -0.03 0.01 0.00 -0.01 0.01 0.01 0.00 -0.01 0.01 0.00 0.30
point 28.5 7.5 0.5 28 0.00 -0.04 0.04 -0.03 -0.02 -0.04 0.03 0.00 0.03 0.02 0.00 -0.02 0.00 -0.01 -0.01 0.00 -0.04
point 7.5 28.5 0.5 48 0.09 -0.03 0.05 0.04 0.01 -0.02 -0.01 -0.02 0.02 -0.02 -0.01 0.00 0.02 0.01 -0.01 0.00 0.12
point 28.5 28.5 0.5 38 0.03 -0.02 -0.06 0.00 0.00 -0.02 0.00 -0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.05

simulate 2 10 0.5 47.41 -1.02 -1.02
simulate 10 6 0.5 49.29 -0.74 -1.03 -1.78
simulate 6 14 0.5 51.86 -0.28 -0.59 -1.02 -1.90
simulate 10 2 0.5 50.35 -0.25 -0.11 -0.42 -1.02 -1.79
simulate 6 2 0.5 47.30 0.23 -0.12 -0.43 -0.51 -1.02 -1.85
simulate 6 10 0.5 48.13 -0.48 -0.42 0.11 -0.58 -0.27 -1.02 -2.66
simulate 14 2 0.5 48.84 -0.32 -0.37 -0.03 -0.28 -0.49 -0.74 -1.03 -3.27
simulate 2 6 0.5 47.17 -0.41 0.04 -0.46 -0.35 -0.34 -0.61 -0.24 -1.02 -3.40
simulate 14 10 0.5 46.45 -0.07 -0.23 -0.30 -0.42 -0.46 -0.31 -0.50 -0.78 -1.04 -4.11
simulate 6 6 0.5 48.25 -0.40 0.42 -0.81 0.02 0.10 -0.27 -0.34 -0.02 -0.52 -1.02 -2.84
simulate 2 2 0.5 47.76 0.08 -0.19 0.44 -0.38 -0.30 0.21 -0.31 -0.14 -0.30 -0.57 -1.02 -2.47
simulate 10 14 0.5 48.08 -0.07 -0.09 -0.38 -0.03 -0.48 -0.06 -0.27 -0.33 0.35 -0.42 -0.51 -1.02 -3.31
simulate 14 14 0.5 48.43 0.50 -0.23 -0.27 0.48 0.01 -0.23 -0.11 -0.16 -0.16 -0.26 -0.32 -0.44 -1.02 -2.22
simulate 10 10 0.5 48.42 0.63 0.47 -0.75 0.02 0.36 -0.08 -0.64 0.24 -0.33 -0.24 -0.37 -0.02 -0.49 -1.02 -2.21
simulate 2 14 0.5 46.75 -0.11 -0.05 0.25 -0.23 -0.12 -0.22 0.21 -0.61 0.00 -0.39 -0.43 0.07 -0.50 -0.27 -1.02 -3.42

47.41 49.29 51.86 50.35 47.30 48.13 48.84 47.17 46.45 48.25 47.76 48.08 48.43 48.42 46.75 45.06 48.10
0.32 0.12 0.21 0.09 0.19 0.08 0.07 0.09 0.08 0.05 0.05 0.04 0.04 0.02 0.02 0.00

Summary
/average

Data

simulated values
kriging variance

 Kriging weights in each cell

 

Table 6-2: The table of EDDSS results for the small example. The simulated values and variances are 
listed in the last two rows.  
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The exact downscaling with direct kriging and the exact downscaling with direct 

sequential simulation honor the data scales and can exactly reproduce the block data. 

Using them to construct fine scale 3-D models will ensure the fine scale models are 

consistent with the large scale data. The detailed implementation is presented in the next 

Chapter.  
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7 CHAPTER 7 

IMPLEMENTATION OF EXACT DOWNSCALING 
TECHNIQUES 

 

Exact downscaling techniques are applied to construct fine scale models using both 

large scale and point scale data. The practical aspects of the exact downscaling 

techniques are illustrated with some small examples. Implementation is further 

demonstrated with a large example. Comparison between exact downscaling and 

approximate downscaling is presented at the end of the chapter to show that the exact 

downscaled model is consistent with the large scale data and the downscaling method 

have a big impact on flow simulation result. 

7.1 Some Interesting Aspects of EDDK 

7.1.1 Kriging weights of block and point data 

Kriging weights indicate the influence of block and 

point data in the estimation. Consider a single block 

discretized into 8 finer cells and a well located at the 

center of cell 4. Three different variogram ranges are used: (1) small range: ah=av= 10, (2) 

median range: ah=av= 100, and (3) long range: ah=av=1000. The weights of block and 

point data in each cell are listed in Table 7-1 and plotted in Figure 7-1. 

block point block point block point

1 1.09 -0.26 1.10 -0.14 1.09 -0.10

2 1.16 -0.15 0.95 0.05 0.91 0.09

3 0.84 0.22 0.58 0.43 0.55 0.45

4 0.00 1.00 0.00 1.00 0.00 1.00

5 0.91 0.19 0.75 0.27 0.73 0.27

6 1.34 -0.22 1.29 -0.26 1.27 -0.27

7 1.43 -0.39 1.61 -0.60 1.63 -0.63

8 1.24 -0.39 1.72 -0.75 1.81 -0.81

ah = av = 1000
Cell 

ah = av = 10 ah = av = 100

 
Table 7-1: The kriging weights of block and point data with different variogram ranges. 
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Figure 7-1: The kriging weights of block and point data with different variogram ranges. 

Because of the large volume support, the weight of block datum is always larger than 

the weight of point datum except at the well location. At the well location, the well gets 

all the weights so the well datum is reproduced. Moving away from the well, the weight 

of the block is increasing until it reaches a maximum, then, it will decrease. The 

maximum is related to the variogram range. The longer the variogram range the 

maximum will be further away from the well.  

Consider another small example with increasing 

block sizes: from 4 cells to 100 cells. The well is located 

at the cell 1. The weights of block and point data in the 

cells close to the well are listed in Table 7-2 and plotted 

in Figure 7-2. As the block size increases, the weight of block becomes smaller; and the 

influence of the well increases. 

Weights to 
block data 

Weights to 
point data 
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Cell No. block size 4 6 8 10 20 50 100
block weight 0 0 0 0 0 0 0
point weight 1 1 1 1 1 1 1
block weight 1.41 1.09 0.91 0.80 0.60 0.50 0.47
point weight -0.30 0.03 0.19 0.29 0.45 0.51 0.53
block weight 1.68 1.51 1.34 1.21 0.93 0.78 0.74
point weight -0.71 -0.42 -0.22 -0.09 0.14 0.25 0.28

1

2

3

 

Table 7-2: The weights of block and point data in the three cells with increasing block sizes. 
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Figure 7-2: The weights of block and point data in the cells “1-3” with different block sizes. At the 
well location, the weights are constant (dash lines). Away from the well, the weights change with 
block size (solid lines). 

 

7.1.2 Number of block data used in EDDK 

Although many block data are available, not all of them are necessarily required for 

downscaling. Some blocks are redundant and computer requirements will increase when 

many blocks are used. Three cases will be shown below: (1) collocated block case, which 

uses only the collocated block datum. (2) directly connected blocks case, which uses the 
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collocated block and all directly connected blocks data, 5 blocks in 2-D and 7 blocks in 

3-D. (3) corner connected blocks case, which uses the collocated block and all the 

directly and corner connected blocks data, 9 blocks in 2-D and 27 blocks in 3-D.  

               

collocated block       directly connected blocks(2-D)     corner connected blocks(2-D) 

A 2-D downscaling example for the three cases is shown in Figure 7-3. The upper 

left image is a 2-D grid of large scale data. The single collocated block case (upper right) 

indicates that using the collocated block alone does not provide any information on the 

spatial arrangement of small scale estimates. The multiple block cases show more fine 

scale spatial continuity. Using the collocated block and all the directly and corner 

connected blocks provides all surrounding information. The example in the next section 

shows the weights of the blocks in the three cases. 
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Figure 7-3: The large scale data (upper left) and the downscaled results in the three cases. 

7.1.3 Screen effect with multiple block data 

The center block is discretized to 9 small cells. The 

surrounding large blocks are used in estimation. Blocks 1-4 

are directly connected, and blocks 5-8 are corner connected.  

The weights of the block data in the three cases are 

plotted in Figure 7-6. The collocated block always has the 

highest weight. The weights of the directly connected blocks 
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depend on the closeness and redundancy. For example, at cell 2, the weight of the block 1 

is at the peak, and the weight of block 3 is negative. The weights of the corner connected 

blocks are always close to zero.  
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Figure 7-4: The weight of collocated block in each small cell in case 1. 
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Figure 7-5: The weights of blocks in each small cell in case 2. 
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Figure 7-6: The weights of blocks in the small cell in case 3. 

