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Abstract

Geostatistical modeling of natural phenomena is an essential step in the

development petroleum reservoirs and mineral deposits. This numerical model-

ing involves simulation of the geological attributes conditional to available rel-

evant data sampled at various scales. The simulation is usually performed at

a point scale on a grid of regularly spaced nodes. The simulated results are

non-reproducible and order dependent when another simulation is performed on

a closer spacing in some areas or for an expanded study area.

A grid-free geostatistical simulation (GFS) method is proposed and de-

veloped in this thesis, where the properties of natural phenomena are modeled

as a function of the coordinates of the simulation locations. The resulting re-

alizations are conditioned to the data values, preserve the spatial structure of

the modeled system, and the relationship between system’s variables. Simula-

tion is performed at the point scale and can be upscaled to larger volumes to

establish block-scale realizations. The conditioning data can be expressed as a

set of scattered point-scale data values or a set of regularly sampled block-scale

data values. Gridded block-scale data are converted to pseudo point-scale values

using a point-scale block value representation technique to avoid artifacts in the

simulated values.
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The grid-free simulation proceeds as follows. The 1-D unconditional stochas-

tic processes are generated in a grid-free manner with a proposed Fourier series

simulation (FSS), where the target covariance function is decomposed with a

Fourier series, and simulation is reconstructed with linear model of regionaliza-

tion as a weighted sum of the Fourier coefficients and periodic stochastic cosine

functions expressed as a function of the coordinates and a random phase. 2-

D and 3-D unconditional stochastic processes are simulated grid-free using the

modified turning bands concept, where a set of 1-D line processes with covariance

functions related to the target 2-D/3-D covariance function is linearly combined

to obtain realizations in the higher dimensional space. In the modified turning

bands method, the bands are replaced with the points and line process simula-

tion is carried out with the FSS as a function the projected simulation location

on a line. The anisotropy is addressed by affine transformation of the simulation

space. The conditioning is performed using kriging in a dual form to reduce

computational time. Modeling of multivariate systems is possible with the linear

model of coregionalization. The weighted random factors are summed to obtain

valid multivariate realizations. The assimilation of the secondary gridded data

is performed with intrinsic cokriging, where the secondary data at a simulation

location and all primary data locations are used in the conditioning. When the

secondary data do not cover the entire simulation domain, the secondary data

is projected to the simulation location and weighted appropriately to avoid edge
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artifacts. The simulation of the nugget effect component is expressed as a func-

tion of the coordinates of the gridded space at the lowest possible refinement

level.

The grid-free simulation methodology is implemented in Fortran code. Ap-

plicability and efficacy of the proposed method are shown with numerous 2-D

and 3-D synthetic examples and real case study based on the Firebag oil sands

project located in northern Alberta, Canada. Implementation aspects are docu-

mented and optimal simulation parameters are defined. Computational time is

reduced through the adoption of the turning bands simulation of higher dimen-

sional systems, conditioning with the dual cokriging, intrinsic data assimilation,

and block matrix inversion in presence of the exhaustively sampled gridded data

at the data assimilation step.
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Chapter 1

Introduction

Human society depends on natural resources including minerals and hydrocar-

bons. They are key requirements for the stable development and security of

society. Unfortunately, these vital components are not renewable and they will

become scarce and more costly at some point in the future. The extraction of

minerals and hydrocarbons must be effectively managed using the best available

technology. An improved understanding of the distribution of the natural re-

sources will help to develop them in the most sustainable and economic manner

possible.

A field of applied statistics, called geostatistics, serves to understand, char-

acterize, and predict the spatial and temporal properties of the natural phenom-

ena and to quantify uncertainty in the predictions [36, 50]. Geostatisticians esti-

mate and simulate attributes of natural phenomena by analyzing available data

and communicating with experts from other geosciences and engineering fields

including geologists, geophysicists, and petroleum or mining engineers. This

makes geostatistics a cornerstone of geomodeling natural phenomena [30, 64].

Conventionally, numerical geostatistical models of the natural phenomena

are constructed on a grid of fixed node spacing. This approach is inflexible for

1
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current applications where the resolution is increased in some areas and different

representations are needed to evaluate alternative recovery mechanisms. This

research work primarily focuses on removing the dependency of geostatistical

simulation methods on a predetermined simulation grid. The final realizations

of natural phenomena is constrained to scattered point-scale hard data and ex-

haustively sampled block-scale measurements. Both univariate and multivariate

systems are studied.

1.1 Problem Statement

Natural phenomena are uncertain because of limited data and somewhat chaotic

nature of the original deposition and subsequent diagenesis. Geostatistical meth-

ods aim to generate numerical models that honour not only data, but also spatial

characteristics of the modeled system. Moreover, these techniques are capable

of characterizing uncertainty [17, 26].

Two classes of geostatistical techniques are distinguished: estimation and

simulation methods [17]. The estimation algorithms produce a single estimate

at each location leading to a smooth model of the property. Simulation meth-

ods generate an ensemble of stochastic models or realizations with higher local

variability to describe the natural phenomena with a reasonable pattern of fluc-

tuations and a measure of uncertainty due to limited data. Both local and global

uncertainty can be derived from a set of simulated realizations. Local estimation

error is computed at each location. Global uncertainty is assessed by processing

each realization through a recovery transfer function, and, therefore, directly

observing uncertainty in all critical model responses [36]. As a result, simulation

methods have gained popularity to model natural phenomena.

Although the theory for geostatistical simulation is quite well developed,

there are several aspects frequently faced in practice that make modeling petroleum
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reservoirs or mineral deposits more difficult. Model regridding, modeling of mul-

tivariate systems, and accounting for the multiscale data are key challenges.

Many geostatistical simulation techniques are inherently free of the simu-

lation grid, but not implemented or applied as such. Conventional simulation is

performed on a regular grid – a set of evenly organized nodes in the space. The

grid has to be defined before any simulation starts. The data locations do not

have to align with the grid nodes. The grid-based discretization of the simulation

introduces complexity to include additional simulated values at a finer node den-

sity, or to perform simulation at irregularly distributed locations. The model has

to be rebuilt with another grid of different node density or with multiple grids

to simulate local variations at different resolutions and various grid densities. In

all these cases, the simulation results are non-unique and depend on the order

of simulation.

Fig. 1.1 demonstrates the importance of modeling flexibility for simula-

tion methods for characterization of steam assisted gravity drainage (SAGD)

petroleum reservoirs in northern Alberta, Canada [9]. The geological properties

must initially be characterized over many square kilometers at a low resolution

model grid, then multiple high resolution model grids at the meter scale are

required to assess potential development areas. Regridding of the geological

property is always required. The challenge is to keep models of different resolu-

tions consistent and reproducible. The high-resolution model for flow simulation

shown in brown should comply with low-resolution model for resources estima-

tion shown in black. A grid-free simulation method, where simulation of the

natural phenomena is presented continuously in the space as a function of the

coordinates of the simulation locations, would eliminate the need for regridding

and make modeling very flexible with respect to the configuration and number

of the simulation locations.

The modeling of natural deposits often considers simultaneous simulation
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SAGD horizontal wells 

Low-resolution 

model grid 

High-resolution 

model grid 

Figure 1.1: Illustrative example of one of the challenges faced in the modelling
SAGD petroleum reservoirs – model regridding shown in a plan view.

of multiple correlated properties. Most of the properties modeled by geostatistics

for the petroleum and mining industries are geological in nature and time invari-

ant. There are many correlated variables. Porosity, which defines fluid storage

ability of the rock, permeability, which characterizes ease of fluid to flow through

the rock, and reservoir fluid saturations, which quantify the volumes of oil, gas,

and water stored in the void space of the rock, are key correlated petrophysical

properties used to manage petroleum reservoirs, and should be modeled simul-

taneously preserving their relationship [18]. Various minerals are also found to

be deposited in some correlated fashion [13]. Such interaction between multiple

variables should be preserved in the final grid-free simulation model.

In practice, there are different data types sampled at various scales. There

could be point-scale core data sampled along wells and exhaustively sampled

block-scale seismic data measured over large volumes as shown in Fig. 1.2. All

these data types sampled at various scales should be properly assimilated into
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the model within the grid-free simulation framework. In addition, there is some-

times a need to generate geostatistical models at an arbitrarily high resolution

to permit upscaling into the desired model size. The output model size and

orientation could change for different goals.

 

Top and base of a petroleum reservoir 

Point-scale well data Block-scale seismic data 

Figure 1.2: Illustrative example of one of the challenges faced in the mod-
elling petroleum reservoirs – data assimilation of various scales shown in cross-

sectional view.

A grid-free simulation (GFS) algorithm is sought to address aforemen-

tioned aspects of modeling properties of natural phenomena encountered in the

practice of petroleum and mining projects independent from the modeling grid.

An example of the univariate GFS is shown in Fig. 1.3. The realization is con-

ditioned to data sampled along a vertical well in the middle of the cross-section.

The spatial structure of porosity field is anisotropic. The realization is shown on

three sets of the simulation nodes. The first set of nodes is scattered irregularly

over the cross-section. The next two sets are placed evenly with various den-

sities. The resulting anisotropic realizations are shown next to the simulation

nodes maps in a pixel format. The area closest to each node is assigned to the

node and colored with the nodal value. The realizations are independent of the

grid and can be resolved at any locations at arbitrarily high resolution.
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Figure 1.3: Grid-free simulation example on different sets of the simulation
nodes – irregularly scattered nodes, coarsely structured nodes, and finely struc-

tured nodes.
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1.2 Problem Solution

A grid-free conditional simulation engine will be developed to provide a flexible

tool for modeling multivariate natural phenomena as a function of the coordi-

nates, data values, and spatial structure of the modeled system. This approach

will provide flexibility to resolve the model of a multivariate system at any grid

configuration (scattered nodes, structured or unstructured grids) and resolution

conditional to multiscale data with complete consistency and a possible reduc-

tion in computational time. The simulated values are tied to location and are

always the same regardless of the order of simulation. The relationship between

multiple variables will be explicitly reproduced. The point-scale hard data and

gridded block-scale soft data will be used as conditioning data in the grid-free

simulation. The hard data denote direct measurements of the simulated geo-

logical properties. The soft data imply indirect measurements of the simulated

variables that are correlated with hard data.

A comparison of the proposed simulation engine with conventional sim-

ulation algorithms is schematically depicted in Fig. 1.4 for modeling geologic

properties of the petroleum reservoirs [64]. The data come from multiple sources

sampled at different scales. Point-scale laboratory measurements of core, larger

scale well log and well test data, and exhaustively sampled seismic attributes

are a few examples of frequently encountered data types in petroleum reservoir

modeling. These measurements are analyzed to depict spatial structure of the

modeled primary variables such as porosity, permeability, or fluid saturations.

The spatial structure of the system is quantified through variogram models for

two-point geostatistical models [37]. In conventional geomodeling, the geologic

properties are simulated on a regular model grid at fixed scale. With the pro-

posed grid-free simulation algorithm, the model can be realized at any location in
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the space at arbitrary resolution and upscaled to any scale. The scale of report-

ing the simulated values can be addressed by an adequate discretization before

upscaling. For instance, more heterogeneous regions or regions of higher interest

can be resolved at finer simulation nodes density than more homogenous or less

important regions of the model. Or, a larger lease area could be modeled on

a coarse grid for resource estimation, and some smaller areas around particular

wells could be modeled on a finer grid for flow simulation to accurately account

for local geologic heterogeneities. Both models would be consistent with each

other. This will provide modeling flexibility and reduce computational time by

simulating at coarser resolution for less vital parts of the model. The model

is not stored as a set of gridded values, but rather as a function, that reduces

memory storage requirements. Simulation could be performed independently

and simultaneously at various locations with parallel programming and multiple

processor computers.

The fundamentals of the proposed grid-free simulation engine algorithm

are summarized in Fig. 1.5. The key steps are the definition of the key variables

to model, assemblage of relevant data, simulation in a grid-free form analyti-

cally, and retrieval of the simulated values of any realization of any variable at

any location in the space. A more detailed workflow of the GFS is provided in

Fig. 1.6. The simulation is performed in normal units at a point scale. The two-

step conditional simulation has been chosen, because kriging-based conditioning

of unconditional simulation is inherently grid-free, and many fast unconditional

simulation methods are available and can be enhanced to become grid-free [10].

A new fast unconditional simulation method called Fourier series simulation

(FSS) is proposed in this thesis. This method appears to fall into a class of the

spectral simulation techniques, but has a distinct interpretation [58, 71]. The

unconditional simulation is represented as a linear finite sum of weighted inde-

pendent random factors. Independent random factors are stochastic in nature
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Small Large 

Data Scale 

Laboratory analysis 

of core plugs Well log and well test data  Exhaustive seismic data  

Conventional grid based geomodel built 

on a regular grid 

                   

                   
  
  
  
 
                

Proposed grid-free geomodel built at 

any scattered locations of interest 

Simulation engine 

Figure 1.4: Comparison of conventional and grid-free simulation approaches
to modeling petroleum systems in presence of multiscale data.

and expressed analytically as a function of the simulation location through co-

sine functions with random phase. The corresponding weights are derived from

Fourier series-based decomposition of the target spatial function of the system

structure [8, 26]. Therefore, the resulting conditional grid-free simulation is ex-

pressed explicitly in analytical form as a function of some fixed parameters, and

most importantly, as a function of the coordinates of the simulation locations.

An illustrative example of a grid-free simulation of a geologic property

within reservoir boundaries is shown in Fig. 1.7 in interactive 3-D mode, where

the property is presented continuously in space. Several slices are shown, which

can be viewed individually in the figure.
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Define key variables of the system. 

Assemble data. 

Construct model through analytical simulation. 

Get simulated values of the variables at required 

locations and scale in the space. 

Figure 1.5: Concept of grid-free simulation.

1.3 Thesis Statement

A grid-free simulation (GFS) method provides an algorithm for the grid inde-

pendent conditional geostatistical simulation of multiple correlated properties

of natural phenomena, where simulation is expressed as a spatial continuous

function of the coordinates of the simulation locations, data values, and spatial

structure of the modeled system, to improve accuracy of numerical geomodels

by ensuring consistency in realizations resolved at any resolution.

1.4 Delimitations and Limitations

The delimitations of the proposed grid-free conditional simulation algorithm are

as follows. The discussion will be focused only on static properties with no time

component. In addition, only continuous properties will be studied. For pos-

sible grid-free modeling of categorical variables see [31–33]. The geostatistical

tools operate within the multivariate spatial Gaussian (normal) space. The pre-

processing of the data, which includes normal score transformation, correlation
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Upscale realizations to required model scale. Check 

data and variogram reproduction. 

Define primary and secondary variables to model. 

Choose appropriate data and note the scale difference 

and measurement error. Also if required, bring larger-

scale data to point scale. 
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Compute and model variogram for all variables and 

their interactions in normal scores. 

Perform unconditional simulation at required locations 

at point-scale. Generate one/several realizations. 
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Stop 

No  
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Figure 1.6: Workflow for modeling deposits with grid-free simulation.
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Figure 1.7: Conceptual geostatistical grid-free model of a geologic property
in interactive 3-D mode. Please click on the figure to activate 3-D view mode.

and de-correlation techniques, will not be emphasized, but are crucial [17]. Char-

acterization of the multivariate spatial structure is important. Conventionally,

the relationship between multiple correlated variables is preserved through the

linear model of coregionalization (LMC) [26]. It is assumed that the form of

the LMC is well known before the simulation of the multivariate system is per-

formed. The multiscale nature of the data is acknowledged, but not addressed

explicitly.

Some limitations of the proposed grid-free conditional simulation approach

are present and may be managed or overcome with additional work. The distri-

bution parameters of the multiple variables are assumed stationary and constant

over the modeling region. Any non-stationarity could be resolved through trend

modeling, or by decomposing the non-stationary domain into multiple station-

ary domains based on categorical variable modeling [64]. An example of how


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}
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non-stationarity can be addressed within the GFS by dividing non-stationary

region into two stationary domains A and B is presented in Fig. 1.8 as a single

GFS realization of a mineral grade. The stationary domains are separated by a

geological fault, which is defined before the simulation is performed.

(a) (b)

Figure 1.8: Example of conditional grid-free simulation of non-stationary
geological property at point scale – (a) point representation of the simulation,
and (b) pixel representation of the simulation. The non-stationary domain

consists of two stationary domains A and B separated by a fault.

1.5 Outline

The thesis consists of seven chapters. Chapter 1 is the introduction. Chapter

2 covers theoretical background of the essentials of geostatistics and simula-

tion methods. The next two chapters are devoted to the framework of two-

step grid-free simulation. Chapter 3 provides information on the unconditional

grid-free simulation. Chapter 4 covers the conditioning of unconditional simu-

lation. Once the theoretical framework is presented, some practical aspects are

discussed. Chapter 5 shows implementation aspects of the proposed grid-free

simulation method. Chapter 6 demonstrates practical implementation of grid-

free simulation to a real case study. The last Chapter 7 wraps up the thesis

with Conclusions. The description of developed Fortran codes is provided in an

Appendix.



Chapter 2

Background

Geostatistics has evolved from applied statistics initially to satisfy the needs

of the mining engineers to delineate ore bodies [50]. Later, it spread to other

engineering fields including petroleum engineering, where oil and gas reservoirs

are characterized with the help of geostatistical tools [56, 64]. Key definitions

and concepts are covered in this chapter. Spatial properties of the natural entity

such as mineral grade or rock porosity are studied.

Numerous geostatistical algorithms have been developed and implemented

abundantly in the software. Care is taken to choose an algorithm that reasonably

describes the geological property under consideration. It is essential to under-

stand the theory behind each algorithm to avoid blunders and mistakes that

could come from blind implementation. The important estimation and simula-

tion techniques are reviewed and classified below. It is worth to mention that

simulation methods are placed at the top of the list of geostatistical tools due

to their increased use in creating realistic models of natural variability and their

quantification of uncertainty.

14
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2.1 Essentials of Geostatistics

Definitions, assumptions, and statistical calculations are explained before pre-

senting geostatistical algorithms for modeling regionalized variables.

2.1.1 Modeling Attributes

Geostatistical tools are capable of modeling properties of the natural phenom-

ena in space. The modeling can occur in one-dimensional (1-D), two-dimensional

(2-D), or three-dimensional (3-D) space. A location in the space u is often de-

termined by Cartesian coordinates mapped along orthogonal axes. The location

vector u in µ-dimensional space consists of µ location coordinates as shown in

Eq. (2.1), where A is the modeling domain.

u = [u1 ... uµ]T , u ∈ A (2.1)

A stochastic or random process is the probabilistic interpretation of the

properties of the natural phenomenon. A random function Z is the analytical

representation of the stochastic process continuous in space. When random

function is tied to a location u, the random variable Z (u) at a point scale is

defined. Thus, a random variable is the subset of the random function assigned to

a particular location and volume. The relationship between the random function

and a random variable at a point scale is shown in Eq. (2.2). The random variable

Z (u) can take continuous or categorical values z. Continuous random variables

take values from continuous spectrum, while categorical variables can take one

of a discrete set of values. The corresponding random function Z is denoted

continuous or categorical, respectively.

Z = {Z(u), u ∈ A} (2.2)
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The point scale is the smallest practical volume that is often considered

to be the scale or support of the data. This is the smallest scale that the space

can be discretized. Values of a property at larger scales can be uniquely derived

from the values of the same property at a point scale. The reverse procedure

(downscaling) is not unique. The scale difference of the random variables can be

adjusted through the regularization operator for properties that change linearly

with scale [36]. For instance, if additive random variable describes a volume V

centered at location u, which is larger than a point scale, the block-scale variable

Z (V (u)) can be defined from its point scale counterparts Z (u) contained within

V (u) as shown in Eq. (2.3).

Z(V (u)) =
1

V (u)

∫
V (u)

Z(u′)du′, u′ ∈ V (u) (2.3)

Values of the random function Z may be known at some locations, while

values at other locations should be inferred conditional to these known values.

Locations with known values are called data or sampled, while locations with

unknown values are called unsampled. Data values Z (uα), α = 1, ..., N, are

differentiated from the estimation values Z∗(u) or conditional simulation values

Zs(u) of the random function Z. Both estimation and simulation are conditioned

to the data and are constructed using the spatial structure of the data. While

simulation would preserve imposed spatial structure, estimation fails to do so.

Simulated values of the random function Z that only preserve spatial structure,

but do not honor data values, are called unconditional simulation values Zus(u).

Note that often the conditionally or unconditionally simulated value at location

u is also expressed as Z(u). The data can be either sampled at scattered lo-

cations or measured on a grid. These data types are called scattered data and

exhaustively sampled data, respectively. All data values can be stored in a vector

Zd shown in Eq. (2.4). Here, α denotes data location index.



Chapter 2. Background 17

Zd = [Z(u1) ... Z(uα) ... Z(uN )]T (2.4)

The modeled system is defined by a set of random variables distributed

regularly on a grid in a conventional modeling or at scattered locations in mod-

eling with unstructured grids. The grid-free approach does not imply any grid or

a set of scattered nodes before simulation starts. It rather constructs a model in

a polynomial form, values of which can be recalled at any location in the space.

The conventional representation of the model is shown in Eq. (2.5), where M

is the number of simulation nodes. Here β denotes location index of modeled

variable.

Z = [Z(u1) ... Z(uβ) ... Z(uM )]T (2.5)

When multiple correlated modeling variables are present, a multivariate

system is considered. Therefore, when K multiple random functions are com-

bined together into a single function, it is denoted as a random set of functions

Z shown in Eq. (2.6). The random function Z denotes a univariate system,

unless it is specified otherwise. In the multivariate context, the variable that

is modeled is called primary. A secondary variable constrains or conditions the

primary variable at unsampled locations.

Z = {Zk, k = 1, ...,K} (2.6)

All features inherent for univariate systems can be extended to multivariate

systems. For instance, the data of the multivariate system can be stored in a

vector form of size
K∑
k=1

Nk × 1 as shown in Eq. (2.7). Also, the model of the

multivariate system can be presented in matrix form of size M × K as in Eq.

(2.8).
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Zd = [Z1(u1) ... Z1(uN1) ... Zk(u1) ... Zk(uNk) ... ZK(u1) ... ZK(uNK )]T (2.7)

Z =



Z1(u1) ... Zk(u1) ... ZK(u1)

...

Z1(uβ) ... Zk(uβ) ... ZK(uβ)

...

Z1(uM ) ... Zk(uM ) ... ZK(uM )


(2.8)

The essential geostatistical measures are reviewed next.

2.1.2 Geostatistical Measures

The random variable Z (u) is characterized by a statistical distribution. The dis-

tribution could be written as a cumulative distribution function (CDF) FZ(u)(z)

or probability density function (PDF) fZ(u)(z), where z represents outcomes or

values of Z (u) [77]. The CDF and PDF for a univariate case are shown in Eqs.

(2.9) and (2.10). The Prob{Z(u) ≤ z} is the probability of random variable

Z (u) to be less than or equal to value z. The Prob{z′ ≤ Z(u) ≤ z′′} states

the probability of random variable Z (u) to be between values z′ and z′′. The

schematic of local distribution of random variable Z (u) is shown in Fig. 2.1 in

terms of the PDF. A distribution that is tied to a particular location in the space

is called local distribution. The distribution that characterizes the entire random

function or all random variables in the modeling domain at once is called a global

distribution. Both PDF and CDF are used for the uncertainty quantification in

estimation and simulation.
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FZ(u)(z) = Prob{Z(u) ≤ z}, −∞ < z <∞ (2.9)

z′′∫
z′

fZ(u)(z)dz = Prob{z′ ≤ Z(u) ≤ z′′} (2.10)

The CDF and PDF of the multiple random variables of same random

function or CDF and PDF of multivariate system are depicted in Eqs. (2.11)

and (2.12).

FZ1(u1)...ZK(uK)(z1, ..., zK) = Prob{Z1(u1) ≤ z1, ..., ZK(uK) ≤ zK} (2.11)

z′′1∫
z′1

...

z′′K∫
z′K

fZ1(u1)...ZK(uK)(z1, ..., zK)dz1...dzK

= Prob{z′1 ≤ Z1(u1) ≤ z′′1 , ..., z′K ≤ ZK(uK) ≤ z′′K}

(2.12)

The relationship between CDF and PDF can be expressed as shown in

Eqs. (2.13) and (2.14) for univariate systems, and as in Eqs. (2.15) and (2.16)

for multivariate systems.