7.2 Some Interesting Aspects of EDDSS 

Because previously simulated cells are used, the spatial structure at model scale is 

enforced in simulation. Thus, the collocated block case works much better with DSS than 

EDDK. The directly and corner connected blocks are not necessary for the spatial 

structure. For computing efficiency, only the collocated block is used in EDDSS. Kriging 

weights of block and point data will be affected by the previously simulated data.  

The kriging weights accounts for the data closeness, redundancy, and support 

volume. The weight of the block datum is not always higher than the weights of the point 

data. As shown in the EDDSS result (Table 6-2) of the small example in previous 

chapter, at the cells 3, 4, and 8, the weight of the block datum is small or negative due to 

the screen effect of adjacent simulated cells. The weights of the point data are always low 

due to their small volume and long distance from the simulated cell. When simulating the 

last few cells (14, 15 and 16 in this example), the weight of the block datum is going up 

fast (Figure 7-7), while the weights of the point data become close to zero (Figure 7-8), 

and the weights of previously simulated cells become negative. In the last cell, the weight 

collocated 
block 

directly 
connected 

block 
corner 

connected 
block 
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to block datum is the discretization number; the weights of the point data are zero; and 

the weights of the previously simulated cells are all -1. Following the simulation 

sequence, the kriging variance is going down, at the last cell, the variance is zero (Figure 

7-9). This matches the proof of Theorem II.  
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Figure 7-7: The kriging weight of block datum changes with simulation path 
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Figure 7-8: The kriging weights of point data changes with simulation path. 
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Figure 7-9: The kriging variance changes with simulation path 

 

7.3 Implementation Details 

7.3.1 Global mean 

The mean of the block data should be used as the global mean because the block data 

are exhaustive over the entire model area. The mean of sampled point data may be 

different from the block data mean. Declustering of point data would reduce the 

difference; however, this is accounted for when modeling at the large scale and not 

during downscaling. 

7.3.2 Discretization level 

A large level of discretization between block scale and point scale can cause a very 

high computational time and low precision of simulated results. To downscale a 3-D 

model in three directions with a discretization number of 4, we require 4,096 point scale 
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covariance calculations for the block covariance when model at the point scale. If the 

discretization number between the model scale and point scale is 4 in three directions, 

16,777,216 point scale covariance calculations are required. Such a large number could 

cause round off error and the block data may not be exactly reproduced. Increasing the 

data precision will require even more computational space and time. Covariance lookup 

tables for all three scales are necessary to reduce the computational time.  

The EDDSS requires all the previously simulated cells in the block to be used. The 

kriging system includes the collocated block datum, the nearby point data and the nearby 

previously simulated cells. A large discretization number will give a large kriging system. 

Solving a large system requires significant computational cost. To avoid using a large 

discretization number, it is recommended to construct a fine scale 3-D model by building 

a 2-D model at the fine scale and downscaling only in vertical direction.    

7.3.3 Last cell correction in EDDSS 

As stated in Section 7.2, the block datum starts to take control and screens out the 

previously simulated cells in the last few cells, and forces the block data to be exactly 

reproduced at the last cell in EDDSS. The good side of the block value control is the 

block data are exactly reproduced; the bad side is that the simulated value of last cell may 

be out of the valid data range. Some post corrections or re-simulation in such blocks may 

be required. Actually, an invalid value in the last cell indicates an error in the values of 

the previously simulated cells. Re-simulation of all the cells in the block with a new 

random path would be more appropriate than directly modifying the simulated values of 

those cells.  

7.3.4 Simulation path 

In Sequential Gaussian Simulation, it is preferred to use a random simulation path 

for all the cells of the model. However, if used in EDDSS, such a simulation path results 

more invalid values in the last cells because it does not emphasize the local block data 

control. It also makes the corrections or re-simulation of a block difficult to apply during 
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the simulation process. To emphasize the local block data control, the simulation path in 

EDDSS consists of two sets of random orders: one random order is assigned to all the 

blocks in the model; another random order is assigned to all the cells in a block. The 

simulation is to randomly simulate each cell in a block, then cycle over all blocks. One 

advantage of this simulation path is easy to apply re-simulation of a block during the 

simulation process. 

7.3.5 Search strategies 

Exact downscaling methods require a search for nearby block data, point data, (and 

previously simulated data in EDDSS). Different data scales require different search 

strategies. There is no need for a block data search for EDDSS because only the 

collocated block is used. The super block search (Deutsch and Journel, 1998; Zanon, 

2004) could be used for point data because well (point) data are normally non-gridded 

data. The spiral search (Deutsch and Journel, 1998; Zanon, 2004) could be used for the 

previously simulated nodes because they are regularly gridded. There are two parts of 

previously simulated nodes: inside the block and outside the block. All the simulated 

nodes inside the block need to be included according to the theory. A maximum number 

of nodes outside the block need to be specified. An octant search (Deutsch and Journel, 

1998; Zanon, 2004) could be used to restrict the number of nodes from any one nearby 

block. This avoids all of the nodes coming from one closest block.  

7.4 Histogram Reproduction and Proportional Effect in EDDSS 

Histogram reproduction and proportional effect are two major challenges with direct 

sequential simulation (DSS). When performing sequential Gaussian simulation (SGS), 

the kriging mean and variance fully characterize Gaussian distributions of uncertainty at 

each location. The simulated values are drawn from the distributions and back 

transformed into original units using the input global histogram. The global histogram is 

always reproduced with minor fluctuations. In direct space, the kriging mean and 

variance are not adequate to describe the local distributions because the shapes of the 
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distributions are not known. Without multivariate Gaussian model, DSS requires some 

means to determine the local distributions and to re produce the global histogram.  

Several approaches have been proposed to solve the problem. The post processing 

methods (Journel and Xu, 1994; Caers, 2000) can exactly reproduce the global histogram. 

However, they remove the variability or uncertainty caused by ergodic fluctuations from 

the final realizations. Nowak and Srivastava (1997) proposed a method to build local 

distributions by extracting subsets of values from a large amount of data that follow the 

global distribution. This approach is not really successful because of lack of suitable 

subset at the end of simulation. Soares (2001) proposed a method that follows the idea 

behind SGS. The local distributions are Gaussian distributions defined by the mean that 

normal score transformed from the SK estimate, and the standardized SK variance. The 

simulated values are drawn from these Gaussian distributions and back transformed using 

the global histogram. However, normal score transform of the mean does not necessarily 

give the mean in Gaussian unit. It is biased to transform directly the mean using the non-

linear transformation. Quantiles can be transformed without biases. Deutsch et al. (2001) 

proposed a method to use Gaussian transformation of a series of quantiles of local 

Gaussian distributions into direct space to build a lookup table of local distributions. This 

method has been established with program coding and detailed explanation (Oz et al., 

2003; Pyrcz and Deutsch, 2002). However, the proportional effect does not take into 

account, and the influence of minimum and maximum values is not addressed. The look-

up table method is modified to account for the proportional effect and added in the 

EDDSS program for histogram reproduction.  

7.4.1 The CCDF Look-up table method 

There are three main steps in this approach. The first step is to build a complete list 

of all possible local Gaussian distributions. In SGS, the kriged mean is normally between 

-3 and 3, and the kriged variance is between 0 and 1. Therefore, all Gaussian distributions 

with mean between -3 and 3 and variance between 0 and 1 should be included in the list. 

However, there are some distributions affected by the minimum and maximum values 

should never being used. The discussion on this will be presented later.  
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The second step is that, for each local Gaussian distribution, a series of quantiles are 

transformed into original units to build the conditional cumulative density function 

(CCDF) of a local distribution. This can be defined by the following equation and the 

graphical representation of the transformation is shown in Figure 7-10. 

1 1
{0,1} { , }( ) [ [ ( )]]L mZ q F G G qσ

− −=  

where q is a quantile; 1
{ , }( )mG qσ

−  is inverse of Gaussian distribution with mean of m and 

standard derivation of σ, which gives “Val1” in Figure 7-10; {0,1}[ ]G  is standard Gaussian 

distribution, which gives “Val2” in Figure 7-10; 1[ ]F −  is inverse of global distribution, 

which gives “Val3” in Figure 7-10.  

The third step is to calculate mean and variance of each local distribution and use 

them as the index of the look up table of local distributions. In the progress of DSS, the 

local kriging mean and variance are matched with the index to find the CCDF of the local 

distribution. Then, the simulated value is drawn randomly from the distribution.  
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Figure 7-10: The graphical representation of the transformations applied to calculate the local 
distributions of uncertainty. The illustrated transformation is repeated for a sufficient number of 
quantiles to describe the local distribution (from Pyrcz and Deutsch, 2003). 

 

7.4.2 Proportional effect 

Natural data always show a relationship between the mean and variance. A low 

variance is normally found in a low valued area, and a high variance find in a high valued 

area. The variance is proportional to the mean value, thus it is commonly referred to as 

the proportional effect (Journel and Huijbregts, 1978) or in statistic term called 

heteroscedastic. The proportional effect is normally identified from a cross plot of means 

and standard derivations calculated from moving window method. The cone shape is the 

most common shape of the points in cross plots. The points are more spread when the 

mean is high. For simplicity, the relationship is always assumed to be linear, and linear 

regression is commonly used to characterize the relationship. 
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Figure 7-11: The proportional effect shown at different moving window sizes (50m, 100m and 200m). 
The two sets of data are used (the first row): a set of well data (left) and the sgsim realization using 
the well data (right). The correlations are different with different window sizes. 
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Figure 7-11 shows some cross plots of mean vs. variance calculated at different 

window sizes. It appears that the relationship is also dependent on window size. The 

correlation decreases as the window size increases. Thus, the correlation must be 

established at the correct window size that consistent with the support volume of data. In 

EDDSS, because the block data are exhaustively available, a block size window will be 

appropriate.  

Kriging variance is calculated basing on the data configuration and spatial 

correlations (Isaaks and Srivastara, 1996). It is independent from data values and the 

kriging mean. This feature is named homoscedastic. For example, Figure 7-12 shows two 

blocks that have four points. The only difference between the two blocks is the lower 

right point values (one is 20 and another is 200). The kriging estimates are different at the 

estimate location; the kriging variances are same. Based on the surrounding data values, 

we would expect a short-range local distribution for the left block and a long-range local 

distribution for the right block (Figure 7-12). Thus, kriging variance does not reflect the 

variance of local distribution. The proportional effect must be accounted for to get the 

correct local variance.  

 

Figure 7-12: The local distribution and variance are affected by the data values.  

The proportional effect at the block scale can be calculated using available point 

data. If there is a strong linear relationship between the calculated variances and block 

values, we can fit a linear relationship between them: 

b ba bmσ = +  

where the σb is the standard derivation at the block scale; a and b are constants; and the 

mb is the block value. 
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Using this relationship, we can calculate the local standard derivation at any block 

because the block values are known. According to Isaaks and Srivastara (1996), the 

proportional effect can be taken into account by multiplying the calculated variance with 

the kriging variance to get the modified local variance for each cell in a block: 

' b sbckσ σ σ= × . The multiplication will not affect the exact downscaling because the 

modified variance is zero at the last cell. Thus, the global mean can be reproduced. 

However, accounting for the proportional effect makes it difficult to reproduce the global 

variance. The proportional effect may not be fully described by a simple linear function. 

The fitted linear function may over modify the local variances resulting in the final global 

variance being too high or too low. Further research is needed for a better way to 

characterize proportional effect.  

7.4.3 Discussion on the CCDF table method 

The CCDF table method provides local distributions for DSS and may produce 

histograms that are close to the input histogram (Deutsch et al., 2001; Oz et al., 2003). 

However, the method still has not been fully understood. One problem is the CCDF table 

can not provide all the local distributions required by the kriging mean and variance. 

There are always some kriging means and variances that fall outside of the CCDF table 

(Figure 7-13 and Figure 7-14). It requires a matching method to choose a CCDF from the 

table that closely matches those kriging means and variances. Different matching 

methods will affect the simulation results and give different final histograms. 

The mean and variance from CCDF table are bounded by maximum and minimum 

values. The cross plots of the mean and variance are always shown in a bell shape (third 

row left in Figure 7-13 and Figure 7-14). The points in the middle show that same mean 

may have very different variances. When mean is close to the maximum and minimum 

values, it always has a low variance. The distributions with high mean and low variance 

should not be used if proportional effect presents in the data. The kriging mean 

sometimes can be very high or very low, even below the minimum or above the 

maximum. These kriging means are difficult to be considered as means of local 

distributions. They must be adjusted to be a valid value. The adjustment can be 
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performed with a matching method by taking a close pair of mean and variance from 

CCDF table. Figure 7-13 shows the CCDF lookup-table method results with a lognormal 

global distribution. The proportional effect (second row right in Figure 7-13) is accounted 

for in the DSS. The CCDF table of means and variances does not cover all the kriging 

mean and variances (third row in Figure 7-13). The results of matching mean and 

variance are shown in the bottom row. The high variances are adjusted to match the 

CCDF table variances. Figure 7-14 shows the CCDF lookup-table method results with a 

distribution shown in the top row. The proportional effect is not taken into account 

because it is not clearly shown in the cross plot (second row right). The CCDF table of 

means and variances does not cover all the kriging mean and variances. The results of 

matching means and variances are shown in the bottom row. The high and low mean and 

variances are adjusted to match the mean and variance from the CCDF table. 

Although there are so many adjustments involved in the CCDF table method, this 

method works fine to reproduce symmetric distribution approximately. For highly 

skewed distributions, the analytical method based on lognormal distribution works better 

than the CCDF table method (Manchuk et al., 2005). An a-posterioir histogram 

correction can be used to achieve histogram reproduction (Deutsch, 2005; Journel and 

Xu, 1994). However, there is a trade-off that the linear scale relationship can not be 

preserved and the block data can not be reproduced exactly. 
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Figure 7-13: The CCDF lookup-table method results with a lognormal global distribution (top). The 
proportional effect is accounted in the DSS (second row). The CCDF table of means and variances 
does not cover all the kriging mean and variances (third row). The results of matching mean and 
variance are shown in bottom row.  
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Figure 7-14: The CCDF lookup-table method results with a global distribution (top row). The 
proportional effect is not clear (second right). The CCDF table of means and variances does not 
cover all the kriging mean and variances (third row). The results of matching means and variances 
are shown in the bottom row. 
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7.5 A Large Example  

The exact downscaling technique can be implemented in four steps: 1) data 

assembly; 2) variogram modeling; 3) exact downscaling using kriging or DSS approach; 

4) checking the results. 

7.5.1 Data assembly 

Block data can be obtained from Bayesian updating results. It should cover the entire 

interested area for fine scale modeling. Well data are very important. The block and well 

data should be checked to ensure their consistency.  

In this example, the interested area is about 4 sections, that is, approximately 3200m 

by 3200m. The porosity block data is taken from a large 2-D prior model at a scale of 

50m by 50m for a 10m layer. The map and histogram of the block data are shown in 

Figure 7-15. There are 16 wells in the study area with log data. The locations of the 16 

wells and the histogram of the well porosity data are shown in Figure 7-16. The mean of 

well data is close to the mean of block data. The variance of well data is larger the block 

data.  

 

Figure 7-15: 2-D map of porosity block data at a scale of 50m x 50m x 10 m.  



142 

 

Figure 7-16: The location map of the 16 wells with the color scale showing porosity in fraction and 
the histogram of the well log porosity in the right. 

 

7.5.2 Variogram modeling 

Variogram should be calculated from the point data. If there is not enough point data 

available, the variogram model used for Bayesian updating of the 2-D mapping can be 

used. An omnidirectional horizontal variogram and a vertical variogram are calculated 

from the well log data, and are shown in Figure 7-17. 

 

Figure 7-17: An omnidirectional horizontal variogram (left) and a vertical variogram (right). 
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7.5.3 Exact downscaling  

The 2-D block data is extended to a 3-D model using both the EDDK and EDDSS 

methods. The block data are downscaled in the vertical direction to generate a 3-D model 

at scale of 50m by 50m by 1m. The 3-D porosity model from EDDK is shown in Figures 

Figure 7-18 to Figure 7-20. And the 3-D porosity model from EDDSS is shown in Figure 

7-21 toFigure 7-23. The map of block porosity (top left) and all odd numbered x-y view 

slices of the 3-D model are shown together. The dashed lines in the block porosity map 

indicate the locations of the x-z and y-z cross sections. The x-z and y-z cross sections of 

the 3-D Model are shown in Figure 7-20 and Figure 7-23. The dashed lines in the x-z and 

y-z cross sections indicate the wells. The well data are reproduced. And the horizontal 

continuity is clearly shown in the cross sections. EDDSS realization has more variation 

than the EDDK result.  

 

Figure 7-18: The 3-D porosity model from EDDK, the porosity is in fraction and the arrow is 
pointing to north. 
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Figure 7-19: The 2-D porosity map and all odd numbered x-y view slices of the 3-D model from 
EDDK. The 3-D porosity is at the scale of 50 x 50 x 1m. The dashed lines in the porosity map (the top 
left) indicate the locations of the x-z and y-z cross sections, the porosity is in fraction. 
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Figure 7-20: The x-z and y-z cross sections of the 3-D porosity model from EDDK. The 3-D porosity 
is at scale of 50x50x1m. The dashed lines in the x-z and y-z cross sections indicate the wells. The 
horizontal continuity matches the well data. 