FZ(u)(z) =

z∫
−∞

fZ(u)(z
′)dz′ (2.13)

fZ(u)(z) =
dFZ(u)(z)

dz
(2.14)
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Figure 2.1: Schematic of local distribution of random variable Z (u).

FZ1(u1)...ZK(uK)(z1, ..., zK) =

z1∫
−∞

...

zK∫
−∞

fZ1(u1)...ZK(uK)(z
′
1, ..., z

′
K)dz′1...dz

′
K

(2.15)

fZ1(u1)...ZK(uK)(z1, ..., zK) =
∂KFZ1(u1)...ZK(uK)(z1, ..., zK)

∂z1...∂zK
(2.16)

The distribution of a random variable Z(u) can be summarized by some

parameters such as the mean mZ(u) or variance σ2
Z(u). The distribution of

several random variables of the same random function Z can be characterized by

the covariance CZ(u,u+h) [26]. The variance is a special case of covariance, when

h = 0. The vector h between two locations u and u + h is called the separation

lag vector. Mean stands for the average value of the outcomes of the random

variable. Variance quantifies the squared deviations of the outcomes from the

mean. The covariance function characterizes variations of the random variables

in space. The mean is also called a first-order moment of the distribution, while
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the covariance is a second-order moment. Both of them are expressed through the

expected value operator E{} shown in Eq. (2.17) for univariate system, where

φZ is some transfer function applied to a random function Z. The expected value

operator accounts for the probability density function. The mean is derived with

the expected value operator as presented in Eqs. (2.18). The covariance has the

form shown in Eq. (2.19). A special form of the covariance is variance σ2
Z(u),

which is shown in Eq. (2.20). Note that all these distributional parameters

are tied to the location in the space. The covariance is related to two random

variables at a time, and, therefore, is referred as a two-point statistic.

E{φZ} =

∞∫
−∞

φZfZ(u)(z)dz (2.17)

mZ(u) = E{Z(u)} =

∞∫
−∞

zfZ(u)(z)dz (2.18)

CZ(u,u + h) = E{(Z(u)−mZ(u)) (Z(u + h)−mZ(u + h))}

=

∞∫
−∞

∞∫
−∞

(z′ −mZ(u))(z′′ −mZ(u + h))fZ(u)Z(u+h)(z
′, z′′)dz′dz′′

(2.19)

σ2
Z(u) = CZ(u,u) = E{(Z(u)−mZ(u))2} =

∞∫
−∞

(z −m(u))2fZ(u)(z)dz (2.20)

The semivariogram or simply variogram γZ(u,u+h) is an alternative to

the covariance function to describe spatial structure of the random function Z.

The variogram is also a two-point statistic. The advantage of the variogram over

the covariance is avoidance of the local mean in the calculation. The expression

for the variogram is shown in Eq. (2.21) for the univariate case.
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2γZ(u,u + h) = E{(Z(u)− Z(u + h))2}

=

∞∫
−∞

∞∫
−∞

(z′ − z′′)2fZ(u)Z(u+h)(z
′, z′′)dz′dz′′

(2.21)

Stationarity is a vital geostatistical assumption that implies constant sta-

tistical parameters across the modeling domain A [36]. Stationarity imposes

constraints to a spatial structure of the modeled property of the natural phe-

nomenon. The physical interpretation is that regions of similar geological deposi-

tion or character are grouped together and modeled separately from other regions

with distinct geological properties. This assumption defines boundaries between

statistical populations, and suggests appropriate geomodeling methodology.

First-order stationarity assumption implies that local mean mZ(u) is the

same over the entire modeling domain A (Eq. (2.22)). Second-order stationarity

states that spatial covariance and variogram do not depend on particular two

locations u and u + h in the space, but rather depend only on the separation

lag vector h between any two points in the modeling domain A as shown in Eqs.

(2.23) – (2.25). The covariance function is related to the variogram in an elegant

form for random variables from a first- and second-order stationary random

function. This relationship between the stationary variogram and covariance is

expressed in Eq. (2.26). The first- and second-order stationarity assumption is

commonly made in practice.

mZ(u) = mZ , ∀u ∈ A (2.22)

CZ(u,u + h) = CZ(h), ∀u ∈ A (2.23)
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γZ(u,u + h) = γZ(h), ∀u ∈ A (2.24)

σ2
Z(u) = CZ(0) = σ2

Z , ∀u ∈ A (2.25)

γZ(h) = σ2
Z − CZ(h), ∀u ∈ A (2.26)

A non-stationary random process Z̃ can be modified to a stationary one

by removing a local non-stationary mean mZ̃(u), which is also called detrending,

as presented in Eq. (2.27). The challenge lies in the computation of the trend

and possible artifacts such as negative estimates.

Z(u) = Z̃(u)−mZ̃(u) (2.27)

For the multivariate stationary case, expressions for the mean, covariance,

and variogram are depicted in Eq. (2.28) – (2.30). The covariance and variogram

are referred to as the cross-covariance CZkZl(h) and cross-variogram γZkZl(h) for

different random functions Zk and Zl. The relationship between the covariance

and variogram of the stationary random functions is shown in Eq. (2.31). Same

relationship between the symmetric covariance and variogram of the station-

ary random functions is shown in Eq. (2.32). The cross-correlation coefficient

ρZkZl(h) is another frequently used statistical parameter, which is the standard-

ized covariance between two random variables. Its expression for the stationary

multivariate case is shown in Eq. (2.33).

mZk = E{Zk(u)}, ∀u ∈ A, k = 1, ...,K (2.28)
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CZkZl(h) = E{(Zk(u)−mZk) (Zl(u + h)−mZl))}, k, l = 1, ...,K (2.29)

2γZkZl(h) = E{(Zk(u)− Zk(u + h)) (Zl(u) − Zl(u + h))},

k, l = 1, ...,K
(2.30)

2γZkZl(h) = 2σ2
ZkZl

− CZkZl(h)− CZlZk(h), ∀u ∈ A, k, l = 1, ...,K (2.31)

γZkZl(h) = σ2
ZkZl

− CZkZl(h), ∀u ∈ A, k, l = 1, ...,K (2.32)

ρZkZl(h) =
CZkZl(h)√
σ2
Zk
σ2
Zl

, ∀u ∈ A, k, l = 1, ...,K (2.33)

In practice, the experimental variograms γ̂Z(h) and γ̂ZkZl(h) are computed

from the data points {Zk(uα), α = 1, ..., Nk, k = 1, ...,K} according to Eqs.

(2.34) and (2.35) for univariate and multivariate systems to estimate the spatial

distribution of the random functions, where Np is the number of data pairs ap-

proximately separated by lag vector h. The tolerance is introduced into search

parameters to increase possible number of data pairs in the experimental var-

iogram calculation for modeling stability [17]. Note that the data of random

function pair Zk-Zl for multivariate case should be collocated to compute the

experimental cross-semivariogram from Eq. (2.35).

γ̂Z(h) =
1

2Np

Np∑
α=1

(Z(uα)− Z(uα + h))2 (2.34)
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γ̂ZkZl(h) =
1

2Np

Np∑
α=1

(Zk(uα)− Zk(uα + h)) (Zl(uα)− Zl(uα + h)) (2.35)

The experimental variograms depend on the magnitude of the lag vector

h and also on the direction. This anisotropy can be quantified through three

principal orthogonal directions of continuity – major, minor, and medium direc-

tions of the continuity. The schematic of the idealized anisotropic experimental

variogram ellipsoid in 3-D is shown in Fig. 2.2. The principal directions of

continuity are not usually aligned with the axes of the coordinate system.
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Zr 
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r3 

Figure 2.2: Schematic of the idealized anisotropic experimental variogram
ellipsoid in 3-D.

Valid variogram models are fitted to the experimental variograms to have

continuous uninterrupted variogram values for all possible lag vectors h. Var-

iogram models are used in the geostatistical estimation and simulation of the

properties of the natural phenomena at unsampled locations. Most variogram
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models require multiple structures, where each structure is one fundamental

variogram function. The number of structures and their contribution to the var-

iogram model are derived from a linear representation of the random function Z

as a sum of weighted orthogonal (independent) random factors. Each factor has

licit variogram structure ensuring that the resulting variogram structure of the

random function Z is also licit.

This linear model is referred to as a linear model of regionalization (LMR)

for univariate systems and linear model of coregionalization (LMC) for multi-

variate systems as shown in Eqs. (2.36) and (2.37). More generalized version

of the LMC can be found in [48]. In the LMR, the random variable Z (u) at a

location u in the space is represented by a set of independent random factors

Xp(u), p = 0, ..., P , with zero mean and unit variance and weighted by coeffi-

cients ap, p = 0, ..., P . In the LMC, K random variables stored in a vector Z (u),

which are expressed as a sum of products of weighting matrix Ap and vector of

random factors Xp(u) at some location u in the space. Random factors Xp,k and

Xp,l for any k and l have same spatial structure for same p. Expressions for the

elements of the multivariate systems are summarized in Eqs. (2.38) – (2.41). The

coefficients ap,kl must be real numbers. They are derived from the sill contribu-

tion coefficients bp,kl of the licit variogram model, which are found by analyzing

the experimental variograms. The LMC coefficient matrices Ap, p = 1, ..., P, are

the lower triangular matrices, what means that ap,kl = 0 for k < l, p = 1, ..., P .

Z(u) = mZ(u) +

P∑
p=0

apXp(u) (2.36)

Z(u) = mZ(u) +

P∑
p=0

ApXp(u) (2.37)

Z(u) = [Z1(u) ... ZK(u)]T (2.38)
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mZ(u) = [mZ1(u) ... mZK (u)]T (2.39)

Ap =


ap,11 ... ap,1K

... ...

ap,K1 ... ap,KK

 , p = 1, ..., P (2.40)

Xp(u) = [Xp,1(u) ... Xp,K(u)]T (2.41)

The mean and spatial structure of the independent random factorsXp(u), p =

0, ..., P, for the univariate case are presented in Eqs. (2.42) and (2.43). The spa-

tial structure of each random factor has a fundamental form Γ(h). The relation-

ship between the variogram model of the random function Z and the variogram

models of random factors is shown in Eq. (2.44), which is the key expression for

fitting experimental variograms with multiple structures. The sill contribution

coefficients bp in Eq. (2.44) are either derived by simple trial-error approach, so

the variogram model would approximate the experimental points the best, or by

an iterative method such as the one presented in [26]. Here, a licit variogram

model implies a semi-positive definite variogram model with all bp coefficients

being non-negative. Eq. (2.45) states the relationship between LMR coefficients

ap, p = 0, ..., P, and sill contribution coefficients bp, p = 0, ..., P, for the univariate

systems. The relationship between the variance of the random function and the

contribution of the random factors should be held as shown in Eq. (2.46).

mXp(u) = 0, ∀u ∈ A, p = 0, ..., P (2.42)

γXpXq(h) =

 ΓXp(h),

0,

∀p = q

∀p 6= q
(2.43)
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γZ(h) =
P∑
p=0

bpΓXp(h) (2.44)

bp = a2
p, p = 0, ..., P (2.45)

σ2
Z =

P∑
p=0

bp (2.46)

The independent random factors Xp,k(u), p = 1, ..., P, k = 1, ...,K, have

similar properties in the multivariate case, where K random functions Zk are

modeled. Properties of the independent random factors are summarized in Eqs.

(2.47) – (2.51). Eq. (2.49) states how direct- or cross-variogram models of the

modeled random functions are related to the variogram models of the factors.

The requirement for positive semi-definite variogram model is presented in Eq.

(2.52), which states that eigenvalues τp of the sill contribution matrix Bp should

be positive for all p = 0, ..., P with ep being eigenvectors. Eq. (2.53) presents

additional requirements for positive semi-definiteness check of the sill contribu-

tion matrix Bp for licit variogram models. It states that determinant of the sill

contribution matrix must be greater or equal to zero, and diagonal terms of the

matrix Bp must be non-negative. The covariance between multiple variables has

to be preserved as presented in Eq. (2.54).

mXp,k(u) = 0, ∀u ∈ A, p = 1, ..., P, k = 1, ...,K (2.47)

γXp,kXq,l(h) =

 ΓXp(h),

0,

∀p = q

∀p 6= q
(2.48)

γZkZl(h) =

P∑
p=0

bp,klΓXp(h) (2.49)
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Bp = ApA
T
p , p = 0, ..., P (2.50)

Bp =


bp,11 ... bp,1K

... ...

bp,K1 ... bp,KK

 , p = 0, ..., P (2.51)

Bpep = τpep → τp > 0, p = 0, ..., P (2.52)



∣∣∣∣∣∣∣∣∣∣∣
bp,11 ... bp,1K

... ...

bp,K1 ... bp,KK

∣∣∣∣∣∣∣∣∣∣∣
≥ 0, p = 0, ..., P

bp,kl ≥ 0, ∀k = l, p = 0, ..., P, k, l = 1, ...,K

(2.53)

σ2
ZkZl

=

P∑
p=0

bp,kl (2.54)

The licit forms of the variogram models ΓXp(h) for the geostatistical infer-

ence are restricted to particular forms. The most common licit variogram models

are nugget Γ0(h), spherical Γ1(h), exponential Γ2(h), and Gaussian Γ3(h) vari-

ogram models. The ananlytical expressions of these four fundamental variogram

models are presented in Eqs. (2.55) – (2.59). Here r is the variogram range

vector, beyond which spatial correlation disappears. The variogram range is also

defined as a distance on the variogram plot, at which variogram function reaches

(or almost reaches) sill of the variogram (the variance of the random function).

Corresponding covariance functions are denoted as Φ0(h), Φ1(h), Φ2(h), and

Φ3(h), which are related to the variogram types as shown above in Eq. (2.26).

Plots of the four basic variograms models and covariance functions are presented
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in Fig. 2.3. Conventionally, the nugget effect variogram model takes the index

p = 0. Both nugget effect variogram model and nugget effect covariance func-

tion can be denoted as Nugget(h), spherical – Sph(h), exponential – Exp(h),

and Gaussian – Gaus(h).

Γ0(h) =

 0, h = 0

1, h 6= 0
(2.55)

Γ1(h) =

 1.5h
r − 0.5

(
h
r

)3
, h

r ≤ 1

1, h
r > 1

(2.56)

Γ2(h) = 1− exp
(
−3

h

r

)
(2.57)

Γ3(h) = 1− exp

(
−3

(
h

r

)2
)

(2.58)

h

r
=

√(
h1

r1

)2

+

(
h2

r2

)2

+

(
h3

r3

)2

(2.59)
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Figure 2.3: Four main spatial structure model types – nugget effect, spherical,
exponential, and Gaussian models shown as (a) covariance functions, and (b)

variogram models.
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In Eq. (2.59), the separation distances h1, h2, and h3 are projections of

the vector h = (hX , hY , hZ) on orthogonal axes r1, r2, and r3 of the anisotropic

vector field r. The variogram ranges r1, r2, and r3 correspond to three princi-

pal orthogonal directions of the continuity. Because the principal directions of

anisotropy are orthogonal, the original X, Y, and Z axes of the coordinate system

could be rotated to match r1, r2, and r3. By doing so, the rotated coordinates

of the lag vector h become projections h1, h2, and h3. Directional angle of the

major continuity r1 is measured between Y axis and r1 and is called azimuth

angle αa (rotation around Z axis). Other two angles are called dip angle αd

and plunge angle αp, where rotation happens around Y and X axis, respectively

[17]. The schematic of the rotation is presented in Fig. 2.4. The projections h1,

h2, and h3 can be computed as shown in Eqs. (2.60) – (2.63) from coordinates

hX , hY , hZ . Matrices MRX , MRY , and MRZ are the rotation matrices around

X, Y, and Z axes, respectively. In the isotropic case, ratio h/r becomes scalar

—h—/r.


h1

h2

h3

 = MRXMRYMRZ


hX

hY

hZ

 (2.60)

MRX =


1 0 0

0 cosαp sinαp

0 − sinαp cosαp

 (2.61)

MRY =


cosαd 0 sinαd

0 1 0

− sinαd 0 cosαd

 (2.62)
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MRZ =


cosαa − sinαa 0

sinαa cosαa 0

0 0 1

 (2.63)

Once the variogram model is fitted, the geostatistical estimation and sim-

ulation methods can be carried out to estimate properties of the natural phe-

nomena at unsampled locations. Estimation methods produce a unique smooth

model. Simulation methods generate several models or realizations of the un-

known truth, which depict more realistic local variations.

2.2 Estimation

Geostatistical estimation is the general term for spatial interpolation methods,

which define unknown value of a random function at an unsampled location using

relevant data. There are two general types of the random functions dealt with:

continuous and categorical. The estimation methods are slightly different for

each type.

2.2.1 Continuous Variables

Kriging is a conventional geostatistical method widely used for the estimation of

properties of natural phenomena [36]. Simple kriging (SK) and simple cokriging

(SCK) estimate univariate and multivariate systems. They are spatial inter-

polation techniques that are sometimes called best linear unbiased estimators

(BLUE). The mean of the local estimates is unbiased, that is the expectation

of the estimate equals the expectation of the variable it seeks to estimate, while

local variance of the estimation error is minimized. Kriging produces an estimate

conditional to the available primary data values. In cokriging, a primary variable
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is estimated conditional to primary data and relevant secondary data of corre-

lated secondary variables. An assumption of first- and second-order stationarity

is crucial in both techniques. Simple kriging is explained first, which is followed

by simple cokriging.

The simple kriging equations take form shown in Eq. (2.64), where Z∗(u)

is the estimate of random function Z at location u, λα(u) is the kriging weight

assigned to a datum of random function Z at location uα to compute the estimate

of the random function at location u, and N is the number of data [10, 17, 26, 36].

Note that simple kriging estimate is unbiased (Eq. (2.65)). The kriging weights

are found from the minimization of the variance of the estimation error ε. The

error itself is location-dependent and defined as the difference between an esti-

mate and the truth at the estimation location u in Eq. (2.66). The variance of

estimation error σ2
ε(u) is presented as an expected value of the square difference

between an estimate and the truth at the estimation location u as shown in Eq.

(2.67), from which kriging weights are derived by finding local minima through

the partial derivatives. This optimized estimation error variance is also called

simple kriging variance. The system of kriging equations for simple kriging as

shown in Eq. (2.68) is the resulting solution to the estimation error variance min-

imization. The kriging weights are derived from this system of kriging equations.

Covariances on the left-hand side are between data locations, and covariances

on the right-hand side are between data and the unsampled location. The spa-

tial structure of the modeling system in terms of the covariance or variogram

function strongly influences the solution. Kriging assesses the uncertainty in the

estimate by the minimized estimation error variance (kriging variance), which

takes form shown in Eq. (2.69) [36].

Z∗(u) = mZ(u) +

N∑
α=1

λα(u) [Z(uα)−mZ(uα)] (2.64)
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E{Z∗(u)} = mZ(u) (2.65)

ε(u) = Z∗(u)− Z(u) (2.66)

σ2
ε(u) = E{(Z∗(u)− Z(u))2} ⇒ minσ2

ε(u) ⇒ λ(u) (2.67)

N∑
α=1

CZ(uα − uα′)λα(u) = CZ(u− uα′), α
′ = 1, ..., N (2.68)

σ2
ε∗(u) = σ2

Z −
N∑
α=1

CZ(u− uα)λα(u) (2.69)

Simple cokriging is presented in Eq. (2.70), where Z∗k(u) is the estimate

of random function Zk at location u, λk,αl(u) is the kriging weight assigned to a

datum of random function Zl at location uα to compute estimate of the random

function Zk at location u, Nl is the number of data of random function Zl, and K

is the total number of random functions. Kriging weights are computed from the

system of cokriging equations presented in Eq. (2.71). The minimized estimation

error variance is presented in Eq. (2.72).

Z∗k(u) = mZk(u) +
K∑
l=1

Nl∑
αl=1

λk,αl(u) [Zl(uα)−mZl(uα)] , k = 1, ...,K (2.70)

K∑
l=1

Nl∑
αl=1

λk,αl(u)CZlZm(uαl − uα′m) = CZkZm(u− uα′m),

α′m = 1, ..., Nm, m = 1, ...,K, k = 1, ...,K

(2.71)
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σ2
ε∗,k(u) = σ2

Zk
−

K∑
l=1

Nl∑
αl=1

λk,αl(u)CZkZl(u− uαl), k = 1, ...,K (2.72)

Therefore, simple kriging and cokriging provide an unique estimation model

of the studied property along with the uncertainty in the estimate based on the

available relevant data and variogram model.

2.2.2 Categorical Variables

As stated several times, the assumption of the stationarity is a central idea

in the geostatistical modeling [36]. A non-stationary setting can sometimes be

addressed by dividing the original domain into several stationary domains, which

are usually modeled with categorical variable modeling techniques.

Kriging can be extended to categorical random functions. Each random

function Zk out of K random functions corresponds to a category, which is

presented by an indicator ik [10, 17, 26]. Indicators ik(u), k = 1, ...,K, are

similar to probabilities and indicate a proportion of times the particular category

would be present at location u. Values of the indicators vary between 0 and

1. Indicator of zero implies that particular category could never present at a

location, while an indicator of one indicates the certain presence of a category at

a location. The mathematical definition of the indicators is shown in Eq. (2.73)

with their properties summarized in Eq. (2.74). Probabilities pk(u), k = 1, ...,K,

are means (expected values) of the indicators ik(u), k = 1, ...,K. Definition of

the probabilities is shown in Eq. (2.75) with properties in Eq. (2.76). Variance

σ2
k(u) of the indicators is defined similar to the continuous variables with different

outcome presented in Eq. (2.77).
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ik(u) =

 1, if category k is present at location u

0, if category k is missing at location u
, k = 1, ...,K (2.73)


0 ≤ ik(u) ≤ 1, k = 1, ...,K
K∑
k=1

ik(u) = 1
(2.74)

pk(u) = E{ik(u)}, k = 1, ...,K (2.75)


0 ≤ pk(u) ≤ 1, k = 1, ...,K
K∑
k=1

pk(u) = 1
(2.76)

σ2
k(u) = E{(ik(u)− pk(u))2} = pk(u)(1− pk(u)), k = 1, ...,K (2.77)

The indicators are estimated at unsampled locations u similar to the simple

kriging estimation of continuous variables. The estimated indicator i∗k(u) is

computed as in Eq. (2.78). A system of kriging equations (2.79) is required to

derive kriging weights λk,α(u) for each indicator data location uα, α = 1, ..., N ,

to compute estimate i∗k(u) at unsampled location u. The covariance functions

Ck(h), k = 1, ...,K, of the indicators are computed from the fitted variogram

models in the same way as it has been explained for the continuous variables.

Because the estimate of each category is computed independently, it may happen

that the indicator estimates do not satisfy the required properties in Eq. (2.74).

For this reason, the estimates are reset to i′∗k (u) according to Eq. (2.80).
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i∗k(u) = pk(u) +
N∑
α=1

λk,α(u) [ik(uα)− pk(uα)] , k = 1, ...,K (2.78)

N∑
α=1

λk,α(u)Ck(uα − uα′) = Ck(u− uα′), α
′ = 1, ..., N, k = 1, ...,K (2.79)


i∗k(u) = 0, if i∗k(u) < 0

i∗k(u) = 1, if i∗k(u) > 1

i′∗k (u) =
i∗k(u)
K∑
l=1

i∗l (u)

, ∀u ∈ A
, k = 1, ...,K (2.80)

The categories can be drawn from the estimated corresponding indicators,

what leads to the simulation method explained later. Note that indicator kriging

utilizes variogram models, and, therefore, is based on a two-point statistic.

2.3 Simulation

Estimation methods produce a unique smooth models that do not represent

realistic short scale variability [36]. Simulation methods have been developed to

generate a set of equally likely to be drawn stochastic realizations of the reality

with the expected degree of local variation. Uncertainty is assessed by variations

between the realizations. The realizations can be processed through the transfer

function to get characteristics of the system.

The normal or Gaussian distribution is very important in most simulation

algorithms. Simulated variables of a stationary random process tend to follow

normal distribution because of the central limit theorem (CLT). It states that

averages or sums of large number of independent equally distributed variables
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would follow a normal distribution [19]. Some simulation methods linearly com-

bine values and lead to results that are normally distributed. Other simulation

methods take advantage of the unique mathematical properties of the multivari-

ate normal distribution. Therefore, the simulation is almost always performed

in normal units. The random function that follows a normal distribution is de-

noted as Y. The normal or Gaussian distribution is a parametric distribution,

where the mean and standard deviation fully describe the entire distribution as

shown in Eq. (2.81) through the PDF gY (u)(y) for a single random variable Y (u).

One of the unique properties of the multivariate normal distribution is that all

conditional and marginal distributions are also normal.

gY (u)(y,mY (u), σY (u)) =
1√

2πσY (u)
exp

(
−(y −mY (u))2

2σ2
Y (u)

)
(2.81)

The normal score transformation (NST) can be applied to convert random

function Z, which follows arbitrary distribution FZ(u)(z), to a random function

Y, which follows strictly the normal distribution GY (u)(y). The unbiased data

distribution of the random function Z in original units should be used in the

transformation [17]. The normal score transformation of the univariate system

can be presented as a nonlinear quantile-quantile transform of variable distribu-

tion as shown in Eq. (2.82). A graphical representation is shown in Fig. 2.5. It

is generally assumed that the normal scores of random function Y are stationary

and follow normal distribution with a zero mean and unit variance Y∼N (0,1)

[36].

y = G−1
Y (u)[FZ(u)(z)] (2.82)

The NST can be applied to random functions of the multivariate system
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Figure 2.5: Graphical representation of the normal score transformation.

individually [42]. The multivariate distribution would then be assumed multi-

variate Gaussian. The NST is not a linear transform, thus only quantiles can be

back transformed (not means and variances).

2.3.1 Continuous Variables

The theory of the common geostatistical simulation methods for modeling contin-

uous properties of the natural phenomena is reviewed in this subsection. These

simulation techniques are assessed for their implementation in a grid-free form.

Current developments of the grid-free conditional simulation are also highlighted.

Despite large abundance of the geostatistical simulation techniques, most

methods are somehow grid dependent from an implementation perspective. The

conventional conditional and unconditional geostatistical simulation techniques

are designed in a way that takes advantage of a grid for the simulation [26].

Moreover, most techniques are not expressed as a function of the coordinates

of a simulation location and could not be easily refined to higher resolution in

current computational implementation [36].

The simulation methods of continuous random functions can be divided
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into two groups: direct conditional simulations and two-step conditional simula-

tions [40]. Sequential Gaussian simulation (SGS) and simulated annealing (SA)

generate conditional realizations directly [16, 64]. LU simulation (LUS), moving

average (MA), spectral (SS) and fractal simulations (FS) generate unconditional

realizations, which are later conditioned to data values. Note that the LUS can

be also implemented to generate conditional realizations [14]. Virtually all sim-

ulation algorithms are implemented on a grid despite the fact that many are

not intrinsically limited to gridded simulation [17, 64]. The grid type varies

from regularly structured grids, where the modeling domain is discretized into

a regular configuration of grid nodes organized according to some defined struc-

ture, to irregular unstructured grids, where the modeling domain is divided into

nodes irregularly distributed in the space [45]. Turning bands simulation (TBS)

method is a special algorithm that combines 1-D simulations into simulation of

higher dimensional systems. It is possible to express the realization as a function

of the coordinates with the TBS. The TBS method is discussed in Chapter 3.

All simulation algorithms can generate univariate and multivariate simulations.

Simulation is performed at the scale of the data referred to as the point scale.

Point-scale values can be brought to a larger scale by a regularization operator or

by some means of upscaling [36, 78]. Both approaches average point-scale spatial

properties of the variable within some volume associated with larger scale. Such

averaging is unique for additive variables such as rock porosity or mineral grade.

Direct conditional simulation techniques are extensively used in practice for

modeling continuous properties. Conditioning realizations to data is performed

simultaneously in the simulation algorithm. The concept of Monte Carlo simula-

tion (MCS) is utilized in all simulation methods [51]. A principle of MCS states

that simulated values can be drawn from the local distribution of the simulated

variable at the simulation location, where the local distribution is characterized

by conditional mean and variance. A random number between values 0 and
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1 is drawn. The corresponding quantile value from the estimated CDF would

correspond to the simulated value of the random variable.

The sequential Gaussian simulation (SGS) is widely used geostatistical sim-

ulation technique for modeling continuous variables [17, 64, 65]. SGS is based

on a sequential implementation of the Bayesian law of conditional probabilities.

The core of the simulation engine is shown in Eq. (2.83), where N is the num-

ber of the conditioning data and M is the number of the simulation nodes [17].

The simulation of the continuous variables is performed in the normal space Y.

Therefore, the NST is performed before and after the simulation. After NST, a

regular grid is established and a simulation path is defined randomly. The sim-

ulated values are drawn randomly from the estimated local distributions at the

nodes. These local distributions are derived from the simple kriging mean and

variance calculated conditional to data values and previously simulated values

taken within some search neighborhood using Eqs. (2.64) and (2.69) for univari-

ate case. The simulated values are back transformed to the original space once

all simulation nodes have been visited. The random component does not depend

on the location of the simulation node, but rather on the order of simulation

node. Thus, each simulated realization is not represented just as a function of

the coordinates. The realization at a location would change with any grid pa-

rameter changes. The SGS realizations could easily be refined using previously

simulated values as conditioning data. The drawback of such approach is that

all previously simulated values should be stored in the memory, because SGS

realizations are not expressed as a function of the coordinates of the simulation

locations. One concern with SGS is that the variograms of the realizations may

not reproduce the target variogram model at longer ranges [21].
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Prob{Y1 ≤ y1, ..., YM ≤ yM} = Prob{Y1 ≤ y1|(N +M − 1)}...

Prob{YM−1 ≤ yM−1|(N + 1)}

Prob{YM ≤ yM |(N)}

(2.83)

Simulated annealing (SA) is an optimization technique that could be adapted

to be geostatistical simulation technique [16]. The objective function includes

the mismatch between simulated values at the data locations and data values,

and minimization of the difference between reproduced and target spatial struc-

tures of the system. The simulation is generated iteratively on any grid or a set

of simulation nodes. The initial iteration is generated arbitrarily from the vari-

able’s distribution. The objective function is computed and compared to some

minimal value, at which the simulation terminates. If the objective function is

greater than terminating value, some realization values are perturbed. A new

objective function is computed and compared with old one and the terminat-

ing value. If new objective function is smaller than an old one, new perturbed

realization values are accepted. Otherwise, new realization values are accepted

or rejected based on some acceptance/rejection strategy controlled by a cooling

function. The cooling function tends to accept more perturbation in the be-

ginning of the simulation and less with increasing number of iterations. Other

realization values are perturbed in the same fashion until the objective function

reaches minimal terminating value. Careful selection of the perturbation algo-

rithm and cooling function is required. The implementation of the SA may be

computationally expensive.

The two-step conditional simulation procedures are also common in prac-

tice. The choice between direct and two-step simulation methods depends on
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the modeler [17, 69]. Two-step conditional simulation algorithms produce con-

ditional realizations in two steps [36]. The data values are also transformed to

normal units. First, unconditional realizations Y us
i (u), i = 1, ..., NR, are gen-

erated in normal scores with various fast unconditional simulation algorithms.

The resulting realizations have the specified spatial structure, but do not honor

the data. The unconditional simulation is fast. Second, the unconditional real-

izations are conditioned by adding kriging estimate Y ∗(u) conditioned to data

in normal scores and subtracting kriging estimate Y
∗|us
i (u) conditioned to un-

conditionally simulated values of ith realization at the data locations. This step

is expressed mathematically in Eq. (2.84) for both univariate and multivariate

systems. The equation is applied to every realization i of total NR realizations.

In case of modeling multivariate system, kriging is replaced with cokriging and

simulation is replaced with cosimulation.

Y s
i (u) = Y us

i (u) +
(
Y ∗(u)− Y ∗|usi (u)

)
, ∀u ∈ A, i = 1, ..., NR (2.84)

The LU simulation, moving average, spectral and fractal simulation tech-

niques are geostatistical simulation engines for generation of unconditional real-

izations [15, 28, 34, 55, 70]. They are applied to any dimensional problem and

lead to accurate variogram reproduction.

The LU simulation (LUS) is based on the LU decomposition of the co-

variance matrix CY of the modeled system in the normal space [1, 14]. The

entries in the covariance matrix are the covariance values between all simulation

nodes. Therefore, the simulation nodes should be defined before the simulation

starts. The node locations can be specified arbitrarily, but usually are organized

according to a regular grid. The simulated realizations can be refined, but are
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not expressed as a function of the simulation node locations. Because the co-

variance matrix is symmetric, the LU decomposition algorithm is replaced with

the faster Cholesky decomposition algorithm shown in Eq. (2.85). Matrices LY

and UY are the lower and upper triangular matrices. The simulated values Y

are generated by matrix multiplication of the lower triangular matrix and vec-

tor of normally distributed zero-mean unit-variance random values R ∼ N (0,I )

presented in Eq. (2.86). The matrix I is the identity matrix with zero elements

except diagonal entries, which are one. The random components in R are not

controlled through the coordinates. The realizations are generated by drawing

different elements for random vector R. The resulting simulated values in Y

would follow normal distribution with zero mean and unit variance. The LU

matrix decomposition becomes intractable and computationally demanding for

large models. The method reproduces the variogram well. The unconditional

realizations from LU simulation can be elegantly conditioned by kriging in a

matrix form [1, 14].

CY = LYUY = LY L
T
Y (2.85)

Y = LYR (2.86)

In the moving average (MA) simulation method, the unconditional simula-

tion Y us(u) of 1-D systems is generated as a convolution of a weighting function

λ(u) and random Gaussian signal R(u) as shown in Eq. (2.87) [55]. The MA is

usually applied together with the turning bands simulation method [36]. Trans-

formation of the covariance function CY (h) of the simulated random variable

Y us(u) to the frequency space is applied in this technique. The Fourier trans-

form and inverse Fourier transform, which form the Fourier transform pair of

a continuous function f, can be calculated as shown in Eqs. (2.88) and (2.89),
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where i is the imaginary unit of the complex number [7, 72]. An elegant property

of the Fourier transform is that convolution in the space domain translates to a

multiplication in the frequency domain [8]. Because the relationship between the

covariance CY (h) and weighting function λ(u) in the space domain is expressed

through a convolution of the weighting function and its reverse λ̆(u) as in Eq.

(2.90), the weighting function λ̂(ω) in the frequency domain is derived from the

Fourier transform ĈY (ω) of the target covariance function as presented in Eq.

(2.91). The Fourier transform of the weighting function is transformed back to

original space with the inverse Fourier transform as presented in Eq. (2.89). The

expression for the weighting function can be easily derived analytically for most

covariance functions. Forms of the weighting functions for the most common co-

variance functions are summarized in [55] and can be extended to any other licit

covariance function models. The weighting function λ(u) is symmetric about

the origin. The random signal R(u) has a pure nugget effect spatial structure.

It is not represented as a function of the coordinate. The convolution operator

[λ?R](u) is discretized through the summation in the numerical implementation.

Therefore, the moving average simulation depends on the grid.

Y us(u) = [λ ? R](u) =

∞∫
−∞

λ(u− u′)R(u′)du′ (2.87)

f̂(ω) =

∞∫
−∞

f(h) exp(−iωh)dh (2.88)

f(h) =
1

2π

∞∫
−∞

f̂(ω) exp(iωh)dω (2.89)

CY (h) = [λ ? λ̆](h) =

∞∫
−∞

λ(h− h′)λ(h′)dh′ (2.90)
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λ̂(ω) =

√
ĈY (ω) (2.91)

Spectral simulation (SS) is an important class of fast unconditional simula-

tion techniques. Fractal simulation is a special case of spectral simulation with a

particular covariance function. The SS methods are global techniques in a sense

that they assume stationarity over entire modeling area. The key idea of the SS is

the reciprocal transition between space and frequency domains. Any continuous

function f in Eqs. (2.88) and (2.89) is discretized into M equally spaced nodes

in both space and frequency domains. The resulting Fourier transform pair is

shown in Eqs. (2.92) and (2.93) for 1-D case. Note that the frequency domain is

periodic and, thus, frequency domain can be completely characterized in [0, 2π)

interval. This class of simulation methods often uses the fast Fourier transform

(FFT) algorithm to compute the Fourier transform pair [8, 28, 66]. The FFT is

grid dependent and requires a grid size that is a multiple of 2. An example of

Cooley-Tukey FFT of the function from space to frequency domain is presented

in Eqs. (2.94) – (2.96), where f̂e(ωm) and f̂o(ωm) denote even and odd parts of

the f̂(ωm) [11]. The computational time reduces from M2 to M log(M) for the

transformation of entire function f by recursively applying FFT.

f̂(ωm) =
M∑
q=1

f(uq) exp

(
−i2π (m− 1)(q − 1)

M

)
(2.92)

f(uq) =
1

M

M∑
m=1

f̂(ωm) exp

(
i2π

(m− 1)(q − 1)

M

)
(2.93)

 f̂(ωm) = f̂e(ωm) + exp
(
−i2π (m−1)

M

)
f̂o(ωm)

f̂(ωm+M/2) = f̂e(ωm)− exp
(
−i2π (m−1)

M

)
f̂o(ωm)

, m = 1, ...,M/2 (2.94)
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f̂e(ωm) =

M/2∑
q=1

f(u2q) exp

(
−i2π (m− 1)(q − 1)

M/2

)
(2.95)

f̂o(ωm) =

M/2∑
q=1

f(u2q−1) exp

(
−i2π (m− 1)(q − 1)

M/2

)
(2.96)

Spectral simulation is well researched, but not implemented extensively for

geostatistical applications [17]. The origin of SS is electrical engineering. One of

first papers on SS proposed a technique for the generation of multidimensional

multivariate anisotropic realizations without reliance on the FFT [71]. Isotropic

univariate random function Y us(u) can be generated unconditionally according

to Eq. (2.97). Here ωm is the discrete frequency vector for µ-dimensional system;

ω′m is the discrete frequency vector with some small random value introduced

to avoid the periodicity in the simulated function Y us(u); ∆ω is the vector of

frequency increments for all dimensions µ; φ(ωm) is the random phase indepen-

dently and uniformly distributed between 0 and 2π; and ĈY (ωm) is the spectral

density of the covariance function CY (h) computed discretely as shown in Eq.

(2.98). The discretization indices m and q include indices over high dimensional

domain, i.e., m = [m1 ... mµ]T and q = [q1 ... qµ]T . The total number of the

discretization points M has Mµ components. An anisotropic random function

can be simulated according to Eq. (2.99), where A(u,ωm) is the deterministic

function that addresses anisotropy of the modeled system. Isotropic multiple cor-

related random functions can be generated according to Eq. (2.100). Lkl(ωm) is

the element of the lower triangular matrix L(ωm) computed from the Cholesky

decomposition of the spectral density matrix ĈY (ωm) as shown in Eq. (2.101).

θkl is the additional phase shift attributed to the multivariate case. Its expres-

sion is shown in Eq. (2.102). In univariate isotropic, univariate anisotropic, and

multivariate cases, the unconditional simulation Y us(u) is proportional to a sum
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of the product of the square root of the spectral density and cosine function of

a particular frequency. The simulated realization can be expressed as a function

of the coordinates of simulation location u allowing zooming in and out the pro-

cess, which is briefly described in [70]. The major concern with this technique is

an occurrence of the periodicity in the reproduced variograms of the simulations

[59, 60].

Y us(u) =

M∑
m=1

√
ĈY (ωm)2∆ω cos(ω′mu + φ(ωm)) (2.97)

ĈY (ωm) =
1

Mµ

M∑
q=1

CY (hq) cos(ωmhq) (2.98)

Y us(u) =
M∑

m=1

A(u,ωm)

√
ĈY (ωm)2∆ω cos(ω′mu + φ(ωm)) (2.99)

Y us
k (u) =

k∑
l=1

M∑
m=1

|LY,kl(ωm)|
√

2∆ω cos(ω′mu + θkl(ωm)+φl(ωm)),

k = 1, ...,K

(2.100)

ĈY (ωm) = LY (ωm)LTY (ωm), LY,kl(ωm) ∈ LY,kl(ωm), k, l = 1, ...,K (2.101)

θkl(ωm) = tan−1

(
=Lkl(ωm)

<Lkl(ωm)

)
, k, l = 1, ...,K (2.102)

A similar frequency-based approach to the simulation of unconditional

Gaussian fields in any dimensional space is the Fourier integral method (FIM),



Chapter 2. Background 50

which does not show significant periodicity in the reproduced experimental var-

iograms of the simulations [58]. The gridded realization Y us(uq), q = 1, ...,M,

in higher dimensional space is generated on a regular grid by means of the FFT,

where discrete spectral density function ĈY (ωm) represents the square magni-

tude of the Fourier transform of the simulation as shown in Eq. (2.103). This

simulation is possible, because the relationship between random function and

covariance can be expressed in a convolution form as in Eq. (2.104), what be-

comes Eq. (2.105) in a frequency domain [82]. The spectral density is computed

according to Eq. (2.106). The phase φ(ωm) is added randomly to introduce

the stochastic feature. The FIM allows generating realizations with any licit

anisotropic variogram models.

Y us(uq) =
M∑

m=1

√
ĈY (ωm) exp

(
i2π

(m− 1)(q− 1)

M
+ φ(ωm)

)
(2.103)

CY (h) = [Y ? Y̆ ](h) =

∞∫
−∞

Y (h− h′)Y (h′)dh′ (2.104)

ĈY (ω) = Ŷ (ω)Ŷ (−ω) = |Ŷ (ω)|2 (2.105)

ĈY (ωm) =
1

Mµ

M∑
q=1

CY (hq) exp

(
−i2π (m− 1)(q− 1)

M

)
(2.106)

Multivariate simulation is possible with the FIM [59]. First, the spec-

tral density matrix ĈY is defined by applying Fourier transform to the target

direct- and cross-covariances CY obtained from the experimental variograms of

the simulated random functions. The covariance matrix CY has to be positive
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definite and may be corrected by setting negative eigenvalues of the matrix to

zero. The eigenvalues can be derived as shown in Eq. (2.107), where τ is the

possible eigenvalue solution to the equation and e is the eigenvector [67]. Second,

Cholesky decomposition of the spectral density matrix ĈY is performed. Each

row of the lower triangular matrix represents the set of modules of the spectral

amplitude functions. Third, each variable Ŷ us
k (ωm), k = 1, ...,K, is simulated

in the frequency domain by adding the spectral amplitude modules from the

corresponding row of the lower matrix multiplied by a complex exponent of the

random phase. Last, the simulated values Ŷ us
k (ωm), k = 1, ...,K, in the frequency

domain are transformed back to the original units Y us
k (uq), k = 1, ...,K, through

the inverse Fourier transformation. All direct and cross terms of the covariance

matrix are reproduced. Some corrections to get strictly Gaussian simulations

may be necessary [59]. All calculations are performed using the FFT, which

makes this technique grid dependent.

CY e = τe (2.107)

Fast Fourier transform-moving average (FFT-MA) simulation method takes

advantage of both fast Fourier transformation and simplicity of the moving av-

erage to simulate unconditional Gaussian realizations [41] . In this method, the

FFT is applied separately to weighting function λ(u) and random signal R(u) to

transform both functions to the frequency domain independently. The product

of these two transforms in frequency domain is back transformed with FFT to

original space to get unconditional simulation Y us(u). Such approach allows to

update unconditional simulation locally by changing only some local values of

the random signal R(u). Because FFT is used in this simulation method, final

realizations depend on the grid, size of which is a multiple of 2.

There are several spectral simulation programs available. The generation of
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isotropic unconditional univariate random processes in 1-D, 2-D, and 3-D spaces

has been implemented with Fortran-77 based on the Fourier integral method [60].

The program can generate the process on up to 215 = 32,768 grid nodes. Modi-

fications have been made to generate unconditional nested anisotropic processes

excluding zonal anisotropy on a 2-D grid [61]. Another Fortran-77 program for

conditional spectral simulation of anisotropic realizations in 1-D, 2-D, or 3-D

is available [83]. All programs require a simulation grid, and the simulation is

performed in normal score units.

The fractal simulation is implemented similar to the spectral simulation

with the difference that simulated random function has to have a particular

covariance form [22, 46]. The fractal Gaussian noise (fGn) and fractal Brownian

motion (fBm) are two of the most commonly encountered fractals in geostatistics.

Their spatial structures differ from the ones that are usually used in conventional

geostatistics. The covariance of the fBm in space and frequency domains can be

presented for 1-D case as in Eqs. (2.108) and (2.109), respectively, where H is

the Hurst exponent [76]. fGn is similar to white noise and can be described by

a nugget effect spatial structure.

CY (h) ∝ |h|−2H , 0 < H < 1 (2.108)

ĈY (ω) ∝ ω−2H−1, 0 < H < 1 (2.109)

Some spatial properties of petroleum reservoirs can be modeled with fBm

in 2-D and 3-D using the Fourier integral method explained before [28, 58]. The

resulting simulation preserves spatial structure of the data. The fBm process is

continuous and non-differentiable. The fBm possesses a statistical self-similarity

and self-affinity feature at various scales, which implies that some statistical

properties change in the same manner in all dimensions and other properties
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change in a proportional manner in all dimensions. The statistical self-affinity

scaling behaviour is shown in Eq. (2.110), where κ is the scaling parameter [76].

γY (κh) ∝ κ2HγY (h), 0 < H < 1 (2.110)

Most of the covered techniques address multivariate systems based on some

modifications of the linear model of coregionalization. The LMC is a conventional

way to model spatial structure of multiple correlated variables, but requires

tedious derivation of all direct- and cross-covariances, which is not an easy task

[17, 26, 36, 44, 52, 53].

Surprisingly, but not many authors have addressed the importance of grid-

free simulation algorithm in the geostatistical literature. As it was mentioned

before, SS can be used potentially as a grid-free simulation technique [70]. How-

ever, periodicity issue in the reproduced covariance should be first solved [21].

The most obvious way to characterize the simulation of a spatial random

function as a function of the coordinates of the simulation locations is to represent

this simulation through a well-defined polynomial function. This research work

proposes to represent unconditional simulation Y us(u) as a weighted sum of

stochastic cosine functions, where weighting coefficients are derived from the

Fourier series decomposition of the target covariance function (see Chapter 3).

This approach bears common features with the spectral simulation techniques.

2.3.2 Categorical Variables

The simulation methods for categorical variables can be based on a two- and

multiple-point statistics. First group is represented by a sequential indicator

simulation (SIS), truncated Gaussian simulation for simple relationship between

categories or truncated pluriGaussian simulation for more complex relationships,

Markovian-type categorical prediction (MCP) [2, 10, 17, 64]. Second group is
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represented by multiple point statistics (MPS) simulation method for categor-

ical variables [74]. Training images reflecting similar spatial structure of the

system are strongly required for the MPS algorithm. Because the implementa-

tion of these techniques is gridded, simulated values are not expressed freely as

a function of the simulation node coordinates.

Current state of the grid-free simulation of discrete properties of the nat-

ural phenomena is tied to an object-based modeling [63]. They define categories

through the geometrical shapes [31, 32]. First, the geological bodies are gen-

erated as analytical objects at a particular scale. Second, these objects are

rasterized on a grid or on an irregular set of simulation nodes. This enables to

express spatial distribution of the stationary domains as a function of the sim-

ulation location coordinates. The shape of the objects is limited to a particular

depositional environment, and conditioning to the hard data is challenging [33].

The sequential indicator simulation is a widely used for the simulation

of categorical variables. It borrows major aspects from the categorical kriging

of probabilities explained in Section 2.2.2 and is very similar to SGS in the

implementation aspect. The algorithm of the SIS is briefly reviewed, because

it is used in Chapter 6 to simulate categorical domains of stationary geological

properties [17]. First, the order of the categories is chosen to be used later in

local CDF. Second, the random simulation path is defined. Third, all or some

indicator data within search area ik(uα) and previously simulated indicators

isk(uβ) are used in Eq. (2.78) to get an estimated indicator i∗k(u) for every

category k = 1, ...,K, at simulation location u. The estimated indicators are

corrected if necessary, to add to one and be within range [0,1]. Forth, the local

CDF of the estimated indicators is built. Fifth, the simulated categories isk(u) are

generated by MCS concept from the local CDF of the estimated indicators. The

random number is drawn by random number generator, which is later matched

with the quantile of the CDF. Corresponding category is recorded. Simulated
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indicator is one for the simulated category, and it is zero for the rest of the

categories [64]. The procedure is repeated from third step to get simulated

categories at other simulation locations. The procedure is terminated, when all

simulation nodes are visited.