 

Figure 7-21: A 3-D porosity realization from EDDSS, the porosity is in fraction and the arrow is 
pointing to north. 
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Figure 7-22: The 2-D porosity map and all odd numbered x-y view slices of the 3-D model from 
EDDSS. The 3-D porosity is at the scale of 50 x 50 x 1m. The dashed lines in the porosity map (the 
top left) indicate the locations of the x-z and y-z cross sections. 
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Figure 7-23: The x-z and y-z cross sections of the 3-D porosity model from EDDSS. The 3-D porosity 
is at scale of 50x50x1m. The dashed lines in the x-z and y-z cross sections indicate the wells. The 
horizontal continuity matches the well data. 

 

7.5.4 Checking results 

The 3-D model is converted back to a 2-D model using the arithmetic average of 

each column. The results are plotted together with the original 2-D porosity map and the 

cross plot of the two grids in Figure 7-24. After downscaling to a 3-D model and 

upscaling back to a 2-D model, the new 2-D map is exactly the same as the original map. 

The consistency between the two models confirms that the scaling method is exact. 

The histogram of the downscaled porosity is shown in Figure 7-25. It shows that the 

mean is same as the mean of block data (Figure 7-15), and the maximum and minimum 

values are same as the point data (Figure 7-16). Because kriging estimates are smooth, a 

standard deviation of 0.0282 falls between the block data (0.0161) and the point data 

(0.0561). The variance of the EDDSS realization is close to the point data variance.  
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Figure 7-24: The block 2-D porosity map (left), the map of the column averaged porosity from the 3D 
model (middle), and the cross plot of the two grids (right) indicates the exactness. The porosity is in 
fraction.  

      

Figure 7-25: The histograms of the fine scale porosity estimated from EDDK (left) and simulated 
from EDDSS (right). The means are close to the input well data mean (Figure 7-16). The standard 
derivation of EDDK is small because of the kriging smoothness.  

 

7.6 Comparison between Exact Downscaling and Approximate 

Downscaling Methods 

Approximate downscaling is always possible with geostatistical methods: co-kriging, 

collocated co-kriging, and using the block data as locally varying mean can be used to 

construct fine scale 3-D model with larger scale data. A comparison of the 3-D models 

constructed by exact downscaling method and approximate downscaling method is 

conducted to show the difference in flow simulation results made by the downscaling 

methods. 
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A synthetic dataset was created based on some 2-D large scale models generated 

from the Surmont lease. The geostatistical 2-D realizations were constructed over 100s of 

square kilometers at an areal resolution of 100m square. After selecting the locations of 

SAGD well pairs, a small area (800m by 200m) around a particular SAGD well pair was 

extracted from the 2-D models and downscaled areally to 20m by 2m. Then, the EDDSS 

and an approximate downscaling method were used to extend the 2-D model to 3-D 

models. The approximate downscaling was using SGS with block data as locally varying 

mean. The 3-D models were used in the thermal simulator, CMG Stars, for flow 

simulation around a pair of horizontal wells. The 3-D models and flow simulation results 

were compared.  

The 2-D porosity data used as block data are shown in a map and a histogram in 

Figure 7-26. The location map of the 8 delineation wells in the study area and the 

histogram of well data are also shown in Figure 7-26.  

 

Figure 7-26: The porosity block data (top) and well data (bottom) used for downscaling. The porosity 
is in percentage. 
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The EDDSS was used to downscale the block data to a vertical resolution of 2 m 

from a total thickness of 100 m. The results are shown in Figure 7-27. The first row 

illustrates plane views of the 3-D model at the layers of 20 and 40. The remaining images 

show different slices of the 3-D model in y-z and x-z cross sections. The heterogeneity at 

the fine scale clearly presents in the cross sections. 

 

Figure 7-27: The exact downscaling results: 3-D porosity model in plane view (first row), y-z (left) 
and x-z (right) cross sections. The porosity is in percentage. 

An approximate downscaling method was used to generate a 3-D model from the 2-

D block data. Sequential Gaussian simulation was performed using the well data, and the 

block data were input into the simulation as the locally varying mean (Deutsch and 

Journel, 1998). The results are shown in Figure 7-28.  
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Figure 7-28: The approximate downscaling results in plane view (first row), y-z (left) and x-z (right) 
cross sections. The porosity is in percentage. 

Both 3-D models were converted back to 2-D maps using the arithmetic averaging of 

each column. The results are plotted and shown together with the original 2-D porosity 

map in Figure 7-29. The averaged porosity map from the exact downscaled model is 

identical to the original 2-D map; but the average porosity map from the approximate 

downscaled model is quite different. The cross plots of column averages versus block 

data for the approximate downscaling method and the exact downscaling method are 

shown in Figure 7-30. The fine scale 3-D model generated with the approximate 

downscaling method is inconsistent with the initial coarse scale model; however, the 

model from the exact downscaling method matches exactly. A few points off the 45o line 

are caused by numerical instabilities in the matrix solutions. 
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Figure 7-29: The map of original porosity block data (top), the map of vertically averaged porosity 
from the exact downscaled 3-D model (left) and the map of vertically averaged porosity from the 
approximate downscaled 3-D model (right). The porosity is in percentage. 

 

Figure 7-30: The cross plots of porosity block data vs. block average of fine scale model for the exact 
downscaling method (left) and the approximate downscaling method (right) 

Flow simulations of a SAGD well pair using the 3-D models were conducted. The 

results are shown in Figures 31 and 32. There is a large difference between the results 

using the two downscaling methods. The steam chambers developed after 5 years of 

steam injection indicate a much larger chamber for the exact downscaled model than the 

approximate downscaled model. The nearly double-sized steam chamber results in a 

nearly doubled oil production for the exact downscaled model (Figure 7-32). With more 

steam injection required to develop the steam chamber, the approximate downscaled 

model indicates a higher cumulative steam oil ratio (CSOR) than the exact downscaled 
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model (Figure 7-31). This will not always be the case of course, but this shows the 

sensitivity of the results to the downscaling methodology. 

 

 

Figure 7-31: The steam chambers after 5 years of steam injection. The model by exact downscaling 
(bottom) developed a nearly double-sized steam chamber than the approximate downscaled model 
(top). 
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Figure 7-32: The results of flow simulation using the models generated by the two methods: the top 
plot is the cumulative oil production curves, and the bottom plot is the cumulative steam oil ratio 
(CSOR) curves.  The gray solid line is for the approximate downscaling method, and the black 
dashed line is for the exact downscaling method. 

It is clear that using different downscaling methods to generate fine scale models has 

a large impact on the flow simulation results. Using a fine scale model that exactly 

matches the initial coarse model would give us more confidence in the model. 
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8. CHAPTER 8 

CASE STUDY: RESERVOIR MODELING IN THE 
SURMONT LEASE 

 

The Surmont lease is located about 60 kilometers southeast of Fort McMurray, 

Alberta, Canada (Figure 8-1). It is one of biggest leases in the Athabasca Oil Sands. The 

Surmont lease is about 6 townships (larger than 500 km2, see Figure 8-2). The McMurray 

formation at Surmont contains thick early Cretaceous bitumen-saturated sands. Because 

the oil sands deposits are too deep to mine, the advanced heavy oil recovery technology, 

Steam Assistant Gravity Drainage (SAGD) process is used to extract them. The bitumen 

recovery project is operated jointly by ConocoPhillips Canada Ltd. and Total. 

Construction of the facilities and development drilling started in 2004. Commercial 

production of Phase one is expected to begin in 2007.  

Edmonton

Calgary

Peace RiverPeace RiverPeace RiverPeace River
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Lake
Cold 
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Figure 8-1: The location of the Surmont lease in the map of Alberta, Canada. 
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Figure 8-2: The Surmont lease map with delineation well locations, the map units are in meters. 

Reservoir characterization in the Surmont lease has being conducted by using 

geostatistical modeling techniques. There are three major parts: (1) 2-D mapping of 

reservoir parameters with local uncertainty assessment to better understand the 

subsurface formation, (2) resource estimation and global uncertainty assessment to serve 

for reservoir planning and development, (3) fine scale 3-D model of a small area, such as 

Pad area, for well placement and flow simulation.  
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Detailed 3-D models of heterogeneity are useful. They provide numerical models 

that are consistent with the small scale well data, measures of connectivity and 

visualizations that appear realistic. The challenge of 3-D models in the context of our 

problem is twofold: (1) the size of the models, and (2) the requirement for realistic 

summaries of reservoir quality at each location. The lease area is more than 500 km2, the 

thickness is on the order of 100m, there are more than 10 variables of interest and we 

would need 100 or more realizations to represent uncertainty. More than 20 billion 

numbers would need to be routinely manipulated to understand Surmont at a relatively 

coarse discretization of 50m x 50m x 1m. 