Chapter 3

Unconditional Grid-Free

Simulation

To address conditional simulation of multivariate systems of natural phenomena,

a simulation is generated as a two-step algorithm in normal scores. There is a

remarkable advantage of reduced computational time in simulation of uncondi-

tional realizations. The conditioning can be performed by dual kriging, which

is faster than the primal form of kriging and is conveniently represented as a

function of the coordinates.

The two-step conditional simulation algorithm has been presented in Fig.

1.6 of Chapter 1. Major points of the multivariate grid-free simulation of the

natural phenomena can be summarized as follows.

1. Define variables for the modeling

• study available data

• assess the relationship between variables

• note the scale difference in the data

2. Pre-process data

56
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• bring all data to point scale

• transform data to normal scores

3. Obtain spatial structure of the modeling system

• compute experimental variograms in all possible directions

• define principal directions of the continuity

• fit variogram model

4. Perform simulation in the normal units in a grid-free format at the required

simulation locations

• generate unconditional realizations as a function of the coordinates at

the simulation locations

• condition realizations to data values

5. Check target statistics in the conditional simulation

• check data reproduction

• check normality of the realizations

• check compliance of experimental variograms from realizations to data

variogram and variogram model

• check reproduction of the relationship between variables

6. Post-process realizations

• transform realizations back to original units

• upscale point-scale realizations to a larger scale as required

7. Perform simulation at another set of locations if necessary
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The unconditional simulation is described in this chapter, which is one

of two major steps of the proposed grid-free simulation algorithm. The second

major step for conditioning unconditional realizations to the data is explained in

Chapter 4. The unconditional simulation is represented as a polynomial of the co-

ordinates of the simulation locations, and corresponding coefficients are derived

from the target covariance function of the random process. The decomposition of

the covariance function can be performed through the well-known Fourier series

decomposition. The expression for the Fourier coefficients are straightforward

and can be computed both analytically and numerically. The Fourier series rep-

resentation of the covariance function is similar to spectral simulation algorithms.

The resulting random function will follow a normal distribution. Multivariate

realizations have the potential to be described well with LMC concept.

3.1 Fourier Series Simulation

The Fourier series simulation (FSS) has been developed for the grid-free represen-

tation of the simulated system. It is based on the linear model of regionalization

for univariate systems or linear model of coregionalization for multivariate sys-

tems, where weights are derived from the decomposition of the target covariance

function with the Fourier series.

3.1.1 Fourier Series

The Fourier series can be used to decompose any periodic continuous function

f (h) into a weighted sum of cosine and sine terms of various frequencies as shown

in Eq. (3.1) with h being an argument of the function and q being an index [8].

The Fourier coefficients are represented by two kinds. The ones that correspond

to cosine functions are denoted as gq and are computed by integration of the

continuous function as shown in Eq. (3.2). The others that correspond to sine
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functions are denoted g′q and are computed similarly to cosine Fourier coefficients

as presented in Eq. (3.3). The product of a Fourier coefficient with the cosine

or sine function is called the Fourier series term. The 2S stands for the periodic

domain, where S is half of the periodic domain.

f(h) =
∞∑

q=−∞

(
gq cos(

πqh

S
) + g′q sin(

πqh

S
)

)
(3.1)

gq =
1

2S

S∫
−S

f(h) cos(
πqh

S
)dh (3.2)

g′q =
1

2S

S∫
−S

f(h) sin(
πqh

S
)dh (3.3)

In case when function f (h) has a form that does not allow strict mathemat-

ical integration of Eqs. (3.2) and (3.3), it is possible to approximate integration

with the discrete numerical summation of 2M + 1 terms with distance increment

∆h = 2S/(2M+1) as shown in Eqs. (3.4) and (3.5).

gq =
1

2S

M∑
m=−M

f(m∆h) cos(
2πqm

2M + 1
) (3.4)

g′q =
1

2S

M∑
m=−M

f(m∆h) sin(
2πqm

2M + 1
) (3.5)

In order to better understand the concept of the Fourier series decompo-

sition of the continuous periodic function, an example is provided below. The

goal is to decompose function f (h) with periodicity of 2S = 20.0, shown in Eq.

(3.6), into Fourier series terms with various term numbers. The parameter C

equals to 1.0. The index i of peaks varies between -∞ and ∞. The base of this

function can be represented as in Eq. (3.7), when peak number i = 0 is selected.

Therefore, the function f (h) is an even function, i.e. f (h) = f (-h). Because
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of this property, sine Fourier coefficients g′ are all zero. It can be checked by

substituting Eq. (3.6) or Eq. (3.7) into Eq. (3.3). On the other hand, cosine

Fourier coefficients have a form shown in Eq. (3.8).

f(h) =

 [h− (2i− 1)S] CS , (2i− 1)S < h ≤ 2iS

[−h+ (2i+ 1)S] CS , 2iS < h ≤ (2i+ 1)S
(3.6)

f(h) =

 [h+ S] CS , −S < h ≤ 0

[−h+ S] CS , 0 < h ≤ S
(3.7)

gp =

 C
2 , p = 0

C
π2p2

[1− cos(πp)] , p 6= 0
(3.8)

Fig. 3.1 shows original continuous periodic function f (h) along with the

corresponding 99 significant Fourier coefficients {gq, q = -49, ..., 49} and two

reconstructed functions f∗(h) with the Fourier series of different length. The

first function is approximated by 11 Fourier coefficient terms q = -5, ..., 5. The

second function is represented by 99 Fourier coefficient terms q = -49, ..., 49.

It is observed that Fourier series terms with indices closer to the zero index are

more significant and possess more information about the original function.

The following figures are intended to better illustrate principles of the

Fourier series-based decomposition of a continuous periodic function f (h). Fig.

3.2 presents cosine Fourier coefficients starting with index q = 0 and expanding

to left and right. It can be observed that all even Fourier coefficients are zero

except g0. All odd Fourier coefficients are non-zero and becomes smaller as

one moves from the index q = 0 to both sides. Fig. 3.3 summarizes cosine

functions that correspond to eleven Fourier series terms centered around q = 0

and last two Fourier series terms for q = -49 and q = 49. Note the periodic

nature of each cosine function of various frequency. Also note that the last plot

shows distorted high frequency plot, which should be very similar to other lower
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Figure 3.1: Fourier series example – original continuous periodic function
f (h), corresponding Fourier coefficients {gp, p = -49, ..., 49}, reconstructed
function f∗(h) with Fourier coefficients {g−5, ..., g5}, and reconstructed function
f∗(h) with Fourier coefficients {g−49, ..., g49}. Recall that all sine Fourier

coefficients g′ are zero.

frequency plots with higher intensity of lines. The reason of misrepresentation

lies in the discretization level used for the plotting, which is smaller than a

frequency of the cosine function. Next, Fig. 3.6 depicts Fourier series terms,

that is, products of Fourier coefficients with corresponding cosine functions. The

magnitude of each Fourier term decreases as its frequency increases. This can

be clearly seen on Fig. 3.7. Finally, Fourier series-based representation of the

original function f (h) with various numbers of Fourier series terms can be seen

in Fig. 3.8. A prominent feature of the periodic function decomposition with

the Fourier series is that limited number of Fourier series terms around index q

= 0 would contain the most information about the function. It can be seen by

comparing reconstructed functions f∗(h) with 11 and 99 terms. Both of them

look very much alike, despite great difference in the number of terms used in the

function f (h) reconstruction.

It is crucial for this research work to notice that covariance function can be
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Figure 3.2: Fourier series example – first eleven and last two Fourier coeffi-
cients from {g−49, ..., g49} range.

also deemed as a periodic continuous function as long as half of the periodic do-

main S is larger than the longest variogram range and larger than the simulation

domain. By making this assumption, periodicity in the variogram reproduction

and simulation is avoided. For further details, consult Fig. 3.7, where contin-

uous periodic function in the form of the spherical covariance function Sph(h)

is shown. The variogram range r is 10.0 units. Half of the periodic domain S

is 20.0 units. The variogram range r is smaller than S, as it is supposed to be.

This spherical covariance function has a continuous periodic form. Therefore, to

simulate realizations without periodic features, the simulation domain should be
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Figure 3.3: Fourier series example – cosine functions, which correspond to
first eleven and last two Fourier series terms from {q = -49, ..., 49} range.

less than half of the periodic domain S.

The Fourier series can be easily used to decompose not just 1-D functions,

but also higher dimensional ones. The general expression for the Fourier series

for a µ-dimensional function is shown in Eq. (3.9). The Fourier coefficients are

computed with Eqs. (3.10) and (3.11). Here the scalar terms are replaced with

vectors.

f(h) =
∞∑

q=−∞

(
gq cos(πqTS−1h) + g′q sin(πqTS−1h)

)
(3.9)
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Figure 3.4: Fourier series example – first eleven and last two Fourier series
terms from {q = -49, ..., 49} range.
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Figure 3.5: Fourier series example – first eleven and last two Fourier series
terms from {q = -49, ..., 49} range imposed on one plot.
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Figure 3.6: Fourier series example – Fourier series-based representation of
the function f (h) with various numbers of the Fourier series terms.
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Figure 3.7: Continuous periodic representation of spherical covariance func-
tion f (h) = Sph(h).
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gq =
1

2µS1...Sµ

S∫
−S

f(h) cos(πqTS−1h)dh (3.10)

g′q =
1

2µS1...Sµ

S∫
−S

f(h) sin(πqTS−1h)dh (3.11)

Note that in the equations above, the enlarged dimensionality does not

change the structure of the original Fourier series presented in Eqs. (3.1) – (3.3).

The vectors in Eqs. (3.9) – (3.11) have forms shown in Eqs. (3.12) – (3.14). The

unfolded expression for the Fourier series and its coefficients in µ-dimensional

space can be rewritten as in Eqs. (3.15) – (3.17).

h =

[
h1 ... hµ

]T
(3.12)

q =

[
q1 ... qµ

]T
(3.13)

S =


S1 ... 0

...

0 ... Sµ

 (3.14)

f(h1, ..., hµ) =

∞∑
q1=−∞

...

∞∑
qµ=−∞

(
gq1...qµ cos(

πq1h1

S1
+ ...+

πqµhµ
Sµ

)

+ g′q1...qµ sin(
πq1h1

S1
+ ...+

πqµhµ
Sµ

)

) (3.15)
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gq1...qµ =
1

2µS1...Sµ

S1∫
−S1

...

Sµ∫
−Sµ

f(h1, ..., hµ)·

cos(
πq1h1

S1
+ ...+

πqµhµ
Sµ

)dh1...dhµ

(3.16)

g′q1...qµ =
1

2µS1...Sµ

S1∫
−S1

...

Sµ∫
−Sµ

f(h1, ..., hµ)·

sin(
πq1h1

S1
+ ...+

πqµhµ
Sµ

)dh1...dhµ

(3.17)

An example of anisotropic covariance function decomposition in 2-D (µ =

2) is shown in Figs. 3.8 – 3.10 using the numerical integration of the Fourier

coefficients. The covariance function takes the form of the most common covari-

ance functions: spherical, exponential, and Gaussian covariances. The covariance

function is deemed to be a continuous periodic function with periodic ranges 2S1

= 40.0 units in h1 direction, which makes 90o with the azimuth, and 2S2 = 40.0

units in h2 direction. The anisotropy is presented by different covariance ranges:

r1 = 10.0 units in h1 direction and r2 = 5.0 units in h2 direction. Only 81 Fourier

coefficients gq1q2 (discrete values) are computed for each index q1 and q2. The

direction of the anisotropy is reversed by 90o in the space of Fourier coefficients.

It is observed again that even though the summation of the Fourier series has

to be performed over the infinite space, in practice, the number of the Fourier

coefficients required for the Fourier series-based representation of the continuous

periodic function is finite and is not large. Only limited terms are necessary

to represent the function. As a recommendation, the Fourier series terms q =

{-Q1, ..., Q1; ...; -Qµ, ..., Qµ} with the corresponding Fourier coefficients larger

than 0.01 (1%) of the largest Fourier coefficient, which happens to be coefficient
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g0, need to be retained in the function decomposition for the accurate and pre-

cise results. The study that justifies the choice of the optimal number of the

Fourier coefficients used for covariance decomposition is presented in Section 5.3

of Chapter 5. This optimal threshold was defined visually from the realization

maps and reproduction of the target variogram.

(a) (b)

Figure 3.8: (a) Anisotropic spherical covariance function in 2-D space, and
(b) corresponding Fourier coefficients in 2-D space.

(a) (b)

Figure 3.9: (a) Anisotropic exponential covariance function in 2-D space, and
(b) corresponding Fourier coefficients in 2-D space.
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(a) (b)

Figure 3.10: (a) Anisotropic Gaussian covariance function in 2-D space, and
(b) corresponding Fourier coefficients in 2-D space.

3.1.2 Univariate Simulation

The concept of the Fourier series-based representation of the covariance function

can be expanded further for the unconditional simulation. For this reason, the

LMR concept comes in handy. The LMR Eq. (2.36) is rewritten in Eq. (3.18),

where instead of random function Z, random function Y is to be simulated in

a normal space with zero mean and unit variance. The zero term independent

random factor X0 is left aside, because of its special covariance function. This

independent factor is also called white noise; it has a nugget covariance function.

The covariance of the target random function Y is expressed as in Eq. (3.19), the

schematic graph of which is shown in Fig. 3.11 for 1-D. The covariance functions

are mostly defined through the input or known variogram models, which would

have been derived from the data and have a form as in Eq. (3.20). Fig. 3.11(a)

shows that a target covariance function with a nugget effect is not continuous.

This means that the Fourier series approach cannot be used to decompose the

covariance function CY (h). On the other hand, when the white noise is removed

from the LMR, the corresponding covariance function becomes continuous as

required (see Fig. 3.11(b)). For now, we will work with the random function Y′

= Y – g0X0, expression of which along with its covariance is shown in Eqs. (3.21)
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and (3.22). Therefore, by comparing Eq. (3.22) with Eq. (3.9) of the Fourier

series, it can be argued that these two equations are identical, i.e. CY ′(h) can

be easily presented as f (h). To illustrate this claim, let’s recall that sine Fourier

coefficients g′q are zero for the even functions (symmetric about vertical axis).

The parallel between notations should be also drawn: p index is replaced with q,

and CXq(h) becomes a cosine function. To put this in a mathematical expression,

Eq. (3.23) can be used. Also, a finite number of the Fourier coefficients Q is

used in the decomposition, because only coefficients centered around zero index

contribute to the decomposed function.

Y (u) = a0X0(u) +
P∑
p=1

apXp(u) (3.18)

CY (h) = a2
0CX0(h) +

P∑
p=1

a2
pCXp(h) (3.19)

γY (h) = b0Γ0(h) +
P∑
p=1

bpΓp(h) (3.20)
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Figure 3.11: Plot of the covariance function of the random function Y (a)
with nugget and (b) without nugget.



Chapter 3. Unconditional Grid-Free Simulation 71

Y ′(u) =
P∑
p=1

apXp(u) (3.21)

CY ′(h) =
P∑
p=1

a2
pCXp(h) (3.22)

CY ′(h) = f(h)⇒



p→ q

P → Q⇒ Q = 2(Q1 + ...Qµ) + µ
P∑
p=1
→

Q∑
q=−Q

a2
p → a2

q

CXp(h)→ CXq(h)

(3.23)

To extend further, the LMR changes from Eq. (3.21) to Eq. (3.24), where

the LMR coefficients aq are found from the cosine Fourier coefficients gq as shown

in Eq. (3.25), and random factor Xq(u) has the form as presented in Eq. (3.26).

The covariance function of the proposed random function has to be in the cosine

form as shown in Eq. (3.27). The most important part is that random factors

(and also target random function Y ′) are represented by a random component

φq, which is a function of the Fourier coefficient index q and is not a function

of the location u. Therefore, final expression for the unconditional realization

Y us
i (u) of random function Y at location u in normal scores is shown in Eq.

(3.28), where the random phase φq,i of uniform distribution is tied to index of

the Fourier series coefficient q and a realization index i. The random variable

Y ′(u) is expressed as a function of the coordinates of the simulation location u.

This simulation method is named Fourier series simulation. The simulation of a

white noise X0 (nugget component) in a grid-free manner is explained later in

Section 3.3.
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Y ′(u) =

Q∑
q=−Q

aqXq(u) (3.24)

aq =
√
gq (3.25)

Xq(u) =
√

2cos(πqTS−1u + φq), φq ∈ [0, 2π] (3.26)

CXq(h) = cos(πqTS−1h) (3.27)

Y us
i (u) =

√
b0X0,i(u)+

1√
2µ−1S1...Sµ

Q∑
q=−Q

cos(πqTS−1u + φq,i)·√√√√√ S∫
−S

(CY (h)− b0CX0(h)) cos(πqTS−1h)dh

(3.28)

To illustrate the principles of grid-free simulation based on the Fourier

series decomposition of the covariance function of Y ′, 1-D and 2-D examples are

provided below. Following examples show that the FSS generates a realization of

a random function Y ′ as a continuous function in space, which can be resolved at

any set of locations (simulation nodes). In other words, FSS produces grid-free

simulation.

Consider the generation of a stochastic process in 1-D over the [0 – 1000]

unit interval with the exponential covariance function CY ′(h) expressed by Eq.

(3.29), where correlation range r is 50.0 units. The cosine Fourier coefficients gq

can be easily computed from Eq. (3.2), where f (h) is replaced with the target

exponential covariance function. These Fourier coefficients have analytical form

shown in Eq. (3.30). A total of 1001 cosine Fourier coefficients are computed.
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The half periodic domain S is 2000.0 units. The sine Fourier coefficients g′q

are zero. The plots of the exponential covariance function and 1001 Fourier

coefficients are shown in Fig. 3.12. The covariance function is shown for the full

range of the periodic domain.

CY ′(h) = exp

(
−3
|h|
r

)
, r = 50.0 (3.29)

gq =
3
(

1− (−1)qexp
(
−3 |h|r

))
rS
((

3
r

)2
+
(
q πS
)2) , S = 2000.0, q = −500, ..., 500 (3.30)
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Figure 3.12: Univariate 1-D Fourier series simulation example – (a) exponen-
tial target covariance function and (b) corresponding Fourier coefficients.

Four grids are established to represent the single realization of the spatial

random function Y ′ on the [0.0 – 1000.0] unit interval: three evenly structured

grids with 100.0, 10.0, and 1.0 unit intervals, and one randomly structured grid.

A single realization is shown in Fig. 3.13, where point-scale values simulated at

specified simulation nodes are connected to each other by lines. It is clear that

despite the grid resolution, the general trend of the simulation can be seen. The

portion [470.0 – 530.0] unit of the interval bounded by two vertical black lines
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is zoomed in to further explain the grid-free nature of the simulation, and is

shown in Fig. 3.14. The realization is represented by dots, which is the correct

way of thinking about the proposed grid-free simulation at a point scale. The

locations of the simulation nodes overlap each other for evenly structured grids,

and simulated values are identical for these overlapping nodes. The simulated

values at the randomly distributed simulation locations of the randomly struc-

tured grid also follow the realization shape. To emphasize the reason behind it,

the simulation is already calculated by the FSS algorithm for the entire space.

The grid specification defines the coordinates of the simulation nodes, at which

the stochastic process is resolved. The variogram reproduction computed from

the simulation resolved on evenly structured grids is shown in Fig. 3.15. The

experimental variogram closely follows the variogram model shown by black line

for short ranges and diverges from the variogram model for longer ranges due to

expected statistical fluctuations (physical limitations of the simulation interval).

Experimental variograms computed from various grids closely follow each other

as expected, since all realizations are values of the same simulation resolved at

different node spacing.

Another example of the grid-free simulation with the FSS is presented be-

low for a 2-D space. Four various grids are selected to emphasize grid-free nature

of the proposed simulation algorithm. Fig. 3.16 shows the grids. The simulation

domain has a rectangular shape with the longest side of 80.0 units and shortest

side of 50.0 units rotated 45◦ azimuth. The first grid has a coarse resolution of

evenly distributed 17 × 11 = 187 simulation nodes. The spacing between nodes

is 5.0 × 5.0 units2. The second grid has a fine resolution of evenly distributed

80 × 50 = 4000 simulation nodes with 1.0 × 1.0 units2 spacing. The third grid

is a combination of the first two grids. It contains 1133 simulation nodes. Last,

the fourth grid has a random structure and consists of 187 simulation nodes. A

single realization of the 2-D random function Y ′ is shown on the same figure.
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Figure 3.13: Univariate 1-D Fourier series simulation example – single grid-
free realization simulated on four grids of various resolutions: (a) evenly struc-
tured 11-point grid, (b) evenly structured 101-point grid, (c) evenly structured

1000-point grid, and (d) random 102-point grid.

Note that despite the difference in the grid resolutions, the same realization of

the simulation is presented. The target covariance function has an anisotropic

spherical form shown in Eq. (3.31).

CY ′(h) = Sphr1=20.0
r2=10.0
α=120o

(h) (3.31)

A total of 100 realizations are simulated over the finely resolved grid 2.

The first four realizations are shown in Fig. 3.17. The anisotropy is clearly seen
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Figure 3.14: Univariate 1-D Fourier series simulation example – zoomed in
grid-free realization simulated on four grids of various resolutions: (a) evenly
structured 11-point grid, (b) evenly structured 101-point grid, (c) evenly struc-

tured 1000-point grid, and (d) random 102-point grid.

in the realizations with major direction of continuity being at 120◦ azimuth. The

histograms of the simulated values from first two realizations and all realizations

at once are shown in Fig. 3.18 along with the normal probability plot for all

100 realizations. Because of the ergodic fluctuations, there are deviations from

a perfect normal distribution. There is less deviation when all realizations are

combined together. Mean and variance maps of 100 realizations along with the

corresponding histograms are presented in Fig. 3.19. The local mean is close to

zero and local variance is close to 1.0 for most of the locations. The histograms
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Figure 3.15: Univariate 1-D Fourier series simulation example – target vari-
ogram model shown by black line and experimental variograms computed from
grid-free realization simulated on three grids of various resolutions shown by
dots: (a) experimental variogram in light green computed from evenly struc-
tured 11-point grid, (b) experimental variogram in purple computed from
evenly structured 101-point grid, and (c) experimental variogram in red com-

puted from evenly structured 1000-point grid.

suggest some variability present in the local mean and variance of the realizations.

The experimental variograms computed from the first three realizations and the

average experimental variogram computed from all realizations are shown in Fig.

3.20 with the anisotropic spherical variogram model. As described before, the

ergodicity introduces deviations of the experimental variograms from the target

model. But on average, the variogram reproduction appears reasonable. All

100 experimental variograms are shown in green with the average experimental

variogram shown in red and the variogram model shown in black in Fig. 3.21

for both major and minor directions of continuity. The variogram is reproduced

better for the major direction of continuity. Fig. 3.22 illustrates experimental

variograms computed from the unconditional realizations generated by SGS with

the same variogram model. The locations of the simulation nodes are slightly

different for the SGS realizations. The variogram is reproduced well for shorter

ranges with greater deviations at larger distances. This is a characteristic feature

of the SGS simulation method, which is outperformed by the proposed grid-free
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simulation method FSS [21]. The spread of individual experimental variograms

is less for the SGS than for the FSS generated realizations. It may be explained

by larger number of the data pairs used in the computation of the experimental

variograms from the SGS realizations.
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Figure 3.16: Univariate 2-D Fourier series simulation example – four distinct
simulation grids: (a) coarse evenly structured grid 1, (b) fine evenly structured
grid 2, (c) combination of coarse and fine evenly placed nodes on grid 3, and

(d) random grid 4.

3.1.3 Multivariate Simulation

Most systems consist of more than just one property. Therefore, there is a

need to develop a multivariate simulation algorithm in a grid-free manner. The

simplest solution is to replace the LMR with the LMC, where the linear model’s
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Figure 3.17: Univariate 2-D Fourier series simulation example – realizations
1 – 4 on the fine grid 2.

coefficients take a matrix form and independent random factors are stored in

a vector form. The linear model of coregionalization is shown in Eq. (3.32)

for a multivariate system Y in normal units with zero mean and unit variance.