The second challenge is more subtle. Reservoir management decisions depend in 

many factors such as the thickness of good quality reservoir, presence of top or bottom 

water, structure of the base reservoir and geological variability. These factors are, for the 

most part, areal summaries of the reservoir. They can be reliably calculated from the well 

data; however, they are not as reliably estimated from 3-D models. High resolution 

geostatistical models do not reproduce all of the complex geological features and trends. 

This challenge is addressed by research. 

In summary, the advantages of using 2-D geostatistical modeling include (1) good 

estimates of reservoir quality consistent with available well data, (2) uncertainty at each 

location, (3) simple and fast modeling of variables required for decision making, (4) 

exact downscaling to construct fine scale 3-D models when and where needed. Thus, 2-D 

geostatistical modeling using Bayesian updating techniques is conducted for the Surmont 

Lease. 

Several reservoir parameters are important. The thickness of net pay or net 

continuous bitumen thickness (NCB) is related to the height of an anticipated steam 

chamber. The bulk oil weight (BOW) measures the fraction of the bitumen mass to the 

total rock mass. The porosity (φ) and oil saturation (So) over the net continuous bitumen 

are related to the recoverable bitumen by the SAGD process. An important feature of 

many areas of the McMurray formation is the presence of top water and top gas that can 

provide a sink for the injected steam and adversely affect recovery. These upper units are 
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referred to as thief zones for the injected steam. Each project and company identifies 

different critical parameters. The typical project will involve predicting 20 to 30 variables 

at each 2-D location. Only a few variables will be described in this chapter. Most of the 

data is derived from well logs and core data. 

The available data variables are divided into two types: primary variables that we 

must predict and secondary variables that are established from geophysical interpretation 

or geological trend mapping. Secondary variables are used to constrain the prediction of 

primary variables away from the well data. The secondary variables are often structural 

variables. Three structural surfaces are used: (1) the bottom surface of the McMurray 

formation (BSM), (2) the top surface of the McMurray formation (TSM), and (3) the 

Wabiskaw-McMurray surface (WMS), which is a maximum flooding surface above the 

McMurray formation. These structural data are usually quite reliable because of their 

lateral continuity and they are derived from a variety of data sources (well and seismic 

data). These three variables and the calculated gross thickness (GTM) of the McMurray 

formation are treated as secondary variables for the 2-D modeling. 

Because the lease-wide results are considered confidential, only a small area of the 

Surmont Lease is used to demonstrate the 2-D modeling. 

8.1. 2-D Mapping with Bayesian Updating  

Five types of maps are generated for each reservoir parameter. The trend map is used 

to reveal the large scale trend in each parameter. The prior map is the kriging map of 

each parameter after being transformed to a Gaussian variable. These two maps are 

created for understanding each parameter independently. A correlation matrix plots the 

correlation between the variables. Based on the correlations, the likelihood map is created 

with the secondary data. The correlation matrix and the likelihood map provide 

information for understanding the correlation between the variables. Then, the Bayesian 

updating approach is applied to merge the prior models and likelihood models. This 

approach is similar to collocated cokriging, and is implemented in Gaussian space. The 

updated model contains the information from well data and from secondary data. The 
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updated map shows the results of Bayesian updating in the Gaussian space. The updated 

Gaussian distributions must be back transformed to real units and are often summarized 

by the final maps, which are the P10/P50/P90 maps of each parameter or the probability 

maps of these reservoir quality parameters at certain threshold. 

8.1.1. Trend maps 

The trend map is used to provide the overall trend of each variable in the entire study 

area. This map is created by simple kriging with a variogram designed to reveal large 

scale features. Usually, a long range variogram (1/3 of the domain size) with modest 

nugget effect (30%) is used. All reservoir parameters are mapped with this trend 

variogram. As an example, the trend maps of the NCB and BOW are shown in Figure 

8-3. Some high value zones are shown in the left of the study area for NCB. 

 

Figure 8-3: The trend maps of NCB in meters and BOW in fraction. 

 

8.1.2. Prior maps 

The prior model is also created by kriging but with the data in Gaussian space and 

the variogram calculated and fit from the well data. Variogram maps are helpful to find 

the direction of continuity in each parameter. Then, the directional variograms are 

calculated. The experimental variograms are modeled using a semi-automatic variogram 

fitting algorithm. The variogram and the model of the NCB are shown in Figure 8-4. 
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Kriging was then performed using these variogram models and the normal score 

data. The prior model generates an uncertainty distribution at each location. The 

uncertainty is a normal distribution with kriged mean and variance. The prior map for the 

NCB and BOW are shown in Figures 8-7 and 8-8. They look similar to their trend maps 

but have more detailed small scale features. The values on these maps are only 

conditional to surrounding data of the same type; we still must consider the secondary 

data. If the prior maps do not show the large scale trend features from the trend maps, 

then kriging with a local mean is considered to impose the large scale trend values. 

 

Figure 8-4: Directional variograms and fitted models for NCB (left) and BOW (right). 

 

8.1.3. Correlation matrix and likelihood maps 

A cross plot of each pair of the variables is plotted to check the data and determine 

the correlation between each the pair of variables. Data that fall outside of a trend with 
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the other data should be reviewed and perhaps eliminated to obtain a more representative 

correlation between the variables. Particular attention is paid to the three characteristic 

non-Gaussian features of (1) non-linear relationship, (2) heteroscedastic variability, that 

is, changing variability of one variable as another variable changes, and (3) constraint 

features where one variable is constrained by other. The correlation coefficients are 

summarized and shown in a correlation matrix (Figure 8-5).  

 

Figure 8-5: The correlation matrix of the 8 variables 

With the secondary data and the correlations between a primary reservoir variable 

and the secondary variables, we can calculate the likelihood for each reservoir variable. 

The four variables used for the secondary data are shown in Figure 8-6. The likelihood 

model provides a conditional distribution of each variable at each location conditional to 

collocated data of other types. The likelihood results are mapped to show the information 

from the secondary data. The likelihood maps of NCB and BOW are shown in Figures 8-

7 and 8-8. 
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Figure 8-6: The maps of the four secondary variables in Gaussian units. 

 

8.1.4. Updated maps and final maps 

Bayesian updating is used to merge the prior models and likelihood models. The 

resulting model is called the updated model. The uncertainty of each parameter at each 

location is generated from the information of well data and the secondary data. The 

uncertainty distribution is also a nonstandard normal distribution with updated mean and 



163 

variance. The updated map shows the updated means in Gaussian space. The updated 

maps of NCB and BOW are shown in Figures 8-7 and 8-8. 

 

Figure 8-7: The prior (top left), likelihood (top right) and updated maps (bottom) of NCB in 
Gaussian units. 
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Figure 8-8: The prior (top left), likelihood (top right) and updated maps (bottom) of BOW in 
Gaussian units. 

The updated distributions are transformed to real units to show the best estimate and 

the uncertainty at each location in real values. These features are summarized by P10, 

P50 and P90 values. The map of P50 values provides the median of each reservoir 
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parameter at each location. The map of P10 values can be used to identify the high value 

areas. The map of P90 values can be used to identify the low valued areas. 

All variables are predicted. The maps of local P10, P50 and P90 values for NCB are 

shown in Figure 8-9. The green color in the P10 map shows where there is a 90% chance 

to have more than 25m of net continuous bitumen. The blue color in the P90 map shows 

where there is a 90% chance to be less than 20m of net continuous bitumen.  

 

Figure 8-9: Maps summarizing uncertainty in NCB in meters (top row) and BOW in fraction 
(bottom row). The P10 low values are shown on the left, the P50 values are shown in the middle and 
the P90 high values are shown on the right. 

 

8.1.5. Model validation 

Cross validation is used to estimate the variables at locations where we know the true 

value. All well locations were used. Likelihood calculations and updating were 
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performed. Cross validation was performed with the Gaussian transforms of the original 

variables. The results were back transformed to original units. The uncertainty models 

w\ere checked with accuracy plots. Figure 8-10 shows the accuracy plots of the NCB and 

BOW; the model for NCB is accurate and precise.  

   

Figure 8-10: The accuracy plots of cross validation results for NCB and BOW. 

A number of wells were drilled after these models were constructed. The goodness 

of the probabilistic estimates can be checked and compared to the new drilled wells. The 

results are shown in Figure 8-11. The model for NCB worked out extremely well. 

 

Figure 8-11: Accuracy plot of 2-D model validating with new wells of 2004. 