Description of the matrices Ap and Xp(u), p = 1, ..., P, are provided in Eqs.

(2.40) and (2.41) of Section 2.1.2, Chapter 2. The random variables of the

multivariate system are stored in the matrix Y (u) as shown in Eq. (3.33).

The covariance matrix of the modeled system can be presented as shown in Eq.

(3.34), the terms of which are explained in Eq. (3.35). The variogram model

in Eq. (3.36) is the input for the simulation of random variables of the system.

Matrices Bp, p = 1, ..., P, have form as in Eq. (2.51), and are related to the LMR

coefficients as shown in Eq. (3.37).



Chapter 3. Unconditional Grid-Free Simulation 80
Fr

eq
ue

nc
y

Simulated values
-4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Simulation on Grid 2 - Realization 1
Number of Data 4000

mean -0.15
std. dev. 1.05

maximum 2.83
upper quartile 0.63

median -0.16
lower quartile -0.89

minimum -3.29 Fr
eq

ue
nc

y

Simulated values
-4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Simulation on Grid 2 - Realization 2

Number of Data 4000
mean -0.12

std. dev. 0.98

maximum 3.06
upper quartile 0.54

median -0.07
lower quartile -0.77

minimum -3.17

Fr
eq

ue
nc

y

Simulated values
-4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Simulation on Grid 2 - All Realizations

Number of Data 400000
mean 0.00

std. dev. 1.00

maximum 4.37
upper quartile 0.67

median 0.00
lower quartile -0.68

minimum -4.95

N
or

m
al

 s
co

re
s

Simulated values

Simulation versus Normal Scores on Grid 2 - All Realizations

-5.0 -3.0 -1.0 1.0 3.0 5.0
-5.0

-3.0

-1.0

1.0

3.0

5.0

number of simulated values 400000
number of normal scores 400000

x mean 0.00
std. dev. 1.00
y mean 0.00

std. dev. 1.00

Figure 3.18: Univariate 2-D Fourier series simulation example – histograms
of realization 1 and 2 and all 100 realizations on the fine grid 2 along with the

normal probability plot of all realization values.

Y(u) = A0X0(u) +
P∑
p=1

ApXp(u) (3.32)

Y(u) = [Y1(u) ... YK(u)]T (3.33)

CY (h) = A0[A0]TCX0(h) +
P∑
p=1

Ap[Ap]
TCXp(h) (3.34)
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Figure 3.19: Univariate 2-D Fourier series simulation example – mean and
variance fine grid 2 maps computed from 100 realizations along with the cor-

responding histograms.

CY (h) =


CY1Y1(h) ... CY1YK (h)

... ...

CYKY1(h) ... CYKYK (h)

 (3.35)

γY (h) = B0ΓX0(h) +
P∑
p=1

BpΓXp(h) (3.36)

Bp = Ap[Ap]
T , p = 0, ..., P (3.37)

Following the same logical path as for the univariate unconditional grid-

free simulation, the unconditional simulation of the multivariate system without
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Figure 3.20: Univariate 2-D Fourier series simulation example – experimental
variograms (dots) for major (in red) and minor (in blue) directions for realiza-
tions 1 – 3 and average variogram from all 100 realizations simulated on a fine

grid 2 and corresponding variogram models (lines).
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Figure 3.21: Univariate 2-D Fourier series simulation example – all 100 ex-
perimental variograms (in green) and average experimental variogram (in blue)
from grid 2 FFS realizations along with the variogram model (in red) for major

and minor directions of continuity computed.
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Figure 3.22: Univariate 2-D Fourier series simulation example – all 100 ex-
perimental variograms (in green) and average experimental variogram (in blue)
computed from the SGS realizations resolved on grid 2 along with the variogram

model (in red) for major and minor directions of continuity.

nugget effect is defined first Y′(u) as in Eq. (3.38). Each term of the covariance

matrix CY ′(h) of Y′(u) in Eq. (3.39) can be decomposed with the Fourier series.

The analogy between this covariance matrix and the Fourier series decomposition

is presented in Eq. (3.40) for the multivariate case. As before, all sine Fourier

coefficients g′q are zero, because the covariance is an even function. Therefore, the

system Y′(u) and covariance function CY ′(h) can be rewritten as in Eqs. (3.41)

and (3.42), respectively, with parameters computed as shown in Eqs. (3.43) –

(3.47).

Y′(u) =
P∑
p=1

ApXp(u) (3.38)

CY ′(h) =
P∑
p=1

Ap[Ap]
TCXp(h) (3.39)
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CY ′(h) = f(h)⇒



p→ q

P → Q⇒ Q = 2(Q1 + ...+Qµ) + µ
P∑
p=1
→

Q∑
q=−Q

a2
p,kl → a2

q,kl

CXp(h)→ CXq(h)

(3.40)

Y′(u) =

Q∑
q=−Q

AqXq(u) (3.41)

CY ′(h) =

Q∑
q=−Q

GqCXq(h) (3.42)

Gq = Aq[Aq]
T , −Q < q < Q (3.43)

aq,kl =



|aq,11| =
√
gq,11

|aq,k1| =
gq,k1
|aq,11|

|aq,kk| =

√
gq,kk −

k−1∑
m=1

a2
q,km

|aq,kl| =
gq,kl−

l−1∑
m=1

|aq,km||aq,lm|

|aq,ll|

(3.44)

gq,kl =
1

2µS1...Sµ

S∫
−S

(CYkYl(h)− b0,klCX0(h)) cos(πqTS−1h)dh (3.45)

Xq,k(u) =
√

2cos(πqTS−1u + φq,k), φq,k ∈ [0, 2π] (3.46)
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CXq(h) = cos(πqTS−1h) (3.47)

Thus, the final expression for the unconditional multivariate grid-free re-

alization Yus
i (u) at location u in normal scores is shown in Eq. (3.48) or Eq.

(3.49), where the random phase φq,k,i is tied to index of the Fourier series coeffi-

cient q, random function index k, and a realization index i. Note that matrices

Aq are the lower triangular matrices, i.e. aq,kl = 0 for k < l ∀q.

Y(u) =
√
b0X0(u) +

Q∑
q=−Q

AqXq(u) (3.48)


Y us

1,i (u)

...

Y us
K,i(u)

 =
√
b0


X0,1,i(u)

...

X0,K,i(u)

+
√

2

Q∑
q=−Q


aq,11 ... aq,1K

... ...

aq,K1 ... aq,KK

 ·

cos(πqTS−1u + φq,1,i)

...

cos(πqTS−1u + φq,K,i)



(3.49)

The example below is provided to show grid-free simulation of the bivariate

system Y ′ consisting of random functions Y ′1 and Y ′2 . The simulation is resolved

on the grid same as grid 2 in the univariate grid-free simulation of Section 3.1.2:

evenly spaced 80 × 50 simulation nodes rotated by -45◦ azimuth and separated

by 1.0 × 1.0 units2 from each other. The covariance function of the system is

provided by Eq. (3.50), which is used in the simulation. The first two realizations

of each random function from 100 realization pool are shown in Fig. 3.23. The

realizations show the anisotropy and correlation between realizations of different
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random functions. Histograms of the first realization and all realizations of each

random function are shown in Fig. 3.24. Histograms of individual realizations

fluctuate, yet the histograms of all realizations follow the expected normal dis-

tribution, which is confirmed by a normal probability plots on the same figure.

Note the means and standard deviations are close to 0.0 and 1.0, respectively.

The relationship between the realizations of the two random functions is checked

through a scatter plot. Fig. 3.25 presents a bivariate plot between first realiza-

tions and all realizations of the random functions. The scatter plots show a

bivariate Gaussian nature of the simulated random functions. The bivariate re-

lationship is preserved better for the case when all realizations are plotted. The

correlation coefficient is 0.71, which is close to the target 0.70. Finally, Fig. 3.26

contains experimental direct- and cross-variograms computed for each realiza-

tion and their average for major and minor directions of continuity along with

the variogram models. The average experimental variograms closely reproduce

variogram models. The spread between individual experimental variograms are

quite significant due to the ergodic statistical fluctuations.

CY (h) =



CY1(h) = Sphr1=20.0
r2=10.0
α=120o

(h)

CY1Y2(h) = 0.7Sphr1=20.0
r2=10.0
α=120o

(h)

CY2(h) = Sphr1=20.0
r2=10.0
α=120o

(h)

(3.50)

3.2 Turning Lines Simulation

The issue with FSS is the computational time required for 2-D and 3-D systems.

The number of Fourier coefficients becomes very large for higher dimensions.

If the 1-D multivariate case requires K(2Q + 1) coefficients to generate single

realization without a nugget effect, this number increases to K(2Q + 1)2 and
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Figure 3.23: Multivariate 2-D Fourier series simulation example – realizations
1 and 2 maps of random functions Y1 and Y2 of the bivariate system.

K(2Q+ 1)3 for 2-D and 3-D multivariate cases, respectively. The computational

time can be improved by using the turning bands simulation approach to combine

1-D line simulations into higher dimensional simulations. The number of lines

required to generate a simulation is much smaller than the number of Fourier

coefficients required for each dimension. The bands are replaced with the points,

when 1-D line simulations are performed with the FSS.

3.2.1 Turning Lines

The turning bands simulation method has been briefly mentioned in Section

2.3.1 [36, 37]. The random function Y ′ is generated in 2-D or 3-D by combining

independent 1-D stochastic processes. In the conventional TBS, the 1-D line
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Figure 3.24: Multivariate 2-D Fourier series simulation example – histograms
of first realizations and all realizations along with the normality check of all

realizations of random functions Y1 and Y2 of the bivariate system.
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Figure 3.25: Multivariate 2-D Fourier series simulation example – scatter
plots between first realizations and all realizations of random functions Y1 and

Y2 of the bivariate system.

processes are generated with a moving average and, therefore, have a gridded

nature. A discretization interval in the moving average simulation is called the

band. The bands are spaced equally along the lines. The projections of the

simulation location u onto the lines are adjusted to the bands. In the proposed

grid-free simulation paradigm, turning bands are coupled with the FSS to gen-

erate independent random factors Xp, p = 1, ..., P, in a more precise manner.

These random factors are combined together through LMR or LMC to simulate

one or more random functions Y ′. The procedure is explained in detail in Sec-

tions 3.2.4 and 3.2.5 for univariate and multivariate cases, respectively. Because,

the FSS simulates as a function of the simulation location, there is no longer any

need to divide the 1-D line stochastic processes into bands, but rather present

these processes continuously over turning lines [36]. Therefore, the turning bands

method is renamed as turning lines simulation (TLS) when the FSS is applied.

In the turning lines simulation, the bands are replaced with points. There is no

need for a discretization of the 1-D line simulations.

The TLS is an efficient way for higher dimensional simulation of indepen-

dent random factor X with zero mean and unit variance in normal space through
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Figure 3.26: Multivariate 2-D Fourier series simulation example – experi-
mental direct- and cross-variograms (in green) computed for all realizations
and their average experimental variograms (in red) along with the variogram
model (in dark blue) of random functions Y1 and Y2 of the bivariate system

for major and minor directions of continuity.
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a weighted sum of independent 1-D line stochastic processes X (1) = {X(1)
l , l =

1, ..., L} of a particular covariance function CX(1)(h) as shown in Eq. (3.51). A

total number of the turning lines is L, which is chosen to reproduce Y ′ precisely

(see Section 5.3.2 in Chapter 5 for choice of optimal number L of turning lines).

The simulated value X(u) is found as a summation of the equally weighted line

simulations X
(1)
l (u), l = 1, ..., L, values of which are retrieved at the projected lo-

cation u on these lines with directional unit vectors ûl, l = 1, ..., L. It is assumed

that all lines intersect each other at the origin of the coordinate system. Fig.

3.27 shows the projection of the simulation location u on line l with directional

unit vector ûl. The scalar product u · ûl of two location vectors is computed

as shown in Eq. (3.52), where location vector u is represented by three Carte-

sian coordinates {x, y, z}. The unit vector ûl of magnitude one (||ûl|| = 1) is

also represented by three Cartesian components {x̂l, ŷl, ẑl}. The simulated value

X
(1)
l (u·ul) of any line process X

(1)
l is tied precisely to the local coordinate on this

line, which is expressed as a product of magnitude ||u|| of the simulation location

u and cosine of angle αl between simulation location vector u and direction ûl

of line process l.

X(u) =
1√
L

L∑
l=1

X
(1)
l (u · ûl) (3.51)

u · ûl = ||u|| cosαl =
|xx̂l + yŷl + zẑl|√

x̂2
l + ŷ2

l + ẑ2
l

(3.52)

The turning lines should be evenly distributed in the space to avoid arti-

facts in the simulation. For the 2-D space, the lines are placed in such positions,

which ensure that the perimeter of the circle with unit radius is divided equally.

Only one angle θl in range of [0 – π] is enough to define the location of line l. This

angle is measured in a clockwise fashion from the Y axis. Therefore, the location

of the line in 2-D space is computed evenly as shown in Eq. (3.53) and Fig.
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Figure 3.27: Projection of the simulation location u onto a turning line – (a)
in 2-D, and (b) in 3-D.

3.27. The Cartesian coordinates x̂l and ŷl of the unit vector ûl of the line l are

computed as presented in Eq. (3.54). The Cartesian coordinate in the direction

Z is omitted arbitrarily for 2-D space. To be more precise, any two coordinates

along two coordinate axes are considered, while the third one is discarded.

θl = (l − 1)
π

L
, l = 1, ..., L (3.53)

ûl =

 x̂l = ||ûl|| sin θl
ŷl = ||ûl|| cos θl

, l = 1, ..., L (3.54)

It is a challenge to place turning lines evenly in 3-D space. Recall that

all lines intersect at the coordinate system origin. Two angles θ1,l and θ2,l are

required to specify the location of each line l in the 3-D space. The first angle

θ1,l is measured in the same way as angle θl for 2-D systems. The second angle

θ2,l is measured clockwise from the Z axis. Once the angles for evenly spaced

lines are defined, the corresponding coordinates x̂l, ŷl, and ẑl of the unit vector

ûl of the line l can be computed as presented in Eq. (3.55).
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ûl =


x̂l = ||ûl|| sin θ2,l sin θ1,l

ŷl = ||ûl|| sin θ2,l cos θ1,l

ẑl = ||ûl|| cos θ2,l

, l = 1, ..., L (3.55)

Alternatively, the vertices of an icosahedron and its subdivision can be

used to define directions of the lines that would evenly cut the surface of the

sphere with unit radius in 3-D [29, 38, 79]. That is the intersection points

formed between lines and the unit sphere surface are placed evenly on the sphere

surface, and lines themselves are approximately divide 3-D space in quasi-even

sectors. The icosahedron and two levels of its subdivision are shown in Fig.

3.28, which represent an approximate partition of the unit sphere surface with

equilateral triangles. The icosahedron consists of 20 equilateral triangles. All

20 triangles share 12 vertices that are placed exactly on the surface of the unit

sphere. Therefore, the icosahedron vertices divide the unit sphere surface equally

by L0 = 12 lines originated in the centre of the unit sphere. The locations of

vertices on a unit sphere in a Cartesian coordinate system are defined by a

combination of zero, two numbers, and their positive and negative values (0.0,

±0.85065, ±0.52573), where the ratio of the last two is a golden ratio 1+
√

5
2 ≈

1.6180. The resulting coordinates x̂l0 , ŷl0 , and ẑl0 of the icosahedron vertices are

summarized in Table 3.1 [12]. Note that projections of the simulation location on

the lines are the same for pair of lines that originate at sphere center in opposite

directions. Therefore, it would have been enough to use only half of the vertices,

which define a semi-sphere, in the definition of the line direction in the turning

lines simulation. For instance, first six vertices from 3.1 could be good candidates

for definition of line directions, because all of them lie in a semi-sphere region.

To avoid confusion of the choice of the lines in the subsequent subdivision of the

icosahedron, all vertices are used in the definition of the lines. This ignorance

of the overlapping lines do not lead to any harm to simulation as shown later in
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many examples.

Each face of the icosahedron has the shape of an equilateral triangle that

can be subdivided into four equal smaller equilateral triangles. The coordinates

of new vertices are computed first as the coordinates x̂∗l1 , ŷ∗l1 , and ẑ∗l1 of a middle

point, which divides any two adjacent vertices of icosahedron, as shown in Eq.

(3.56). Because all new and old vertices should fall on the surface of the unit

sphere, the coordinates of the middle points are adjusted to the final coordinates

x̂l1 , ŷl1 , and ẑl1 of unit vectors of evenly placed lines in 3-D as presented in Eq.

(3.57). The resulting triangles define a first-level subdivision of the icosahedron

and form a geometric shape closer to the unit sphere. The total number of

the lines L1 = 42 for first-level subdivision of the icosahedron is equal to the

number of previous vertices 12 and number of newly obtained vertices 30. Each

new equilateral triangle can be further subdivided into four even smaller trian-

gles. Coordinates x̂l2 , ŷl2 , and ẑl2 of new vertices of the second-level icosahedron

subdivision are found by applying Eqs. (3.58) and (3.59). The total number

of turning lines, which cut a 3-D unit sphere surface in a quasi-even fashion, is

L2 = 162. This number includes 12 vertices of original icosahedron, 30 additional

vertices of first-order icosahedron subdivision, and 120 vertices of second-order

icosahedron subdivision. The subdivision can be continued further. Note that

angles between lines are not exactly the same, but close to each other [10]. It is

shown in later chapters that a larger number of the turning lines improves the

quality of the simulated model, but increases computational time.

û∗l1 =


x̂∗l1 =

x̂l0+x̂l′0
2

ŷ∗l1 =
ŷl0+ŷl′0

2

ẑ∗l1 =
ẑl0+ẑl′0

2

, l1 = 1, ..., 30, l0, l
′
0 ∈ [1, 12] (3.56)
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Table 3.1: Cartesian coordinates of the icosahedron vertices.

Vertex x̂l0 ŷl0 ẑl0

1 -0.52573 0.0 0.85065
2 0.52573 0.0 0.85065
3 0.0 0.85065 0.52573
4 -0.85065 0.52573 0.0
5 -0.85065 -0.52573 0.0
6 0.0 -0.85065 0.52573
7 0.85065 -0.52573 0.0
8 0.85065 0.52573 0.0
9 0.0 0.85065 -0.52573
10 -0.52573 0.0 -0.85065
11 0.0 -0.85065 -0.52573
12 0.52573 0.0 -0.85065

ûl1 =



x̂l1 =
x̂∗l1√

(x̂∗l1
)2+(ŷ∗l1

)2+(ẑ∗l1
)2

ŷl1 =
ŷ∗l1√

(x̂∗l1
)2+(ŷ∗l1

)2+(ẑ∗l1
)2

ẑl1 =
ẑ∗l1√

(x̂∗l1
)2+(ŷ∗l1

)2+(ẑ∗l1
)2

, l1 = 1, ..., 30 (3.57)

û∗l2 =


x̂∗l2 =

x̂l[0,1]+x̂l′[0,1]
2

ŷ∗l2 =
ŷl[0,1]+ŷl′[0,1]

2

ẑ∗l2 =
ẑl[0,1]+ẑl′[0,1]

2

, l2 = 1, ..., 120, l[0,1], l
′
[0,1] ∈ [1, 42] (3.58)

ûl2 =



x̂l2 =
x̂∗l2√

(x̂∗l2
)2+(ŷ∗l2

)2+(ẑ∗l2
)2

ŷl2 =
ŷ∗l2√

(x̂∗l2
)2+(ŷ∗l2

)2+(ẑ∗l2
)2

ẑl2 =
ẑ∗l2√

(x̂∗l2
)2+(ŷ∗l2

)2+(ẑ∗l2
)2

, l2 = 1, ..., 120 (3.59)

Once the directions of the lines are defined, the values of line stochastic
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Figure 3.28: Intersection points of evenly placed lines with unit sphere sur-
face: (a) icosahedron, (b) partition of the sphere surface of unit radius with
12 evenly placed lines that cut sphere at icosahedron vertices, (c) partition of
the sphere surface of unit radius with 42 evenly placed lines that cut sphere at
icosahedron vertices subdivided once, and (d) partition of the sphere surface of
unit radius with 162 evenly placed lines that cut sphere at icosahedron vertices

subdivided twice.

processes X
(1)
l , l = 1, ..., L, are simulated at the required locations that corre-

spond to a projection of the simulation location u on 1-D lines. The form of a

line process X
(1)
l is defined by a relationship between the covariance CX(1)(h) of

this line process and the covariance CX(h) of target random factor X. Eq. (3.60)

shows how covariances are related to each other for 2-D systems, and Eq. (3.61)

establishes covariance relationship for 3-D processes. The derivation of these

relationships are elegantly explained in [47]. To summarize, the line processes
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X
(1)
l , l = 1, ..., L, are generated unconditionally by the FSS with a particular

covariance function CX(1)(h), which is derived from the covariance function of

the random factor X. Then, these 1-D line processes are used in Eq. (3.51) to

simulate the random factor X.

CX(h) =
2

π

h∫
0

CX(1),2−D(h′)√
h2 − h′2

dh′ (3.60)

CX(1),3−D(h) =
d

dh
(hCX(h)) (3.61)

Because the turning bands/lines method allows to represent only isotropic

random functions X, a coordinate transformation of the simulation domain is

proposed to account for the anisotropy. This is discussed later in Section 3.2.3.

3.2.2 Covariance Function of Line Processes

Covariances of 1-D line stochastic processes are provided for the most common

covariances used in the simulation of 2-D and 3-D systems. The derivation of

the 1-D covariances CX(1)(h) can be found in [24] based on Eqs. (3.60) and

(3.61). The target covariance of random factor X can be spherical, exponential,

or Gaussian. Corresponding 1-D line covariances for simulation of the 2-D and

3-D random functions are shown in Eq. (3.62) and Eq. (3.63) for spherical

covariance function, in Eq. (3.64) and Eq. (3.65) for exponential covariance

function, and in Eq. (3.66) and Eq. (3.67) for Gaussian covariance function. In

these equations I 0(h) is the modified Bessel function of zero order, and L0(h)

is the modified Struve function of zero order. The plots of these 1-D covariance

functions along with the target covariance functions are shown in Figs. 3.29 –

3.31.
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SphX(1),2−D(h) =


1− 3π|h|

8r

(
2−

(
h
r

)2)
, |h| ≤ r

1− 3|h|
4r

((
2−

(
h
r

)2)
arcsin

(
r
|h|

)
+

√(
h
r

)2 − 1

)
, |h| > r

(3.62)

SphX(1),3−D(h) =

 1− 3|h|
r + 2

(
|h|
r

)3
, |h| ≤ r

0, |h| > r
(3.63)

ExpX(1),2−D(h) = 1− 3π|h|
2r

(
I0

(
3|h|
r

)
− L0

(
3|h|
r

))
(3.64)

ExpX(1),3−D(h) =

(
1− 3|h|

r

)
exp

(
−|3|h

r

)
(3.65)

GaussX(1),2−D(h) = 1− 2
√

3|h|
r

exp

(
−3

(
h

r

)2
) √

3|h|
r∫

0

exp
((
h′
)2)

dh′ (3.66)

GaussX(1),3−D(h) =

(
1− 6

(
h

r

)2
)

exp

(
−3

(
h

r

)2
)

(3.67)

3.2.3 Anisotropic Simulation

The turning lines approach does not produce anisotropic processes in its current

form. For this reason, the coordinates of the simulation nodes are modified to

enable simulation of anisotropic fields [56]. Two modifications are required for

the coordinates of the simulation locations u to properly account for anisotropy

in the simulation: stretching and rotation operations. These two operations can

be expressed as the matrix product between an operation matrix and a location

vector. This modification is performed for every anisotropic structure, or, in
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Figure 3.29: Spherical covariance function and its 1-D line covariance func-
tions equivalents for 2-D and 3-D simulations.
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Figure 3.30: Exponential covariance function and its 1-D line covariance
functions equivalents for 2-D and 3-D simulations.
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Figure 3.31: Gaussian covariance function and its 1-D line covariance func-
tions equivalents for 2-D and 3-D simulations.

other words, for each random factor Xp in the LMR/LMC of the target random

function Y .

The original simulation location u is represented by three Cartesian co-

ordinates as shown in Eq. (3.68). However, the actual simulation is performed

at location u′ to address anisotropy. The coordinates of the modified location

are presented in Eq. (3.69). The resulting simulated value is tied to the original

coordinates u. Two matrix operations are applied to the original location vector

u to get u′ as Eq. (3.70) states. The stretching matrix MS is a diagonal matrix,

elements of which are represented by a ratio of the variogram ranges ri, i = 1, 2, 3,

to the variogram range r2 as presented in Eq. (3.71). The rotation matrix MR is

a product of rotation matrices MRX , MRY , and MRZ around X, Y, and Z axes.

The details are provided in Eqs. (3.72) – (3.75). Angles αa, αp, and αd are the

angles of the maximum direction of the continuity in the space. The isotropic

simulation with variogram range r1 is performed at simulation locations with
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transformed coordinates.

u = [x y z]T (3.68)

u′ = [x′ y′ z′]T (3.69)

u′ = MSMRu (3.70)

MS =


r1
r2

0 0

0 1 0

0 0 r1
r3

 (3.71)

MR = MRXMRYMRZ (3.72)

MRX =


1 0 0

0 cosαp sinαp

0 − sinαp cosαp

 (3.73)

MRY =


cosαd 0 sinαd

0 1 0

− sinαd 0 cosαd

 (3.74)

MRZ =


cosαa − sinαa 0

sinαa cosαa 0

0 0 1

 (3.75)
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An example of the coordinate transformation to account for anisotropy

in the simulation generated by the turning lines is shown in Fig. 3.32. The

variogram model has a spherical form with a direction of maximum continuity

at 60◦ of azimuth. The maximum continuity variogram range r1 is 20 units,

and the minimum continuity variogram range r2 is 10 units. First, the origi-

nal coordinates of the simulation locations u are defined. Then, the coordinate

transformation is applied to get new coordinates u′, on which isotropic sim-

ulation is performed. The coordinates rotation operator MR and coordinates

stretching operator MS are applied to get the final coordinates. The coordi-

nates are rotated by 60◦ counter-clockwise and stretched twice (r1/r2 = 2.0) in

the transformed direction of the minimum continuity to account for the target

anisotropic variogram model. Next, the simulation is carried out using turning

lines and isotropic variogram model with variogram range 20 units of the maxi-

mum direction of the continuity. Finally, the coordinate transformation can be

reversed to get simulated anisotropic field at the proper simulation node loca-

tions u, or simulated values can be simply mapped back to the original simulation

node coordinates u.

3.2.4 Univariate Simulation

The univarite simulation of anisotropic realizations with the turning lines sums

the independent random factors Xp, p = 1, ..., P, that have one of three basic co-

variance function forms – spherical, exponential, or Gaussian form, while random

factor X0 has the nugget effect spatial structure. The equations required for the

univarite grid-free simulation are summarized in Eqs. (3.76) – (3.81), where i is

the realization index, and C′
X

(1)
p

is the isotropic covariance function of 1-D line

process with the variogram range r equal to the variogram model range r1 in the

direction of maximum continuity. The linear model of the regionalization is de-

picted in Eq. (3.76) for the simulation random variable Y (u) at location u. The
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Figure 3.32: Example of the coordinate transformation for the anisotropic
simulation with turning lines. Original coordinates are rotated to align with the
principal directions of the continuity. Then they are stretched along second and
third principal directions of the continuity to match the variogram range in the
first direction of continuity. The isotropic simulation is performed at locations
with these modified coordinates, where variogram range in the first principal
direction is used in the isotropic variogram model. Finally, the simulated val-
ues are mapped back to the original locations or coordinate transformation is

performed in the reverse order for the simulation nodes.

weighting coefficients are derived as shown in Eq. (3.79) from the contribution

coefficients of the input target variogram model γY (h). The target variogram

model in Eq. (3.78) is related to the covariance structure of the simulation in

Eq. (3.77). Random factors Xp, p = 1, ..., P, are constructed from the 1-D line

processes by using the TLS in Eq. (3.80). The 1-D line simulations are generated

with the FSS at modified location u′ with isotropic variogram model as shown in

Eq. (3.81). Here, random phase φp,q,l,i depends on the indices of random factor

p, Fourier coefficient q, turning line l, and realization i.
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Y (u) = a0X0(u) +
P∑
p=1

apXp(u) (3.76)

CY (h) = a2
0CX0(h) +

P∑
p=1

a2
pCXp(h) (3.77)

γY (h) = b0Γ0(h) +
P∑
p=1

bpΓp(h) (3.78)

ap =
√
bp, p = 0, ..., P (3.79)

Xp(u) =
1√
L

L∑
l=1

X
(1)
p,l (u · ûl), p = 1, ..., P (3.80)

X
(1)
p,l (u · ûl) =

1√
S

Q∑
q=−Q

cos(
πqu′ · ûl

S
+φp,q,l,i)

√√√√√ S∫
−S

C ′
X

(1)
p

(h) cos(
πqh

S
)dh (3.81)

Note that the resulting sequence of the equations leads to the grid-free sim-

ulation of the univariate systems with reduced computational time in comparison

with the FSS approach originally presented above. The proposed simulation ap-

proach is called grid-free simulation (GFS). In this case, the computational time

is proportional to PL(2Q+1) for each realization in comparison to (2Q+1)2 for

simulation of 2-D systems with FSS or (2Q+ 1)3 for simulation of 3-D systems

with FSS. The product of the number of random factors P and number of the

lines L is usually smaller than 2Q+ 1 and definitely smaller than (2Q+ 1)2.

The example of GFS of a univariate system Y ′ shown here is similar to

the FSS example presented in Section 3.1.2. The grid-free simulation method is

used to generated 100 unconditional realizations on a 2-D plane with anisotropic
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spherical variogram model shown in Eq. (3.82). The periodic domain 2S =

400.0 is chosen to be larger than the simulation domain. The corresponding

1-D isotropic covariance function with variogram range r1 is discretized on this

periodic domain in [-200.0 – 200.0] interval to compute 801 Fourier coefficients

gq, q = -400, ..., 400, which are both shown in Fig. 3.33. Number L of the

turning lines is 200.

γY (h) = Sphr1=20.0
r2=10.0
α=120o

(h) (3.82)
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Figure 3.33: Univariate 2-D grid-free simulation example – (a) 1-D spherical
target covariance function for 2-D simulation and (b) corresponding Fourier

coefficients.

Four grids of various simulation node densities and simulation node distri-

butions are used to resolve the simulation with the GFS, and are shown in Fig.
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3.34. These grids are the same as grids presented in the example of previous Sec-

tion 3.1. The gridding choice does not impose any change to the simulation. The

simulation is truly grid-free and just a function of the coordinates of the simula-

tion locations. In other words, the simulation is represented as a spatial function

and can be easily recalled at any location in space. The first 4 realizations on

a fine evenly structured grid are shown in Fig. 3.35. All four realizations are

stochastic with prominent anisotropic features, where the direction of the max-

imum continuity is at 120◦ azimuth. Fig. 3.36 contains histograms of the first

two realizations and all realizations resolved on the fine grid 2 along with the

normality check for all 100 realizations. As mentioned before, individual his-

tograms deviate from normality due to ergodicity (the small simulation domain

in comparison with the variogram range). On the other hand, the combined

histogram of all realizations looks normal with 0.01 mean and 1.01 variance,

which are close to the normal distribution parameters. Maps of the local means

and variances are presented in Fig. 3.37 and are complemented with the cor-

responding histograms. The local means and variances of the realizations are

distributed normally around target statistics of 0.0 and 1.0. Fig. 3.38 shows var-

iogram model reproduction for first two realizations, the average experimental

variogram, and the average experimental variogram map. The variogram model

values in the major and minor directions of continuity are shown as red and blue

lines, respectively. The experimental variogram points are computed from the

realizations generated on fine grid 2. The experimental variograms computed for

individual realizations deviate from variogram model especially for longer ranges

due to ergodicity. A cyclic nature to the variograms is present, due to the Fourier

series implementation. However, the average experimental variogram computed

from all realizations reproduces variogram model quite well. The average ex-

perimental variogram map is further evidence of good variogram reproduction.
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Note, that there are no any visual artifacts of the turning lines, because of rel-

atively large number of the lines used in the simulation. If a smaller number of

the lines were selected in the turning lines simulation method, there would be

artifacts present in the simulation and variogram map computed from the real-

izations [17]. Finally, experimental variograms for all 100 realizations for both

major and minor directions of the continuity are shown in Fig. 3.39 with the

average experimental variogram and variogram model. The spread of individual

variograms is quite significant, partially because they are computed from the

unconditional realizations. The average variogram closely follows the variogram

model.
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Figure 3.34: Univariate 2-D grid-free simulation example – four distinct sim-
ulation grids: (a) coarse evenly structured grid 1, (b) fine evenly structured
grid 2, (c) combination of coarse and fine evenly placed nodes on grid 3, and

(d) random grid 4.
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Simulation on Grid 2 - Realization 1
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Figure 3.35: Univariate 2-D grid-free simulation example – realizations 1 – 4
on the fine grid 2.

3.2.5 Multivariate Simulation

The multivariate simulation of the anisotropic realizations in a grid-free manner

is performed through the LMC shown in Eq. (3.83). The definition of the

matrices has been explained in Section 2.1.2 of Chapter 2. The random factors

Xp,k(u), p = 1, ..., P, k = 1, ...,K, which are stored in Xp(u), p = 1, ..., P, are

computed at location u exactly the same way as random factors Xp(u), p =

1, ..., P, have been computed for the univariate case in previous Section 3.2.4.

The 1-D line simulations are generated with the FSS and combined through

turning lines simulation framework to get random factors. The covariance of
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Figure 3.36: Univariate 2-D grid-free simulation example – histograms of
realization 1 and 2 and all 100 realizations on the fine grid 2 along with the

normal probability plot of all realization values.

the multivariate simulation Y(u) can be expressed by Eq. (3.84). Input target

variogram model in Eq. (3.85) is used to derive LMC weights according to

Eq. (3.86). More details on how to derive the LMC coefficients are provided

in Eq. (3.87) through the LU decomposition of the matrix Bp with structural

contributions bp,kl. The computational cost of single multivariate realization is

proportional to KPL(2Q+ 1).

Y(u) = A0X0(u) +
P∑
p=1

ApXp(u) (3.83)

CY (h) = A0[A0]TCX0(h) +

P∑
p=1

Ap[Ap]
TCXp(h) (3.84)
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Figure 3.37: Univariate 2-D grid-free simulation example – mean and variance
fine grid 2 maps computed from 100 realizations along with the corresponding

histograms.

γY (h) = B0ΓX0(h) +
P∑
p=1

BpΓXp(h) (3.85)

Bp = Ap[Ap]
T , p = 0, ..., P (3.86)

ap,kl =



|ap,11| =
√
bp,11

|ap,k1| =
bp,k1
|ap,11|

|ap,kk| =

√
bp,kk −

k−1∑
m=1

a2
p,km

|ap,kl| =
bp,kl−

l−1∑
m=1

|ap,km||ap,lm|

|ap,ll|

, p = 1, ..., P, k, l = 1, ...,K (3.87)
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Figure 3.38: Univariate 2-D grid-free simulation example – experimental var-
iograms (dots) for major (in red) and minor (in blue) directions for realizations
1 and 2, average variogram from all 100 realizations simulated on a fine grid 2
and corresponding variogram models (lines), and average variogram map from

all 100 realizations.
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Figure 3.39: Univariate 2-D grid-free simulation example – all 100 experimen-
tal variograms (in green) and average experimental variogram (in blue) along
with the variogram model (in red) for major and minor directions of continuity.
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The example shown below demonstrates the applicability of GFS to multi-

variate modeling. Here, the bivariate system Y = {Y1, Y2} is simulated according

to the two nested structure variogram model, the covariance form CY (h) of which

is shown in Eq. (3.88) and does not possess nugget. The first variogram struc-

ture is represented by an isotropic spherical covariance function with correlation

range r = 5.0 units. The second structure is presented by an anisotropic co-

variance function with correlation ranges r1 = 30.0 units and r2 = 20.0 units,

where the major direction of continuity is at an azimuth of 120◦. The correlation

between random functions Y1 and Y2 is 0.7. The contributions of the structures

ensure validity of the target variogram model. Corresponding 1-D isotropic co-

variance functions used for the simulation for each structure are shown in Fig.

3.40 with the appropriate 1201 Fourier coefficients. Because correlation ranges

are different for both spherical covariance functions, there is a difference between

Fourier coefficients for each structure. Note that the general distribution shape

of the Fourier coefficients remains the same for both structures. The periodic

domain 2S is 400.0 units.

CY (h) =



CY1(h) = 0.7Sphr=5.0 (h) + 0.3Sphr1=30.0
r2=20.0
α=120o

(h)

CY1Y2(h) = 0.5Sphr=5.0 (h) + 0.2Sphr1=30.0
r2=20.0
α=120o

(h)

CY2(h) = 0.7Sphr=5.0 (h) + 0.3Sphr1=30.0
r2=20.0
α=120o

(h)

(3.88)

A total of 100 realizations were generated. The first two realizations of

each random function Y1 and Y2 are shown in Fig. 3.41. The realizations of the

two random functions are correlated to each other and follow the spatial distribu-

tion specified by the input variogram model. Next Fig. 3.42 presents histograms

of individual realizations and all realizations, and normal probability plots of
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all realizations versus normal scores. Histograms of individual realizations look

normal to some extent. Histograms of all realizations follow normal distribution

quite closely, which is also supported by the normality check (points are lying

on a straight line with some small deviations at the tails). Simulated means and

variances for each random function are 0.03, 0.01 and 1.01, 1.01, respectively,

which are very close to the theoretical values of 0.0 and 1.0. The relationship

between simulations of two random functions are checked through the cross plots

shown in Fig. 3.43. The clouds of points appear bivariate Gaussian. The correla-

tion coefficient is computed precisely to be 0.7 for the cloud of points from all 100

realizations. Finally, experimental direct- and cross-variograms for major and

minor directions of continuity computed for each realization and their average

along with the varogram model are shown in Fig. 3.44. The variogram model

is closely reproduced on average with smaller spread of individual experimental

variograms in comparison with the univariate example. It might be partially due

to more constrained target covariance function (two structures versus one).

3.3 White Noise Simulation

This section is devoted to the simulation of the remaining nugget effect compo-

nent X0(u) of the simulation Y (u).

3.3.1 Random Number Generation

The random independent factor X0(u) is a white noise with the nugget covari-

ance function that follows a Gaussian distribution with zero mean and unit vari-

ance. Its expression is shown in Eq. (3.89), where U(u) is a completely random

noise that follows uniform distribution with 0.5 mean and 1/12 variance and its

values lie between 0 and 1 as shown in Eq. (3.90). The function f transforms
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Figure 3.40: Multivariate 2-D grid-free simulation example – (a) 1-D spherical
covariance function used as a first structure of the target covariance function
for 2-D simulation, (b) 1-D spherical covariance function used as a second
structure of the target covariance function for 2-D simulation, and (c) & (d)

their corresponding Fourier coefficients.

random numbers U to a random factor X0 with specified distribution parame-

ters. This section describes numerical generation of the random numbers U with

pseudo-random number generator. The algorithm of how to tie the inherently

random component U(u) to the coordinates the simulation location u and the

form of the function f are explained below in Section 3.3.2.

X0(u) = f (U(u)) (3.89)

U(u) ∼ U(0, 1) (3.90)
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Figure 3.41: Multivariate 2-D grid-free simulation example – realizations 1
and 2 maps of random functions Y1 and Y2 of the bivariate system.

The uniform random numbers can be generated with various numerical

techniques. The most common methods are additive congruential [81]. The

acorn algorithm is selected as a robust random number generator, which is a

variation of the congruential methods [80]. The general acorn algorithm is pre-

sented in Fig. 3.45. The procedure itself is simple, but it produces high quality

pseudo-random numbers. The algorithm starts with the specification of total

amount Nruns of random numbers U to be generated. There is a specification

block for the initialization of parameters such as the number of iterations M,

which is set up at 12 by default, array of the changing parameters value(1:M+1),

maximum threshold of the changing values valuemax, which is set at 2 × 106
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Figure 3.42: Multivariate 2-D grid-free simulation example – histograms of
first realizations and all 100 realizations along with the normality check of all

realizations of random functions Y1 and Y2 of the bivariate system.
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Figure 3.43: Multivariate 2-D grid-free simulation example – scatter plots
between first realizations and all realizations of random functions Y1 and Y2 of

the bivariate system.

by default, and initial value of the changing parameters value(1), which is de-

fined by a seed number. Once parameters are set, the iteration begins between

j = 1 and j = M. While the iteration is performed, it is ensured that the last

changing value value(M+1) in the array does not exceed a specified maximum

value valuemax. Once this condition is not honored, the last value(M+1) is

reduced by valuemax. After the final iteration is performed, the random number

U is computed by dividing the last changing value in the array by the maximum

value. The procedure is repeated for another random number, for which i = i

+ 1, until all random numbers are generated. The parameters are not restored,

but rather kept at current values except iteration index j, which is set back to

1. The resulting random numbers are uniformly distributed between 0 and 1.

3.3.2 White Noise as Location Function

For the white noise X0(u), which is also called zero-order random factor, to be

expressed as a function of the location u in the simulation domain, the following

three steps can be carried out for each simulation location.
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Figure 3.44: Multivariate 2-D grid-free simulation example – experimental
direct- and cross-variograms (in green) computed for all realizations and their
average experimental variograms (in blue) along with the variogram model (in
red) of random functions Y1 and Y2 of the bivariate system for major and minor

directions of continuity.
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Figure 3.45: Algorithm of random number generator acorn.
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First, the coordinates of the simulation location u should be indexed. In-

dex j(u) is presented in the integer form, and is function of the coordinates

x(u), y(u), and z(u) of the simulation location u. To make conversion unique,

the minimum resolution of the simulation should be assumed, which are ∆X , ∆Y ,

and ∆Z resolution sizes in X, Y, and Z directions, respectively. The boundary of

the simulation domain should be also specified. For this purpose in addition to

resolution sizes, the minimum xmin, ymin, and zmin coordinates of the simulation

domain and total number of the discretization nodes NX , NY , and NZ in X, Y,

and Z directions are required. The expression to convert location coordinates

to the index is shown in Eq. (3.91), where int{} is the operator to convert real

number to an integer. The location index will be used as a random number

generation seed. As a result of such indexing, a very dense mesh is imposed over

the simulation domain, and the simulation location of the white noise is shifted

to the center of the closest grid block of this fine mesh.

j(u) = int

{
x(u)− xmin

∆x

}
+ int

{
y(u)− ymin

∆y

}
NX

+ int

{
z(u)− zmin

∆z

}
NXNY

(3.91)

Second, because most of the random number generators utilize some simple

arithmetical operation such as addition or multiplication in congruential methods

including acorn, the generated random numbers might show some index-based

pattern. To avoid this non-randomness, the random number generator should be

rerun as many times as Nruns,0, which happens to be at least 2000 for acorn ran-

dom number generator, to get final random number for the simulation location u.

Also, to account for simulation of multiple realizations and variables, additional
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reruns are required. The Eq. (3.92) shows how the random numbers are gener-

ated, what the random number seed is, and how many times the random number

generator should be rerun to generate random numbers of acceptable quality for

multiple realization of the several random factors X0,k,i(u), k = 1, ...,K and

i = 1, ..., NR, at location u.

Uk,i(u) = rand {seed = j(u), Nruns = Nruns,0 + (k − 1) + (i− 1)K} (3.92)

Third, convert random number Uk,i(u) to the normal score NSk,i(u) with

zero mean and unit variance using quantile transformation procedure. This

normal score is the realization i value of the zero-order random factor X0,k,i(u)

at location u. The random numbers represent quantile values, which are used

to read normal scores from the cumulative distribution function of the N (0,1)

distribution as shown in Eq. (3.93), where G is the CDF of the N (0,1) normal

score values, and G−1 is the inverse of the G.

X0,k,i(u) = G−1 [Uk,i(u)] (3.93)

The need to represent white noise in a grid-free manner is “sequence inde-

pendence”, that is, the same white noise values are obtained everywhere in space

regardless of the sequence. Alternatively, simulated white noise values could be

kept for each simulation location and restored from the memory as needed. How-

ever, this alternative approach does not allow to represent white noise in the form

of analytical function of the coordinates of the simulation locations.

Two small case studies are prepared to show the functionality of the pro-

posed approach to the simulation of the random factor X0(u) in a semi-analytical

grid-free fashion.
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The first case study consists of a single random function, which is gener-

ated by the GFS with the nugget covariance model shown in Eq. (3.94). The

random numbers involved in the simulation of the random function and their

difference along with the resulting white noise simulation resolved on two grids

are presented in Fig. 3.46. By looking at the difference maps, it is obvious that

white noise is indeed expressed as a function of the coordinates of the simulation

location. Fig. 3.47 further justifies this observation, where histograms of the

random numbers, white noises, and their differences are shown. A larger sample

size leads to a more uniform distribution of the random numbers and to more

normal distribution of the white noise.

CY (h) = Nugget(h) (3.94)

The second case study consists of two random functions generated with the

covariance models according to Eqs. (3.95) and (3.96). The difference between

these two random functions is presence of a nugget effect in the second simulation.

The total number of the Fourier coefficients is 801. The number of the turning

lines is 200. The size of the periodic domain is 200.0. The maps of the two

simulations, their difference, and corresponding histograms are shown in Fig.

3.48. The general pattern of two maps are similar, where difference is due to the

white noise present in second random function. The experimental variograms

computed for both simulations in X direction are shown in Fig. 3.49. The

experimental variograms more or less follow the variogram model. Deviations

are explained by the ergodicity. The nugget effect is clearly seen on the right plot.

The general shape of the experimental variograms are quite close to each other

for random functions generated without and with a nugget effect. Therefore, it

has been shown how to generate unconditional realizations with the nugget effect

in a grid-free fashion.
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Figure 3.46: Example of white noise generation – left column is represented by
maps of random numbers generated on two different grid and their difference,
where smaller grid coincides with the bottom left portion of the larger grid, and
right column is represented by corresponding maps of white noise realizations

and their difference between two grids.
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Figure 3.47: Example of white noise generation – left column is represented
by histograms of random numbers generated on two different grid (see Fig.
3.46) and their difference, and right column is represented by corresponding
histograms of white noise realizations and their difference between two grids.
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CY1(h) = Sphr=40.0 (h) (3.95)

CY2(h) = 0.2 + 0.8Sphr=40.0 (h) (3.96)

Thus, representation of the unconditional realization Y us of the random

function Y in a grid-free manner is complete with nugget effect component X0

presented as a function of the simulation location coordinates.
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Figure 3.48: Example of grid-free simulation with nugget effect – maps
and corresponding histograms of two realizations generated without and with

nugget effect and their difference.
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Figure 3.49: Example of grid-free simulation with nugget effect – experimen-
tal variograms (shown by dots) computed in eastern direction from realizations
generated without and with nugget effect and variogram model (shown by line).



Chapter 4

Conditioning

The previous Chapter 3 presented unconditional grid-free simulation at point

scale. This chapter focuses on the kriging-based conditioning in presence of

various data types sampled at point and block scales [36, 37]. An illustrative

example in Fig. 4.1 depicts main points of the conditioning univariate simula-

tion through the kriging. The procedure behind this conditioning is as follows.

First, an unconditional simulation Y us with required spatial structure is gen-

erated. Second, an estimate is removed from this unconditional simulation by

subtracting the kriging estimate Y ∗|us, where the actual data values are replaced

with the unconditionally simulated values at the data locations, that is, from the

simulation Y us. Third, the kriging estimate Y ∗ derived from actual data values

is added back to arrive at a conditional simulation Y s that preserves the spatial

structure of the random function and reproduces the data at the data locations.

The mathematical form of the conditioning at a particular location u is shown in

Eq. (4.1) for a point scale, where Y s(u) is the conditional realization at location

u, Y us(u) is the unconditional realization at location u, Y ∗|us(u) is the kriging

estimate at location u, in which data values are replaced with unconditionally

simulated values at the same data locations, and Y ∗(u) is the kriging estimate at

128



Chapter 4. Conditioning 129

location u. Because kriging is a grid-free estimation technique, final conditional

realization has also a grid-free form. This approach appears ad-hoc; however,

it is based on sound theory and the correctness of this has been established in

many references [10, 36].