The fairness of the probability values, that is, a good accuracy plot is not enough for 

good probabilistic predictions. The width or variance of the local distributions must also 

be narrow for good distributions. 
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8.2. Global Resources Assessment 

Accurate estimation of the in-situ resource range and associated risks is important for 

reservoir management planning and development. There was an interest in the 

recoverable bitumen resource by SAGD and the original oil in place for SAGD (SAGD 

OOIP) in the Surmont lease and other arbitrarily large areas. We refer to these large areas 

as “global” to distinguish them from the “local” small 100m by 100m areas calculated in 

the 2-D models. The global SAGD OOIP was mostly affected by the net continuous 

bitumen thickness (NCB) and the presence of steam thief zones. A threshold of 

NCB=18m was considered as the minimum thickness for the economic recovery of 

bitumen with the current SAGD technology. When the presence of a certain thief zone is 

present, a minimum of 30m NCB is considered for SAGD to be economically successful. 

A lower 10m NCB cutoff was also considered to include the resource that could be used 

for future development when more advanced bitumen recovery technology becomes 

available. The global SAGD OOIP was calculated with different NCB cutoffs and for 

different thief zone types. 

The calculation of SAGD OOIP and thief zone (TZ) type required six correlated 

variables: net continuous bitumen (NCB), net porosity (φ), net water saturation (Sw), 

thief zone protection factor (TZPF), effective water thickness (EWT), and effective gas 

thickness (EGT). These variables had been analyzed as part of 2-D geostatistical studies. 

SAGD OOIP = NCB • φ • (1 – Sw) 

TZ type = 1, if TZPF ≥ 5 m or (EWT = 0 m and EGT = 0 m) 

             = 2, if (0.8 m > EWT > 0m) or (EWT = 0 m and EGT > 0 m) 

             = 3, if EWT ≥ 0.8 m 

The SAGD OOIP variable must be multiplied by area to get a volume. The 

uncertainty in global SAGD OOIP was a concern to the Surmont Team. It was calculated 

using the Bayesian updated 2-D models. An estimate of global SAGD OOIP from prior 

information alone was also interesting. The logic and calculations used to assess 
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uncertainty and to obtain the estimate over large regions of the Surmont lease are 

summarized as follows. 

8.2.1. Uncertainty in global SAGD OOIP 

Uncertainty of small 100 m by 100 m areas or the incrementally larger LSD areas are 

captured very well by the 2-D models as indicated by the model validation results. 

Assessing uncertainty over larger scales, however, requires a different approach. 

Calculation of uncertainty from a local uncertainty measure to a regional or global 

uncertainty measure requires consideration of the spatial correlation within the 

region/domain because the assumption of independence between the smaller scale areas 

will drastically understate uncertainty at a large scale. The methodology presented in 

Chapter 5 was used. The key steps are (1) construct local distributions of uncertainty 

(done already); (2) generate spatially correlated probability values; (3) draw values for all 

variables at all locations and keep them together as a realization (the spatial and 

multivariate simulation). 

The reporting of uncertainty for an arbitrary volume required six proportions (in 

turquoise color in the table below): the proportion/probability of each of the three thief 

zone types and the proportion/probability of being above 10, 18, and 30 m NCB. Each of 

the six proportions was characterized by a distribution of uncertainty. Uncertainty was 

summarized by three values: a P10, P50, and P90. These were shown in the turquoise 

boxes in the table below. Further, there was a distribution of uncertainty in the SAGD 

OOIP with no constraint on the thief zone type and no constraint on the net continuous 

bitumen (the bright yellow color square in the table below). There were six distributions 

of SAGD OOIP uncertainty for the three different thief zone types (no constraint on net 

continuous bitumen) and the three different NCB cutoffs (no constraint on thief zone 

type), which are shown in the pale yellow squares in the table below. 

There were nine distributions of uncertainty in the SAGD OOIP for all combinations 

of the three thief zone types and the three NCB cutoffs (shown in the tan color in the 

table below). These distributions of uncertainty had P10, P50, and P90 values for SAGD 
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OOIP, as well as P10, P50, and P90 values for the proportion of values within the 

NCB/TZ class (shown in turquoise boxes above the tan boxes below). 

TZ1 TZ2 TZ3
P10 / P50 / P90 P10 / P50 / P90 P10 / P50 / P90

P10 / P50 / P90 P10 / P50 / P90 P10 / P50 / P90 P10 / P50 / P90

P10 / P50 / P90 P10 / P50 / P90 P10 / P50 / P90

P10 / P50 / P90 P10 / P50 / P90 P10 / P50 / P90

P10 / P50 / P90 P10 / P50 / P90 P10 / P50 / P90

P10 / P50 / P90 P10 / P50 / P90 P10 / P50 / P90

P10 / P50 / P90 P10 / P50 / P90 P10 / P50 / P90

P10 / P50 / P90 P10 / P50 / P90 P10 / P50 / P90
NCB > 30

P10 / P50 / P90

P10 / P50 / P90

P10 / P50 / P90

Uncertainty for an Arbitrary 
Volume

Thief Zone Type

No Constraint

NCB 
Cutoff

No Constraint

P10 / P50 / P90

P10 / P50 / P90

P10 / P50 / P90

NCB > 10

NCB > 18

 

In summary, 3+3+9=15 distributions of proportions (three numbers each) and 

1+3+3+3•3=16 distributions of SAGD OOIP uncertainty (three numbers each) were used 

to report the uncertainty for an arbitrary volume: 93 numbers in all. Uncertainty was 

tabulated according to the format shown above. 

The underlying models of uncertainty were created at a 100m by 100m areal scale. 

Uncertainty at this scale is dominated by the spacing of nearby wells and the available 

secondary data variables. This uncertainty can be straightforwardly scaled up to the LSD 

scale (about 400m x 400m) by arithmetic averaging under an assumption that the values 

are highly correlated over a 400m scale. 

The uncertainty at the 100m or LSD scale was represented by distributions of 

uncertainty in all of the variables including net continuous bitumen (NCB), net porosity 

(φ), net water saturation (Sw), thief zone protection factor (TZPF), effective water 

thickness (EWT), and effective gas thickness (EGT). The uncertainty in each of these 

variables does not give uncertainty in SAGD OOIP or TZ type. The correlation between 

these variables and the spatial correlation within the region/domain must be taken into 

account. 

Accounting for the correlation between NCB, φ,…, and EGT was done with 

simulation. Multiple realizations (L=100) of the six variables were drawn accounting for 

the correlation between the variables and the spatial correlation within the region/domain 

(see purple shaded squares in the table below). Then, with each set of six numbers the 
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SAGD OOIP and TZ type were calculated (see yellow squares on the right). The results 

were analyzed to fill in the uncertainty table. 

Realization 
# 

NCB φ Sw TZPF EWT EGT SAGD 
OOIP 

TZ 
Type 

1         

2         

3         

…         

L         
 

There are a number of simulation techniques in use throughout statistics and 

geostatistics. The LU method (named after the Cholesky LU matrix decomposition 

method) has been around for a long time and is suitable when the problem is small. For 

example, consider assessing uncertainty in the SAGD OOIP and TZ type at a particular 

location, that is, filling in a table as shown above. 

The use of the LU method to simulate multiple dependent variables is 

straightforward. Only the correlation matrix between the six variables was required, and a 

set of correlated normal scores was required to account for the spatial correlation of the 

variables. The latter requirement was satisfied by generating unconditional realizations 

using sequential Gaussian simulation for each of the six variables. 

The simulated variables were then used to calculate the corresponding SAGD OOIP 

and TZ type at each location. This was performed for multiple realizations and the 

uncertainty was assessed. The resulting distributions of uncertainty are shown in Table 

8-1.  

Uncertainty depends on the amount of local well data, the secondary data variables 

and the modeling approach and parameters. We have observed a consistent decrease in 

uncertainty as additional delineation wells are drilled. 
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TZ1 TZ2 TZ3
0.392 / 0.418 / 0.445 0.214 / 0.228 / 0.243 0.329 / 0.353 / 0.382

0.864 / 1.000  / 1.156 0.336 / 0.382 / 0.438 0.111 / 0.129 / 0.153 0.413 / 0.479 / 0.569

0.238 / 0.258 / 0.282 0.110 / 0.127 / 0.150 0.295 / 0.328 / 0.361

0.324 / 0.371 / 0.429 0.099 / 0.118 / 0.141 0.408 / 0.475 / 0.566

0.196 / 0.219 / 0.249 0.069 / 0.082 / 0.103 0.263 / 0.300 / 0.338

0.299 / 0.348 / 0.410 0.075 / 0.091 / 0.116 0.389 / 0.459 / 0.551

0.119 / 0.142 / 0.172 0.014 / 0.020 / 0.030 0.163 / 0.200 / 0.246

0.219 / 0.271 / 0.333 0.021 / 0.030 / 0.045 0.284 / 0.357 / 0.455
Total No. Blocks = 55483

Uncertainty for Lease Area               
No Constraint

No Constraint

Thief Zone Type

NCB 
Cutoff

NCB > 10

NCB > 18

0.834 / 0.974 / 1.134

0.761 / 0.908 / 1.073

0.527 / 0.663 / 0.827NCB > 30 0.294 / 0.365 / 0.446

0.535 / 0.602 / 0.689

0.652 / 0.715 / 0.784

 

Table 8-1: The Surmont Lease resource estimation and uncertainty assessment: the blue shaded 
boxes are proportions and the others are barrels – standardized to “1.000” for the lease. 