 

 

¯  
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= 

 

Simulated value 

Data value 

coordinate axis 
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data locations 

Yus 

 

Y*|us 

 

Y* 

 

Ys 

Figure 4.1: Illustrative 1-D example of conditioning a realization by kriging.

Y s(u) = Y us(u)− Y ∗|us(u) + Y ∗(u) (4.1)

For the multivariate systems consisting of K random functions, the scalar

values Y in Eq. (4.1) are replaced with the vector forms Y as in Eq. (4.2),

where each vector has K × 1 size. Matrices of conditional and unconditional

realizations are shown in Eqs. (4.3) and (4.4), respectively.

Ys(u) = Yus(u)−Y∗|us(u) + Y∗(u) (4.2)

Ys(u) =


Y s

1 (u)

...

Y s
K(u)

 (4.3)
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Yus(u) =


Y us

1 (u)

...

Y us
K (u)

 (4.4)

An example of the kriging-based conditioning of unconditional realization

of a 2-D univariate system is presented in Fig. 4.2. First, unconditional simu-

lation with isotropic spherical covariance structure is simulated on a 100 × 100

grid, which covers 100 × 100 m2 area. The correlation range is 20.0 m. There

are 9 data values evenly measured over the modeling area. Second, the uncondi-

tionally simulated values are sampled at these 9 data locations and used to get

an estimate of the unconditional simulation through kriging. Third, the kriging

estimate conditioned to original data values is calculated. Fourth, the first esti-

mate model is removed from the unconditional simulation. Last, kriging estimate

is added back for data reproduction. As a result, the final realization preserves

input spatial structure and honors the data. While the kriging estimates look

artificially smooth, the unconditional and conditional realizations reproduce the

specified spatial correlation structure.

4.1 Conditional Grid-Free Simulation with Scattered

Data

This section is devoted to the conditioning of unconditional realizations with

data values sampled arbitrarily over the modeling domain.

4.1.1 Conditioning with Primal Cokriging

The primal form of the kriging equations is the conventional representation of

the spatial interpolation method in geostatistics [10, 26, 35, 36, 77]. In practice,
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Figure 4.2: Example of conditioning a realization by kriging in 2-D.
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all calculations are done in the normal units with stationarity assumption, the

global mean of the random function is zero and variance is one. The simple

kriging estimate can be expressed as shown in Eq. (4.5) for actual conditioning

data values and in Eq. (4.6) for the unconditionally simulated conditioning data

values, where N is the number of the data. More explanation of the kriging

estimate was given in Section 2.2.1 of Chapter 2.

Y ∗(u) = mY (u) +

N∑
α=1

λα(u) (Y (uα)−mY (uα)) (4.5)

Y ∗|us(u) = mY (u) +
N∑
α=1

λα(u) (Y us(uα)−mY (uα)) (4.6)

Because the only difference between these two equations is the condition-

ing data values, conditioning Eq. (4.1) can be rewritten into simpler expression

shown in Eq. (4.7), which states that the conditional simulation Y s(u) is repre-

sented as a sum of the unconditional simulation Y us(u) and a single condition-

ing kriging estimate ∆Y ∗(u) at location u. The conditioning kriging estimate

is shown in Eq. (4.8) or in Eq. (4.9) in matrix form. Here, the data values

are replaced with the difference between actual data values and unconditionally

simulated values at data locations uα, α = 1, ..., N , as shown in Eq. (4.10). The

kriging weights λ(u) are stored in the vector form as presented in Eq. (4.11).

Y s(u) = Y us(u) + ∆Y ∗(u) (4.7)

∆Y ∗(u) =
N∑
α=1

λα(u) (Y (uα)− Y us(uα)) (4.8)

∆Y ∗(u) = λT (u)Yd (4.9)
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Yd =



Y (u1)− Y us(u1)

...

Y (uα)− Y us(uα)

...

Y (uN )− Y us(uN )


(4.10)

λ(u) = [λ1(u) ... λα(u) ... λN (u)]T (4.11)

The kriging weights λα(u) are derived by minimizing the variance of the

estimation error ε(u) = Y ∗(u) – Y (u) at the estimation location u. The ex-

pression for the kriging weights is presented as a system of kriging equations

Eq. (4.12) or as Eq. (4.13) in a matrix form. More details on the derivation of

the kriging weights can be found in Section 2.2.1 of Chapter 2. Expressions of

the data covariance matrix CY and simulation – data covariance vector cY are

shown in Eqs. (4.14) and (4.15), respectively.

N∑
α=1

CY (uα − uα′)λα(u) = CY (u− uα′), α
′ = 1, ..., N (4.12)

CY λ(u) = cY (u) (4.13)

CY =



CY (u1 − u1) ... CY (u1 − uα′) ... CY (u1 − uN )

... ... ...

CY (uα − u1) ... CY (uα − uα′) ... CY (uα − uN )

... ... ...

CY (uN − u1) ... CY (uN − uα′) ... CY (uN − uN )


(4.14)
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cY =



CY (u− u1)

...

CY (u− uα′)

...

CY (u− uN )


(4.15)

An example is provided to show the generation of a conditional univariate

grid-free simulation in 2-D. Consider a data set consisting of 62 points distributed

as shown in Fig. 4.3 in plan view. These data represent measurements from 20

vertical and 2 horizontal wells over a 5000.0 × 5000.0 m2 modeling area. The

data are synthetically generated by unconditional grid-free simulation algorithm

with anisotropic covariance function specified in Eq. (4.16). Therefore, the data

follow a normal distribution with zero mean and unit variance. The histogram

of the data is also shown in Fig. 4.3. The mean and variance of the data slightly

deviate from the theoretical values, because the sample size is small.

CY (h) = Sphr1=1000.0 m
r2=500.0 m
α=60o

(h) (4.16)

A total of 50 conditional realizations are generated within three simulation

domains: over the entire domain at a coarse resolution 50.0 × 50.0 m2, around

horizontal wells at a finer resolution 5.0 × 5.0 m2, and around some portion

of the upper horizontal well at an even finer resolution 1.0 × 1.0 m2. The

covariance function used in the simulation is the same as one used for the data

generation. The number of Fourier coefficients is 301, and number of the 1-

D line processes is 50. These parameters are chosen to generate realizations

with required accuracy artifact-free. The details on choice of the simulation

parameters are provided later in Chapter 5. The locations of the simulation
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nodes are placed on regular grids as shown in Fig. 4.4: large grid 1, medium

grid 2, and small grid 3, where a smaller grid is a subset of the larger grids. The

purpose of simulation at various grid resolutions is a reserve estimation of the

entire domain, construction of geological model for subsequent flow simulation,

and refinement of some geological properties within particular area of interest.

The GFS does not depend on the simulation grid, and therefore three simulations

resolved on three grids will be identical in the overlapping areas. This example

represents the zooming in feature of GFS.

Maps of first two realizations on grid 1 with the local mean and estima-

tion error variance of all 50 realizations are shown in Fig. 4.5. The data are

reproduced, which can be seen on the mean and estimation error variance maps.

The anisotropy is obvious from the realizations and post-processed maps. The

uncertainty map coincides with the theoretical prediction, which states that the

uncertainty is zero at the data locations and increases up to the global stationary

variance at locations lying further than correlation range from the data. Fig. 4.6

presents the same first two realizations resolved on grid 2 around the horizon-

tal wells. This second set of realizations can be called zoomed in realizations.

Fig. 4.7 presents the first two realizations on grid 3 at even finer resolution.

Because the realization maps represent the same realizations at various resolu-

tions, the overlapping region of the realizations resolved on different grids are

identical. The histogram of all 50 realizations generated on grid 1 and their nor-

mal probability plot are shown in Fig. 4.8. The statistics of the realizations are

in compliance with the data statistics and required theoretical statistics of the

normal distribution. Fig. 4.9 contains experimental variogram map computed

from 50 realizations and experimental variograms computed in eastern direction

shown as green lines for each realization along with their average shown as a

blue line and variogram model shown as a red line. The variogram reproduction

is good for individual realizations and quite good for their average. The spread
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of the individual experimental variograms is less for the conditional realizations

than for the unconditional realizations (see Fig. 3.21 or Fig. 3.39 in Chapter 3)

[54].
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Figure 4.3: Example of univariate conditional grid-free simulation – (a) data
locations and (b) data histogram.
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Figure 4.4: Example of univariate conditional grid-free simulation – three
gridded configurations of the simulation nodes.

The equations for multivariate conditioning remain similar to univariate

case with only difference that more random functions and associated data are

taken into consideration. Eqs. (4.17) – (4.24) show the kriging estimates used

for the conditioning of the unconditional simulation. Kriging estimate of random

variable Y ∗k (u) of K-variate system with actual conditioning data is depicted in

Eq. (4.17). Note that data of all types are used for the conditioning. Eq. (4.17)
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Figure 4.5: Example of univariate conditional grid-free simulation – maps of
first two realizations, mean of 50 realizations, and estimation error variance

simulated on large grid 1.
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Figure 4.6: Example of univariate conditional grid-free simulation – maps of
first two realizations on medium grid 2.
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Figure 4.7: Example of univariate conditional grid-free simulation – maps of
first two realizations on small grid 2.
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Figure 4.8: Example of univariate conditional grid-free simulation – his-
togram of all realizations resolved on grid 1 and probability plot to check

normality of these realizations.

shows how the kriging estimate is computed with unconditionally simulated val-

ues at data locations. When these two kriging estimate equations are combined

together according to conditioning in Eq. (4.2), the resulting kriging estimate

can be expressed as in Eq. (4.19) or in Eq. (4.20) in matrix form. The matrices

are explained in Eqs. (4.21) – (4.23). Therefore, the resulting expression for

conditioning unconditional multivariate simulation with kriging is presented in

Eq. (4.24).
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Figure 4.9: Example of univariate conditional grid-free simulation – exper-
imental variogram map computed from all 50 realizations resolved on grid 1,
and individual experimental variograms for each realization (green) along with
their average variogram (blue) and corresponding variogram model (red) in

eastern direction.

Y ∗k (u) = mYk(u) +
K∑
l=1

Nl∑
αl=1

λk,αl(u) (Yl(uαl)−mYl(uαl)) , k = 1, ...,K (4.17)

Y
∗|us
k (u) = mYk(u) +

K∑
l=1

Nl∑
αl=1

λk,αl(u) (Y us
l (uαl)−mYl(uαl)) , k = 1, ...,K

(4.18)

∆Y ∗k (u) =
K∑
l=1

Nl∑
αl=1

λk,αl(u) (Yl(uαl)− Y
us
l (uαl)) , k = 1, ...,K (4.19)

∆Y∗(u) = λT (u)Yd (4.20)



Chapter 4. Conditioning 140

∆Y∗(u) =


∆Y ∗1 (u)

...

∆Y ∗K(u)

 (4.21)

Yd =



Y1(u1)− Y us
1 (u1)

...

Y1(uN1)− Y us
1 (uN1)

...

YK(u1)− Y us
K (u1)

...

YK(uNK )− Y us
K (uNK )



(4.22)

λ(u) =


λ1,1(u) ... λ1,N1(u) ... λ1,1(u) ... λ1,NK (u)

... ... ... ...

λK,1(u) ... λK,N1(u) ... λK,1(u) ... λK,NK (u)


T

(4.23)

Ys(u) = Yus(u) + ∆Y∗(u) (4.24)

The kriging weights for the multivariate conditioning are derived in a sim-

ilar way to the univariate case by minimizing the estimation variance. The

resulting system of kriging equations are shown in Eq. (4.25) in the open form

and in Eq. (4.26) in the matrix form. The matrices are explained in Eqs. (4.27)

and (4.28). The size of data-data covariance matrix CY is
K∑
k=1

Nk ×
K∑
k=1

Nk. The

size of simulation-data covariance matrix cY (u) is
K∑
k=1

Nk ×K.
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(
K∑
l=1

Nl∑
αl=1

CYlYm(uαl − uα′m)λk,αl(u) = CYkYm(u− uα′m),

α′m = 1, ..., Nm, m = 1, ...,K

)
, k = 1, ...,K

(4.25)

CY λ(u) = cY (u) (4.26)

CY =


CY1Y1(u1 − u1) ... CY1YK (uN1 − uNK )

... ...

CYKY1(uNK − uN1) ... CYKYK (uNK − uNK )

 (4.27)

cY (u) =


CY1Y1(u− u1) ... CY1YK (u− u1)

... ...

CYKY1(u− uNK ) ... CYKYK (u− uNK )

 (4.28)

The 3-D example below is provided to show multivariate conditional sim-

ulation with GFS. The bivariate system has anisotropic spatial structure shown

in Eq. (4.29). Two random functions Y1 and Y2 are correlated with correlation

coefficient of 0.60. The data for each random function are measured along ran-

domly placed 20 vertical wells at 5.0 m intervals and along 2 horizontal wells at

about 10.0 m intervals. The data locations are shown in Fig. 4.10. Next, Fig.

4.11 contains histograms of the data along with a scatter plot. The data look

normal and correlated. The modeling domain is defined by the following ranges:

x ∈ [1500.0 m – 2500.0 m], y ∈ [2500.0 m – 3500.0 m], and in z ∈ [90.0 m – 170.0

m]. The objective is to show the regridding feature with the conditional GFS.

It is achieved through simulation of 50 realizations of the random functions Y1
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and Y2 at coarse grid 25.0 × 25.0 × 2.5 m3, which covers the entire modeling

domain, and simulation of a single realization of each random function at a fine

grid 5.0 × 5.0 × 1.0 m3 around a portion of the horizontal wells. Nodes of the

second grid are not aligned with the nodes of the first coarsely resolved grid.

The resulting realizations at the two resolutions are part of the same realization,

and, therefore, are identical in the overlapping regions.

CY (h) =



CY1(h) = Sphr1=250.0
r2=125.0
r3=10.0
α=0o

(h)

CY1Y2(h) = 0.6Sphr1=250.0
r2=125.0
r3=10.0
α=0o

(h)

CY2(h) = Sphr1=250.0
r2=125.0
r3=10.0
α=0o

(h)

(4.29)

Figure 4.10: Example of multivariate conditional grid-free simulation – data
location maps of random functions Y1 and Y2 of the bivariate system.

The simulation is performed at point scale. The realizations of both ran-

dom functions resolved at coarse grid 1 are shown in Fig. 4.12 with different

plotting techniques. While the realization of random function Y1 is shown in a

gridded format, the realization of random function Y2 is visualized only at the

simulation locations. Note the data reproduction on both models. Histograms

of all 50 realizations and a scatter plot between realizations of the two random
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Figure 4.11: Example of multivariate conditional grid-free simulation – his-
tograms and scatter plot of data of random functions Y1 and Y2 of the bivariate

system.

functions are shown in Fig. 4.13. The realizations appear univariate and bi-

variate normal. The correlation coefficient is close to the target one. Variogram

reproduction is depicted on Fig. 4.14. Experimental direct- and cross-variograms

are computed for all 50 realizations in three principal directions of the continu-

ity. These individual variograms are shown in green with their averages in blue.

The variogram model is presented by the red line. The variogram model is re-

produced exactly for the shorter ranges. Slight deviations are present for longer

ranges. The mean and estimation error variance models of 50 realizations of ran-

dom function Y1 are presented in Fig. 4.15. The mean is smooth as expected.

The data are reproduced. The estimation error variance is zero at data locations

and increases as the separation from the data locations becomes larger. Finally,

Fig. 4.16 depicts the first realizations of both spatially continuous functions at

coarse and fine grids, which are not aligned with each other. Both realizations

coincide. Thus, the grid-free nature of the conditional GFS is confirmed through

this small example.

4.1.2 Conditioning with Dual Cokriging

Dual kriging for univariate conditioning and dual cokriging for multivariate con-

ditioning with global data neighborhood are proposed to reduce computational

time during kriging weights computation [10]. The computational reduction is
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Figure 4.12: Example of multivariate conditional grid-free simulation – first
realizations of random functions Y1 and Y2: (a) pixel representation of a real-

ization, (b) point representation of a realization.
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Figure 4.13: Example of multivariate conditional grid-free simulation – his-
tograms and scatter plot of all 50 conditional realizations of the bivariate sys-

tem.

achieved through matrix manipulation. The dual (co)kriging weights ν are com-

puted only once per realization for all simulation locations u (computational

time is proportional to the number of realizations NR) in comparison with the

primary (co)kriging weights λ(u), which are computed for every simulation lo-

cation of all realizations (computational time is proportional to the number of

simulation nodes M). This reduces the number of times a matrix multiplication

operation is performed for the kriging weights derivation with conditioning to

all available data at large number of the simulation nodes in comparison with

number of the realizations.

The dual kriging estimation for the univariate case is shown in Eq. (4.30)
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Figure 4.14: Example of multivariate conditional grid-free simulation – exper-
imental direct- and cross-variograms (in green) computed for each realization of
the bivariate system for major, minor, and vertical directions of the continuity

along with their average (in blue) and variogram model (in red).

Figure 4.15: Example of multivariate conditional grid-free simulation – mean
and estimation variance maps computed from 50 realizations of the random

function Y1.
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Figure 4.16: Example of multivariate conditional grid-free simulation – coarse
and fine resolution representation of first realizations of the bivariate system.

Note data reproduction and model consistency between resolutions.

in matrix notation, which is derived by combining Eqs. (4.9) and (4.13). Note

that left hand side covariance matrix CY is symmetric.

∆Y ∗(u) = [cY (u)]T ν (4.30)

CY ν = Yd (4.31)

The dual cokriging estimation equations for the multivariate case are iden-

tical to the univariate case and are shown in Eqs. (4.32) and (4.33). Note that

matrices have slightly different forms for univariate and multivariate cases as has

been explained in previous Section 4.1.1.

∆Y∗(u) = [cY (u)]T ν (4.32)

CY ν = Yd (4.33)

An example is shown below to demonstrate how the implementation of

cokriging in a dual form can reduce computational time keeping the estimate
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unchanged. Consider a bivariate 2-D system with spatial structure presented by

Eq. (4.34). Random function Y1 has been sampled at 250 scattered locations,

see the location map and histogram in Fig. 4.17. Random function Y2 has been

exhaustively sampled at all 2500 simulation locations. A location map of the

Y2 data and the corresponding histogram are also shown in the same figure.

The distributions of both random functions are normal with zero mean and unit

variance. These two functions are linearly correlated to each other.

CY (h) =


CY1(h) = 0.1Nugget (h) + 0.9Sphr=20.0 (h)

CY1Y2(h) = 0.1Nugget (h) + 0.6Sphr=20.0 (h)

CY2(h) = 0.1Nugget (h) + 0.9Sphr=20.0 (h)

(4.34)

Figure 4.17: Example of dual cokriging – data location maps and histograms
of the bivariate system.
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The kriging estimation is performed on a given data set with several ap-

proaches. Fig. 4.18 contains the resulting estimation maps of random function

Y1 and random function Y2. In the first approach, random function Y1 is es-

timated using only primary data with simple kriging. The estimation map is

smooth as expected. In the second approach, both random functions are esti-

mated with the primal form of the simple cokriging conditional to all primary

and secondary data. In last third approach, both random functions are estimated

with the dual form of the simple cokriging using all given data. It is obvious

that the data are reproduced in all approaches. Both cokriging estimates look

identical as expected, because these two kriging estimate definitions are math-

ematically identical and the same conditioning data are used. Kriging estimate

Y ∗1 differs from cokriging estimates Y ∗1 of random function Y1 because secondary

data are used in the conditioning in addition to primary data and secondary

data do not have smooth pattern. Computational time associated with these

three cases is summarized in Fig. 4.19. The kriging algorithm does not require

much time, because only small number of the primary data is taken into account

and only random function Y1 is estimated. In this case study, implementation

of the dual form of cokriging reduces computational time by 10% in comparison

with the primal cokriging form. The reduction in the computational time will

be more significant for bigger models, larger number of conditioning data, and

less realizations being conditioned to data from global neighborhood.

4.2 Conditional Grid-Free Simulation with Exhaus-

tively Sampled Data

Quite often in petroleum projects, a secondary geophysical variable is sampled

exhaustively and evenly over a large area or volume to infer scarcely sampled

primary variables, which are correlated with this secondary variable. Because
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Figure 4.18: Example of dual cokriging – (a) kriging estimation map of the
random function 1, (b) - (c) kriging estimation maps of the random functions
1 and 2 in primal form, and (d) - (e) kriging estimation maps of the random

functions 1 and 2 in dual form.



Chapter 4. Conditioning 150

Kriging Primal cokriging Dual cokriging
0

50

100

150

200

T
im

e,
 s

Computational Time in Seconds

Figure 4.19: Example of dual cokriging – computational time of kriging,
primal cokriging, and dual cokriging in seconds.

the number of the data is very large, directly conditioning to all data cannot be

performed at a computationally affordable cost as discussed in previous Section

4.1. The intrinsic cokriging (ICK) approach is suggested for conditioning real-

izations to exhaustively sampled data to ensure manageable computational time

and keep estimation quality about the same as if all secondary data are used

in the conditioning. The key assumption in ICK is that the secondary data are

collocated with all primary data and the secondary at the estimation location

screen the rest of the secondary data. This implies that only a small portion of

the exhaustively sampled secondary data is used in the conditioning at any one

location, which is associated with much less computational burden.

4.2.1 Conditioning with Intrinsic Cokriging

Intrinsic cokriging has been chosen for conditioning multivariate systems mainly

to reduce computational time with large exhaustively sampled data sets. Also,

ICK reduces variance inflation that is often the case for collocated cokriging,

where secondary data only at the estimation location are used along with all

primary data [4]. Intrinsic cokriging implies that there are more than one random
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function to be simulated, at least one of which is exhaustively sampled either

over entire simulation domain or over its portion.

Primary random functions are being estimated, while secondary random

functions are used mainly to further constrain estimates of the primary func-

tions. The ICK estimate Y ∗k (u) of a primary or secondary random function at

location u is conditioned to all scattered data
KS∑
l=1

NS,l, all exhaustively sampled

data
KE∑
l′=1

NE,l′ at scattered data locations, and all exhaustively sampled data KE

at estimation location u, where KS is the number of the modeled properties sam-

pled at scattered locations, KE is the number of the modeled properties sampled

exhaustively and evenly, and KS + KE = K. A schematic of the conditioning

data in the intrinsic cokriging is shown in Fig. 4.20. The equations used to

compute intrinsic cokriging estimate Y ∗k (u) conditional to data values, intrinsic

cokriging estimate Y
∗|us
k (u) conditional to unconditionally simulated values at

data locations, and updating intrinsic cokriging estimate ∆Y ∗k (u) for condition-

ing unconditional simulation are provided in Eqs. (4.35) – (4.37). Eq. (4.38)

is a matrix form of the Eq. (4.37) for all updating intrinsic cokriging estimates

∆Y ∗k (u), k = 1, ...,K. The matrices have been explained in Section 4.1. Note

that the number of exhaustively sampled data can be smaller than the total

number of the scattered data, when some scattered data of various types are

collocated with each other. Therefore, a general inequality between numbers of

these two data types is
KE∑
l′=1

NE,l′ ≤
KS∑
l=1

NS,l. Also, when the estimation location is

collocated with one of the scattered data locations, the last sum in Eqs. (4.35) –

(4.37) is ignored to avoid the singularity in the inverse computation of data-data

covariance matrix. These equations remain the same despite random function

being estimated. Kriging weights are derived in a similar way as before. The sys-

tem of kriging equations is shown in Eq. (4.39) or in Eq. (4.40) in matrix form.

The size of data-data covariance matrix CY is

(
KS∑
l=1

NS,l +
KE∑
l′=1

NE,l′ +KE

)
×
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(
KS∑
l=1

NS,l +
KE∑
l′=1

NE,l′ +KE

)
. The size of estimation-data covariance matrix

cY (u) is

(
KS∑
l=1

NS,l +
KE∑
l′=1

NE,l′ +KE

)
× (KS +KE). The size of the kriging

weights matrix λ(u) is also

(
KS∑
l=1

NS,l +
KE∑
l′=1

NE,l′ +KE

)
× (KS +KE). The

conditioning based on ICK is performed in a dual form as explained in Section

4.1.2.