 

8.3. Fine Scale 3-D Models 

Fine scale 3-D models are required for well placement and flow simulations. A half- 

pad area is selected for 3-D modeling. The model area is 1,400m by 1,000m, and there 

are six wells in the area (top left in Figure 8-12).  

The structure of the model is bounded by two stratigraphic surfaces (Figure 8-13). 

The WabMcM is a maximum flooding surface at the top and the DevUnc is an 

unconformity surface at the bottom. The vertical stratigraphic coordinates of the model 

are set to be “parallel to top”. The maximum distance between the two surfaces are 91m. 

The 2-D averages of wells are calculated at the maximum distance. The histogram of the 

2-D well data is shown in Figure 8-12. The Bayesian updating technique is used to 

generate 2-D porosity and water saturation at scale of 50m by 50m. Simulation 

realizations are generated by using Bayesian updating with P-field simulation. The 

realization#1 (middle left in Figure 8-12) is used for exact downscaling to construct 3-D 

fine scale models. The histogram of the block data is shown in Figure 8-12. 

The target grid resolution of the 3-D model is 10 x 10 x 1m. We can directly 

downscale the 2-D porosity data, but it will time consuming. Instead, the 2-D porosity is 

first downscaled aerially to 10m by 10m, and then the downscaled 2-D results are 

downscaled vertically to construct the 3-D model. 

The first downscaling results are shown at the bottom of Figure 8-12. The histogram 

is reasonably reproduced. It has more high and low values than the block data.  
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Figure 8-12: The Bayesian updating with P-Field simulation realization#1(middle left) is exact 
downscaled from 50m by 50m to 10m by 10m (bottom left). The histograms of point data (top right), 
block data (middle right), and downscaled values are shown on the right. 



173 

 
Figure 8-13: The stratigraphic surfaces used for the 3-D modeling: WabMcM is the top surface, and 
DevUnc is the bottom surface in meters.  

The second downscaling is performed using the 2-D porosity data and the well data 

from the six wells. The histograms of the point data (top left), block data (top right), and 

3-D downscaled values (bottom) are shown in Figure 8-14. The histogram of the 

downscaled results is a combination of the histograms of point and block data. 

The simulated results are converted back to the regular coordinates and clipped with 

the two structural surfaces. The final model of 3-D porosity realization #1 is shown in 

Figure 8-15. The model has a grid resolution of 10 x 10m areally and 1m vertically. The 

field spans 1,400m, 1,000m and 91m in the Easting, Northing and Elevation directions, 

respectively. The vertical direction is exaggerated by 5 times. 
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Figure 8-14: The histograms of point data (top left), block data (top right), and 3-D downscaled 
values (bottom). 
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Figure 8-15: The 3-D porosity realization #1. The model has a grid resolution of 10 x 10m areally and 
1m vertically. The field spans 1,400m, 1,000m and 91m in the Easting, Northing and Elevation 
directions, respectively. The vertical direction is exaggerated by 5 times. 
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CHAPTER 9 

CONCLUSIONS AND RECOMMENDATIONS 

 

Reservoir modeling can be improved in many ways. Two important ways are: (1) 

integrating different types of data to improve estimation and reduce uncertainty between 

wells, (2) keeping reservoir models consistent at different scales to avoid bias in scaling. 

Based on some practical projects conducted in Canada’s heavy oil reservoirs, a scale 

consistent reservoir modeling scenario was developed to build reservoir models from 

multiple data integration and to ensure the models at different scales are consistent with 

each other. The scenario consists of three major steps: (1) construct field scale reservoir 

models over the entire lease area by integrating multivariate information from all 

available data; a Gaussian-based Bayesian updating technique can be used with local 

uncertainty assessment; (2) perform petroleum resource estimation with the global 

uncertainty assessment from the field scale reservoir model generated in step 1; the 

spatial/multivariate simulation approach can be used to account for the spatial and 

multivariate correlations among the local uncertainties; (3) construct fine scale 3-D 

models of heterogeneity that are consistent with the field scale model and well data. 

Exact downscaling techniques can be used to ensure the field scale model can be exactly 

reproduced. Summaries and recommendations for each step are presented below.  

9.1 Large Scale Modeling 

In Canadian heavy oil reservoirs, it is common that a variety of data are available for 

reservoir modeling. These data include core and log data, seismic attributes, and 

conceptual geological models. Data scales, reliability, coverage and availability must be 

taken into account in integrating these data into a numerical reservoir model. 

Constructing a large scale model using multiscale data is relatively easy. All small scale 

data can be upscaled to the model scale. Then, the Gaussian-based Bayesian updating 
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technique can be used to integrate these data: well data are used as primary data, and 

seismic data, structural surfaces, geological information are used as secondary data. The 

Bayesian updating technique decomposes the collocated cokriging estimate into two 

models: prior and likelihood. The prior model is built from well data, and the likelihood 

model is built from all secondary information. The definition of prior and likelihood 

could be reversed with a different interpretation. The prior model is then updated with the 

likelihood model to build the final posterior or updated model that accounts for all the 

information.  

Uncertainty assessment is based on the multivariate Gaussian assumption in the 

technique. The multivariate Gaussian model permits local uncertainty distributions to be 

fully defined by a mean and variance. The kriging-based technique provides mean and 

variance for all of the three models: prior, likelihood, and updated. Thus, the local 

uncertainty of each model can be reviewed. The updated uncertainty always has the 

smallest variance. The multivariate Gaussian model requires all data be transformed into 

a Gaussian distribution at the beginning, and the updated distribution is back transformed 

into the original units at the end to give the local uncertainty distributions. The local 

uncertainty distributions provide valuable information for selecting SAGD Pad areas or 

the area of interest.     

There is an implicit assumption of stationarity in all geostatistical techniques. The 

spatial statistical parameters are assumed to be constant over the entire model area. 

Reservoir parameters normally show some non-stationary features over a large area. 

Locally varying features should be considered in the large scale modeling. An enhanced 

(or non-stationary) Bayesian updating technique is developed to account for the locally 

varying correlations and data quality. The local correlation coefficient is calculated from 

all of the data weighted based on their distance from the location of interest. The quality 

of the secondary data is accounted for to improve the accuracy of the local uncertainties. 

The locally varying histogram and variogram should also be considered in the Bayesian 

updating approach. Further research on this is required.  
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Simulation realizations are required for building fine scale models. Simulation with 

Bayesian updating can be performed sequentially or using a P-field simulation approach. 

The P-field simulation with Bayesian Updating is recommended because of 

computational efficiency and the consistency between the local uncertainties and the 

simulation realizations. P-field simulation may cause some minor problems but they are 

considered negligible. 

9.2 Global Resource Uncertainty Assessment 

Global resource uncertainty can be assessed based on the local uncertainties from the 

large scale models. Petroleum resource is generally calculated from multiple variables 

over a lease area or any large area. The local uncertainties of these variables are spatially 

and multivariately correlated. The joint uncertainties require a combined P-field and LU 

simulation approach. Probability fields are generated from the spatial correlations of the 

variables; the multivariate correlations are introduced into the probabilities by LU 

simulation. These probabilities allow to draw simultaneously all the simulated values 

from all the local conditional distributions established in the Bayesian updating. The 

global uncertainty in a petroleum resource can be easily assembled from the multiple 

correlated simulation realizations. The global uncertainty is consistent with the local 

uncertainties in the large scale model. 

P-field simulation may cause a slight non-stationarity in the variogram structure of 

the simulated values: the continuity near conditioning data is slightly overstated 

(Srivastava, 1992). The spatial structures are approximately reproduced by considering 

the joint correlations. These effects on global uncertainty are considered negligible. A 

sequential simulation approach can be used to remove the effects, but it would require 

recalculating all of the conditional distributions in a random path using previously 

simulated values. It is not guaranteed that the global uncertainty will be consistent with 

the local uncertainties from the Bayesian updating. Applying LU simulation to 

multivariately correlate the probability fields will also affect the variogram structures of 

the simulated values. If the variables are highly correlated, their variogram structures are 
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similar so that the effect is small. If the variables are highly non-correlated, the effect is 

also small. However, the effect on the variables with a moderate correlation coefficient 

may be big. Further research to quantify the effect could be necessary.  

The spatial/multivariate simulation approach also relies on stationarity and 

multivariate Gaussianity. The locally varying features can also applied. The locally 

varying correlation can be used for LU simulation; the probability field can be generated 

from locally varying variogram. Subdividing the area is an alternative when geology 

indicates a strong non-stationary in the model area. The sources of uncertainty need to be 

understood separately. 

The uncertainties in the input statistical parameters such as mean, variance, 

variogram and correlation coefficient are not considered in both local and global 

uncertainties. They may have significant influence on the uncertainty model. Spatial 

bootstrap can be used to assess the uncertainties in some statistical parameters (Deutsch, 

2004). Further research is needed for incorporating these uncertainties into Bayesian 

updating technique and the spatial/multivariate simulation approach. 

9.3 Exact Downscaling Technique 

Detailed fine scale 3-D model can be generated by exact downscaling of the large 

scale model in the area of interest. The exact downscaling technique is using point scale 

data and a large scale model to construct a fine scale model at the model scale. Volume-

averaged variances are used to account for the different supports among the block, model 

and point values. The exact downscaling with direct simple block kriging and direct 

sequential simulation approaches have been proved to reproduce exactly the large scale 

model.  

In the direct simple block kriging approach, the kriging weights assigned to the point 

data and nearby block data are sometimes positive in estimating some cells and are 

negative in estimating other cells in a block. Eventually, their influences on all of cells in 

the block are canceled out. Only the weights of the collocated block can not be canceled 
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out. The sum of the weights is always equal to the discretization number of the block so 

that the block value is always exactly reproduced. In the direct sequential simulation 

approach, the influence of the collocated block becomes significent in the last few cells, 

and the weights of previously simulated cells in the block become negative. In the last 

cell, the collocated block screens out all the data outside of the block; and the difference 

between the weight of the collocated block and the weights of all previously simulated 

cells is 1 so that the block value is always exactly reproduced. 

Without the multivariate Gaussian model, the direct simple block kriging and 

sequential simulation approaches require additional process to determine the local 

distributions. The CCDF lookup table method can provide local uncertainty for EDDSS. 

But it does not reproduce the global histogram when it is highly skewed. The final 

histogram always falls between the normal distribution and the input distribution because 

of the central limit theory. There are some post processes that can exactly reproduce the 

input histogram but they remove the variability or uncertainty caused by ergodic 

fluctuations (Deutsch, 2005). The proportional effect should also be accounted for in 

direct sequential simulation. The proportional effect may not be fully described by a 

simple linear function. Local variances can be over-modified; this makes it difficult to 

reproduce the global variance. Further research is needed for a better characterization of 

the proportional effect. Histogram reproduction and proportional effect are long-term 

research topic for direct sequential simulation. 

An unstructured grid can be downscaled into fine scale regular grid by using locally 

varying block discretization number. These numbers have to be consistently used in the 

calculation of volume-averaged covariances. Large discretization numbers will require a 

significant computational time and may reduce the accuracy of the EDDSS results. 

Optimized methods for volume-averaged covariance calculation and kriging system 

solver are needed for improved performance.  

A stronger stationary assumption is required for the exact downscaling approaches. 

The linear scale relationship is assumed constant over the entire model volume. Although 
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constructing a fine scale 3-D models for a small area do not need to explicitly account for 

an areal trend. A vertical trend is almost always required to construct 3-D model from 2-

D maps. One idea is to use the vertical trend as locally varying mean in the EDDSS 

approach. Subdividing the formation into multiple stratigraphic units is an alternative. It 

will require 2-D mapping in each stratigraphic unit, and then exact downscaling to 

construct the 3-D model. 

Exact downscaling of facies proportions is feasible with EDDSS. Order correlation 

must be applied during the simulation process to ensure all the simulated facies 

proportions sum to one. The correction affects the simulated values but not the linear 

scale relationship in EDDSS because the scale relationship is enforced in the last cell. 

The order correlation will not be needed in the last cell because the simulated facies 

proportions will sum to one if the block facies proportions can be exactly reproduced.  

Overall, the scale consistent modeling scenario can improve the accuracy of 

reservoir description by considering multiscale data integration and consistency of 

models at different scales. The application in the Surmont oil sands reservoir shows a 

great applicability for reservoir charactization.  
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APPENDIX 

DOCUMENTATION 

 
GSLIB software package (Deutsch and Journel, 1998) is used for the preparation of 

the thesis. There are some new GSLIB-type FORTRAN programs created for the 

techniques developed in the thesis, including the P-field simulation with Bayesian 

Updating, calculation of LVC, ACD, and the exact downscaling EDDSS, and EDSK. 

This appendix only documents the two main programs created for the exact downscaling 

techniques. The theory and implementation are described in Chapters 6 and 7. The source 

codes are not listed because of length considerations.  

The first program EDSK is for the exact downscaling with direct block kriging. 

There is a build-in option on how many block data are used for the block kriging. The 

program takes in block data and point data, and generates models at the point scale. The 

discretization levels between the block and point scales need to be specified exactly. The 

variogram model at the point scale is required.  The second program EDDSS is for the 

exact downscaling with direct sequential simulation. The histogram reproduction and 

proportional effect correction are build-in functions. The program takes in block data and 

point data, and generates models at the model scale. The discretization levels need be 

specified exactly for between the block and the model scales, and between the model and 

the point scales. The variogram model is required at the point scale.   
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Figure A-1: An example parameter file for EDSK. 

Figure A-1 presents an example of the parameter file for EDSK. The input block 

data are specified on Lines 1 and 2. The grid definition is given on Lines 3 to 5. The 

GSLIB grid is centre-node regular grid and positive upward in the vertical direction. The 

point data are specified on Lines 6 to 8. Debugging level, debugging file, and output file 

are specified on Lines 9 and 11. The discretization numbers in three directions is given 

on Line 12. The model scale is assumed at the point data scale. Line 13 gives the option 

for multiple block types: 1 is for the collocated block only; 2 is for the collocated plus 

direct connected blocks (total 5 blocks); 3 is for the 5 blocks plus corner connected 

blocks (total 9 blocks).  The standard GSLIB conventions are followed (Deutsch and 

Journel, 1998). Line 14 gives the minimum and maximum number of original data that 

should be used to krige a grid node. If there are fewer than minimum data points, the 

global mean is used directly for the node. Line 15 gives the number of original data to 

use per octant. If this parameter is set less than or equal to 0, then it is not used; 

otherwise, the data is partitioned into octants and the closest number of data in each 

octant is retained for the simulation of a grid node. Line 16 gives the search radii in the 

maximum horizontal direction, minimum horizontal direction, and vertical direction of 

the search ellipsoid that defined on Line 17. Line 18 gives the global mean that should be 
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the mean of block data, otherwise, it is replaced. Line 19 gives the number of semi-

variogram structures and the isotropic nugget constant. For each of the nst nested 

structures one must define it, the type of structure; cc, the c parameter; ang1,ang2,ang3, 

the angles defining the geometric anisotropy; aa_hmax, the maximum horizontal range; 

aa_hmin, the minimum horizontal range; and aa_vert, the vertical range.  

 
Figure A-2: An example parameter file for EDDSS. 

Figure A-2 presents an example of the parameter file for EDDSS. The block data are 

specified on Lines 1 and 2. The grid in standard GSLIB conventions is specified on 

Lines 3 to 5. The discretization numbers between the block and model scales in x, y, and 

z directions are given on Line 6. The discretization numbers between the model and point 

scales in three directions are given on Line 7. The point data are specified on Lines 8 to 

10. Debugging level, debugging file, and simulation output file are specified on Lines 11 
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and 13. The number of simulation realizations is specified on Line 14. Lines 15 to 19 

specify the option on histogram reproduction. The CCDF look-up table method has been 

described in Section 7.4. The discretization numbers of mean, variance for the look-up 

table, and the discretization numbers of quantiles for building each CCDF are specified 

on Line 16. The limits of possible Gaussian mean and variance are given on Line 17. The 

range of mean is defined between negative and positive limit, and the range of the 

variance is defined between 0 and the limit. Lines 18 and 19 gives the option of an output 

file contains kriged mean and variance and selected mean and variance from the CCDF 

look-up table at each node. Lines 20 to 22 give the option of a reference distribution of 

point data if there is not sufficient point data available. Line 23 gives the option of 

correcting kriged variance for proportional effect. The slope and intercept of the linear 

relationship between the local mean and local variance at the model scale are specified. 

Line 24 specifies the limits of data values.  

The standard GSLIB conventions are followed. Line 25 gives the random number 

seed (a large odd integer). Line 26 gives the minimum and maximum number of original 

data that should be used to simulate a grid node. Line 27 gives the maximum number of 

previously simulated values that should be used to simulate a grid node. Line 28 gives 

the number of original data to use per octant. Line 29 gives the search radii in the 

maximum horizontal direction, minimum horizontal direction, and vertical direction of 

the search ellipsoid that defined on Line 30. Line 31 defines the size of the covariance 

look-up table that serve to reduce the computing time on covariance calculation. Line 32 

gives the global mean that should be the mean of block data. Lines below 33 define the 

semi-variogram at the point scale.  