  

 

Simulation domain 

Exhaustively sampled data region 

Simulation node u 

 

Scattered data Yl at location uαl 

 

Exhaustively sampled data Yl’ at 

location uαl’, which is collocated 

with primary data lying inside the 

exhaustively sampled data region 

 

Exhaustively sampled data Yl’’ at 

location uαl’’, which is collocated 

with the simulation location u 

Figure 4.20: Schematic of the conditioning data in the intrinsic cokriging
(ICK).

Y ∗k (u) = mYk(u) +

KS∑
l=1

NS,l∑
αl=1

λk,αl(u) (Yl(uαl)−mYl(uαl))

+

KE∑
l′=1

NE,l′∑
αl′=1

λk,αl′ (u)
(
Yl′(uαl′ )−mYl′ (uαl′ )

)
+

KE∑
l′′=1

λk,αl′′ (u)
(
Yl′′(u)−mYl′′ (u)

)
, k = 1, ...,K

(4.35)
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Y
∗|us
k (u) = mYk(u) +

KS∑
l=1

NS,l∑
αl=1

λk,αl(u) (Y us
l (uαl)−mYl(uαl))

+

KE∑
l′=1

NE,l′∑
αl′=1

λk,αl′ (u)
(
Y us
l′ (uαl′ )−mYl′ (uαl′ )

)
+

KE∑
l′′=1

λk,αl′′ (u)
(
Y us
l′′ (u)−mYl′′ (u)

)
, k = 1, ...,K

(4.36)

∆Y ∗k (u) =

KS∑
l=1

NS,l∑
αl=1

λk,αl(u) (Yl(uαl)− Y
us
l (uαl))

+

KE∑
l′=1

NE,l′∑
αl′=1

λk,αl′ (u)
(
Yl′(uαl′ )− Y

us
l′ (uαl′ )

)
+

KE∑
l′′=1

λk,αl′′ (u) (Yl′′(u)− Y us
l′′ (u)) , k = 1, ...,K

(4.37)

∆Y∗(u) = λT (u)Yd (4.38)
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KS∑
l=1

NS,l∑
αl=1

CYlYj (uαl − uα′j )λk,αl(u)

+

KE∑
l′=1

NE,l′∑
αl′=1

CYl′Yj (uαl′ − uα′j )λk,αl′ (u)

+

KE∑
l′′=1

CYl′′Yj (uαl′′ − uα′j )λk,αl′′ (u)

= CYkYj (u− uα′j ),

j = m, α′m = 1, ..., NS,m, m = 1, ...,KS ,

j = m′, α′m′ = 1, ..., NE,m′ , m
′ = 1, ...,KE ,

j = m′′, α′m′′ = 1, ...,KE

, k = 1, ...,K (4.39)

CY λ(u) = cY (u) (4.40)

Three examples are prepared to show that conditioning of unconditional

realizations with intrinsic cokriging leads to similar results as conditioning with

conventional cokriging. Simulation results are compared for kriging, cokriging,

and intrinsic cokriging in a dual form. Intrinsic cokriging enables assimilat-

ing a large quantity of the exhaustively sampled data not worrying about ma-

trix inversion size limitation of the data-data covariance matrix CY in kriging

weights computation. The computational time in dual form implementation of

the ICK becomes longer though, because the data-data covariance matrix has to

be inverted for every estimation location due to changing collocated data value

with estimation location. The computational time is improved by introducing

the block matrix inversion scheme explained in the next Section 4.2.2, where a

smaller portion of the covariance matrix has to be inverted for every estimation

location.
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The set up of the modeling system is explained next. The studied sys-

tem consists of two correlated random functions primary Y1 and secondary Y2

in normal space. The correlation coefficient is 0.7. The first random function

is sampled at 250 scattered locations. The second random function is measured

evenly over the entire simulation domain at 2500 locations. The exhaustively

sampled data are collocated with every simulation location. The data locations

maps are shown in Fig. 4.21. Both data follow a standard normal distribu-

tion N(0,1). The spatial structure of the system is highlighted in Eq. (4.41),

where the experimental spatial structure of the random function Y1 has more

importance in the definition of the linear model of coregionalization. A total of

NR = 50 conditional realizations are generated, where 1001 Fourier coefficients

are used for each of 100 turning lines simulations to avoid obvious artifacts and

properly decompose target covariance functions (see Chapter 5 for more details).

CY (h) =



CY1(h) = 0.1Nugget(h) + 0.3Sph r1=6.0
r2=19.0
α=90o

(h)

+ 0.6Sphr1=23.0
r2=19.0
α=90o

(h)

CY1Y2(h) = 0.1Nugget(h) + 0.2Sph r1=6.0
r2=19.0
α=90o

(h)

+ 0.4Sphr1=23.0
r2=19.0
α=90o

(h)

CY2(h) = 0.1Nugget(h) + 0.3Sph r1=6.0
r2=19.0
α=90o

(h)

+ 0.6Sphr1=23.0
r2=19.0
α=90o

(h)

(4.41)

In the first case, only the random function Y1 is simulated and conditioned

with kriging to its scattered data. Simulation results, which include a map of the

first realization, histogram of all realizations, mean map of all realizations, and
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Figure 4.21: Example of the conditioning using the conventional cokriging
and intrinsic cokriging – data locations.

estimation error variance map, are shown in Fig. 4.22. Data reproduction and

normality of the simulated realizations are ensured. The variogram reproduction

is shown in Fig. 4.23. The experimental variograms computed from individual

realizations are shown in green with their average in blue, the variogram model

is presented by a red line. Experimental variogram points computed from the

data are shown as blue dots. The experimental variograms closely follow the var-

iogram model for shorter ranges with deviations towards the data experimental

variogram for longer ranges.

In the second case, both random functions Y1 and Y2 are simulated and

conditioned with cokriging to all primary scattered data and all secondary ex-

haustively sampled data. Simulation results of both random functions are shown

in Fig. 4.24 and Fig. 4.25. Data are reproduced, and realizations closely follow

standardized normal distribution. Because there is a large number of primary

conditioning data, the first realization of random function Y1 conditioned to all

primary and secondary data looks very similar to the first realization of the same

random function conditioned to only primary data by kriging in the previous

case. The exhaustively sampled data of random function Y2 are not so smooth,

which leads to the mean of 50 realizations of random function Y1 being not so
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Figure 4.22: Example of the conditioning using the conventional kriging –
map of first realization, histogram of all realizations, mean map of all realiza-

tions, and estimation error variance map of random function Y1.

Figure 4.23: Example of the conditioning using the conventional kriging –
experimental variograms in green computed from 50 realizations, their average
in blue, and variogram model in red of the random function Y1 in major and
minor directions of the continuity. Blue dots are experimental variograms of

random function Y1 computed from data.
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smooth either in comparison with the simulation mean conditioned by kriging in

previous case. Also, the estimation error variance map of random function Y1 is

less in magnitude due to a larger number of conditioning data. The estimation

error variance map of random function Y2 is zero as expected at every simula-

tion location, because there is a data value at every simulation location. The

correlation coefficient of the generated realizations is shown on a scatter plot in

Fig. 4.26. It is 0.8, which is a bit higher than target 0.7. The bivariate distribu-

tion does not appear binormal. These might be caused by absence of degrees of

freedom for random function Y2, which is sampled at every simulation location.

This fact may also over-constrain the simulated values of random function Y1.

The variogram reproduction can be found in Fig. 4.27. Because exhaustively

sampled data are dominant data type, the experimental variograms of random

function Y1 and cross-variogram between random function Y1 and Y2, which are

shown in green lines, lie between variogram model in red and data experimental

variogram of random function Y2, shown as violet dots.

In the third case, simulation of both random functions is conditioned with

the intrinsic cokriging formalism. Here, all scattered data of random function

Y1 and exhaustively sampled data of random function Y2 collocated with the

scattered data and simulation location are used in conditioning of the simula-

tion. Simulation results are presented in Figs. 4.28 – 4.30 with the variogram

reproduction in Fig. 4.31. The realizations are identical to the realizations from

previous case with the cokriging-based conditioning. The reason for the similar-

ity lies in the screening effect, which states that among all exhaustively sampled

secondary data the highest weight is assigned to the data collocated with the

simulation location [10]. Therefore, under these circumstances it is plausible to

replace cokriging with the intrinsic cokriging, which leads to similar simulation

results. The comparison of the computational time is discussed next.

The simulations are performed on a 64-bit Windows machine with Intel i7
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Figure 4.24: Example of the conditioning using the cokriging – map of first
realization, histogram of all realizations, mean map of all realizations, and

estimation error variance map of random function Y1.

processor of 2.8 GHz and 24.0 GB RAM. The required computational time varies

for each of these three cases, and is summarized in Fig. 4.32. It is obvious that

the least computationally demanding case is kriging, because the least number

of data (250) among three cases are used in the conditioning. It requires 769

seconds to simulate 50 conditional realizations conditioned by kriging. Simu-

lation based on the cokriging takes about eleven times longer or 9063 seconds.

Mostly it is because the number of conditioning data is eleven times larger (2750

data values). When intrinsic cokriging is implemented for the conditioning, the

data-data covariance matrix has to be inverted every time for new simulation lo-

cation. This leads to significantly increased computational time for the third case

– approximately 52150 seconds for 50 realizations. Conditioning data changes
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Figure 4.25: Example of the conditioning using the cokriging – map of first
realization, histogram of all realizations, mean map of all realizations, and

estimation error variance map of random function Y2.

Figure 4.26: Example of the conditioning using the cokriging – scatter plot
between all realizations of the simulated random functions Y1 and Y2.
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Figure 4.27: Example of the conditioning using the cokriging – experimental
variograms in green computed from 50 realizations, their average in blue, and
variogram model in red of the random functions Y1 and Y2 in major and minor
directions of the continuity. Blue dots are experimental variograms of random
function Y1 computed from data, and violet dots are computed from data of

random function Y2.

for every simulation location, which is either 501, when simulation location does

not overlap with any scattered data of random function Y1, or 500, when there is

an overlap. Thus, intrinsic cokriging is a computationally demanding approach,

unless a modification is applied to the implementation of the algorithm. Block

matrix inversion (BMI) is proposed for the data covariance matrix inversion step

to reduce computational time. The BMI is discussed next in Section 4.2.2. Just

to note that computational time reduces significantly to 9104 seconds for the sim-

ilar simulation study with the BMI. The reduced time is similar to the cokriging

case. The BMI approach surpasses the cokriging substantially in computational
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Figure 4.28: Example of the conditioning using the intrinsic cokriging – map
of first realization, histogram of all realizations, mean map of all realizations,

and estimation error variance map of random function Y1.

time in practice, when exhaustively sampled data are very large in number in

comparison with the scattered data.

As a conclusion to these three cases, in the presence of exhaustively sam-

pled data, the simulation results are similar for realizations conditioned by cok-

riging and intrinsic cokriging. It is also found that the spatial structure of the

random function Y1 depends on the spatial structure of the random function Y2,

because of its larger number of data and a reasonably high correlation in this

case. The computational time is lower for the block matrix inversion implemen-

tation of the intrinsic cokriging algorithm than original intrinsic cokriging.
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Figure 4.29: Example of the conditioning using the intrinsic cokriging – map
of first realization, histogram of all realizations, mean map of all realizations,

and estimation error variance map of random function Y2.

Figure 4.30: Example of the conditioning using the intrinsic cokriging –
scatter plot between all realizations of the simulated random functions Y1 and

Y2.
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Figure 4.31: Example of the conditioning using the intrinsic cokriging –
experimental variograms in green computed from 50 realizations, their average
in blue, and variogram model in red of the random functions Y1 and Y2 in major
and minor directions of the continuity. Blue dots are experimental variograms
of random function Y1 computed from data, and violet dots are computed from

data of random function Y2.
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Figure 4.32: Example of the conditioning using the kriging, cokriging, intrin-
sic cokriging, and intrinsic cokriging with block matrix inversion – comparison

of computational time.
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4.2.2 Block Matrix Inversion

The block matrix inversion is proposed for inversion of the data-data covariance

matrix CY to reduce computational time in the intrinsic cokriging-based condi-

tioning, when a large number of exhaustively sampled data is assimilated into

the model along with the scattered data.

The data within the data-data covariance matrix can be grouped into

fixed data, which do not change over simulation locations, and varying data,

which vary from one simulation location to another. The fixed data comprise

scattered data and exhaustively sampled data collocated with the scattered

data. Their number
KS∑
l=1

NS,l +
KE∑
l′=1

NE,l′ is relatively large. The varying data

consist of the exhaustively sampled data collocated with the simulation loca-

tion. Their number KE is limited only to the number of the random func-

tions that are exhaustively sampled. Thus, when the data covariance matrix

CY of size

(
KS∑
l=1

NS,l +
KE∑
l′=1

NE,l′ +KE

)
×

(
KS∑
l=1

NS,l +
KE∑
l′=1

NE,l′ +KE

)
shown in

Eq. (4.42) is examined closely, it can be divided into four parts based on the

covariances CYFYF between fixed data, covariances CYFYV between fixed and

varying data, covariances CYV YF between varying and fixed data, and covari-

ances CYV YV between and varying and varying data for each simulation loca-

tion. This subdivision implies that data-data covariance matrix has a block

matrix form. The largest covariance part CYFYF of size

(
KS∑
l=1

NS,l +
KE∑
l′=1

NE,l′

)
×(

KS∑
l=1

NS,l +
KE∑
l′=1

NE,l′

)
is fixed, while values of other three parts of the data-data

covariance matrix vary with the simulation location. The inverse of the data-

data covariance matrix is shown in Eq. (4.43), which is also subdivided into four

parts (matrices). The combined size of these four parts is the same as the size of

the original covariance matrix CY . Each part is computed independently from

the other parts as shown in Eqs. (4.44) – (4.47) according to the block matrix
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inversion theorem [25]. The inverse C−1
YFYF

is computed only once for all sim-

ulation locations and realizations. It is the most computationally intense step

in the block matrix inversion. Another inversion operation in the block matrix

inversion algorithm involves inverse C−1
YV YV

of covariance matrix between varying

data of small size KE x KE . Other operations carried out in the block matrix

inversion are matrix multiplication. Matrix multiplication is faster than matrix

inversion. Therefore, the inclusion of the block matrix inversion algorithm to

the intrinsic cokriging improves computational time. The proposed matrix in-

version algorithm does not call for expensive matrix inversion for each simulation

location, but rather requires matrix multiplication.

CY =

CYFYF CYFYV

CYV YF CYV YV

 (4.42)

C−1
Y =

CYFYF CYFYV

CYV YF CYV YV


−1

=


[
C−1
Y

]
FF

[
C−1
Y

]
FV[

C−1
Y

]
V F

[
C−1
Y

]
V V

 (4.43)

[
C−1
Y

]
FF

= C−1
YFYF

+ C−1
YFYF

CYV YF

[
CYV YV −CYFYVC

−1
YFYF

CYV YF

]−1
CYFYVC

−1
YFYF

(4.44)

[
C−1
Y

]
FV

= −C−1
YFYF

CYV YF

[
CYV YV −CYFYVC

−1
YFYF

CYV YF

]−1
(4.45)

[
C−1
Y

]
V F

= −
[
CYV YV −CYFYVC

−1
YFYF

CYV YF

]−1
CYFYVC

−1
YFYF

(4.46)
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[
C−1
Y

]
V V

=
[
CYV YV −CYFYVC

−1
YFYF

CYV YF

]−1
(4.47)

An example of conditioning simulation with the intrinsic cokriging imple-

mented along with the block matrix inversion is given in the third case study

in the previous Section 4.2.1. Figs. 4.33 – 4.35 present simulation results for

both random functions Y1 and Y2. Fig. 4.36 shows variogram reproduction. The

results are identical to the intrinsic cokriging without block matrix inversion.

On the other hand, computational time drops by 5.7 times from 52150 seconds

to 9104 seconds (Fig. 4.32). The BMI is an effective algorithm to improve

computational time of the intrinsic cokriging without sacrificing any estimation

quality.

Figure 4.33: Example of the conditioning using the intrinsic cokriging with
block matrix inversion – map of first realization, histogram of all realizations,
mean map of all realizations, and estimation error variance map of random

function Y1.
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Figure 4.34: Example of the conditioning using the intrinsic cokriging with
block matrix inversion – map of first realization, histogram of all realizations,
mean map of all realizations, and estimation error variance map of random

function Y2.

4.2.3 Projection in Intrinsic Cokriging

In most of the cases the “exhaustively” sampled data do not cover the entire

modeling region. When intrinsic cokriging is applied for the conditioning, some

scattered data may not have a collocated exhaustively sampled data. Some of

the locations being simulated would not have a collocated secondary data value

either. If the conditioning proceeds with missing exhaustively sampled data,

artifacts along the edges of the exhaustively sampled data occur in the final real-

ization. In order to avoid this edge effect artifact, conditioning is performed with

the projection of the scattered data locations and simulation location onto the

exhaustively sampled data. The scattered data locations and simulation node
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Figure 4.35: Example of the conditioning using the intrinsic cokriging with
block matrix inversion – scatter plot between all realizations of the simulated

random functions Y1 and Y2.
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Figure 4.36: Example of the conditioning using the intrinsic cokriging with
block matrix inversion – experimental variograms in green computed from 50
realizations, their average in blue, and variogram model in red of the random
functions Y1 and Y2 in major and minor directions of the continuity. Blue dots
are experimental variograms of random function Y1 computed from data, and

violet dots are computed from data of random function Y2.
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location themselves are not shifted. Instead, the exhaustively sampled data at

the projected locations are used in the conditioning along with the primary data

values. The projection approach reduces the correlation between the primary

data value or simulation location and secondary data at the projected location

according to an intrinsic model for the cross-variogram CY1Y2(h) [4, 77]. The

schematic of the conditioning using the intrinsic cokriging with the data projec-

tion is shown in Fig. 4.37. The projection approach is proposed to keep number

of the secondary data constant for all simulation locations. This makes size of

the data-data covariance matrix consistent in application of the block matrix

inversion for all simulation locations. The alternative approach to avoid edge

effect is to use several secondary data within the local data neigborhood around

simulation location.
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Exhaustively sampled data region 

Simulation node u 
 

Primary scattered data Yl at location uαl 
 

Secondary exhaustively sampled data Yl’ at 

location uαl’, which are collocated with 
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or simulation node location lying outside 

the exhaustively sampled data region 

 

Figure 4.37: Schematic of the conditioning data in the intrinsic cokriging
(ICK) with projection.

Three cases are compared to illustrate the significance of the projection

approach: conditioning with conventional cokriging, intrinsic cokriging without

projection, and intrinsic cokriging with projection. The examples are similar

to the bivariate case studies shown in the previous two sections. The number

of data is reduced to emphasize the importance of the projection and highlight
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edge effects. The total number of scattered data is 25. Exhaustively sampled

data set is represented by 625 (25 × 25) evenly spaced data. The data locations

over a 50.0 × 50.0 m2 simulation area are shown in Fig. 4.38. The data follow a

Gaussian N(0,1) distribution. The experimental variograms computed from the

larger exhaustively sampled data (not shown here) and fitted variogram model

are presented in Fig. 4.39, where the blue line corresponds to the direction

of maximum continuity (10◦ azimuth), the violet line is the variogram in the

direction of minimum continuity (100◦ azimuth), and the red lines are variogram

model. The expression of the corresponding covariance model is shown in Eq.

(4.48). The correlation coefficient between these two random functions is 0.70.

The simulation domain is defined by 2500 (50 × 50) evenly placed simulation

nodes on a grid. A total of 50 realizations are generated for each case. There are

100 lines, where each 1-D line simulation considered 1001 Fourier coefficients.

CY (h) =



CY1(h) = 0.6Sphr1=10.0
r2=10.0
α=10o

(h) + 0.4Sphr1=25.0
r2=10.0
α=10o

(h)

CY1Y2(h) = 0.3Sphr1=10.0
r2=10.0
α=10o

(h) + 0.4Sphr1=25.0
r2=10.0
α=10o

(h)

CY2(h) = 0.6Sphr1=10.0
r2=10.0
α=10o

(h) + 0.4Sphr1=25.0
r2=10.0
α=10o

(h)

(4.48)

The first case consists of the simulation of both random functions Y1 and

Y2 conditioned to all available data with the conventional cokriging formalism.

It is a reference case, with which ICK with and without projection is compared.

Simulation of the random function Y1, which includes map of the first realization,

histogram of all realizations, and maps of the realizations’ mean and estimation

error variance, are shown in Fig. 4.40. The same results for the random function

Y2 are shown in Fig. 4.41. It is clear that the data are reproduced, the real-

izations are normal, and the uncertainty map meets the theoretical prediction.
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Figure 4.38: Example of the conditioning using the intrinsic cokriging without
and with projection – data locations.

Figure 4.39: Example of the conditioning using the intrinsic cokriging projec-
tion – experimental variograms and variogram model of the random function Y2.
Green lines are experimental variograms, blue line corresponds to the direction
of maximum continuity (10◦ azimuth), violet line is the variogram computed
in the direction of minimum continuity (100◦ azimuth), and red lines are fitted

varioram model.
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The means of the realizations of both random functions are smooth outside of

the exhaustively sampled data region and closely follow spatial pattern of the

secondary data inside the region. There is no edge effect, but a smooth transi-

tion between the secondary data region and the rest of the simulation domain.

The spread of the transition zone is determined by the spatial correlation range.

The bivariate normality of the system is honored and is presented in the form of

the scatter plot between simulated realizations of both random functions in Fig.

4.42. Variogram reproduction is illustrated in Fig. 4.43. The variogram is re-

produced quite well for shorter ranges. There is slight deviation of experimental

variograms from the model in the minor direction of continuity for the random

function Y2.

Figure 4.40: Example of the conditioning using the cokriging – map of first
realization, histogram of all realizations, mean map of all realizations, and

estimation error variance map of random function Y1.
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Figure 4.41: Example of the conditioning using the cokriging – map of first
realization, histogram of all realizations, mean map of all realizations, and

estimation error variance map of random function Y2.

Figure 4.42: Example of the conditioning using the cokriging – scatter plot
between all realizations of the simulated random functions Y1 and Y2.
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Figure 4.43: Example of the conditioning using the cokriging – experimental
variograms in green computed from 50 realizations, their average in blue, and
variogram model in red of the random functions Y1 and Y2 in major and minor
directions of the continuity. Violet dots are experimental variograms of random

function Y2 computed from data.

The second case reveals the artifact that is caused by ignoring the projec-

tion approach in intrinsic cokriging conditioning. Fig. 4.44 and Fig. 4.45 show

the first realization, a histogram of all realizations, their mean, and estimation er-

ror variance maps of both random functions Y1 and Y2. Even though the data are

reproduced, the edge effect is prominent on the realization maps, especially for

Y2. Part of the simulation, which represents regions of the exhaustively sampled

data, does not coincide with the rest of the simulation neither on the realization

map nor on the map of mean of the realizations. In contrast, the simulated
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statistics are very reasonable. Histograms of the realizations are quite normal.

Mean and variance maps resemble theoretically expected ones. Estimation error

variance is zero at the data locations. The scatter plot between simulated real-

izations is depicted in Fig. 4.46. The correlation coefficient of the simulations is

0.71, which is very close to the target one. The bivariate distribution appears to

be bi-Gaussian. Fig. 4.47 shows good variogram reproduction.

Figure 4.44: Example of the conditioning using the intrinsic cokriging without
projection – map of first realization, histogram of all realizations, mean map
of all realizations, and estimation error variance map of random function Y1.

The last case consists of the same setting as before with the difference that

the projection of the scattered data and simulation location onto the exhaus-

tively sampled data region is deployed for the ICK-based conditioning. Fig. 4.48

and Fig. 4.49 show the resulting realizations of each random function Y1 and

Y2. A map of first realization, histogram of all realizations, mean and estimation

error variance maps are shown in these two figures. The edge effect is resolved on
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Figure 4.45: Example of the conditioning using the intrinsic cokriging without
projection – map of first realization, histogram of all realizations, mean map
of all realizations, and estimation error variance map of random function Y2.

Figure 4.46: Example of the conditioning with using intrinsic cokriging with-
out projection – scatter plot between all realizations of the simulated random

functions Y1 and Y2.
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Figure 4.47: Example of the conditioning using the intrinsic cokriging without
projection – experimental variograms in green computed from 50 realizations,
their average in blue, and variogram model in red of the random functions
Y1 and Y2 in major and minor directions of the continuity. Violet dots are

experimental variograms of random function Y2 computed from data.

the realization maps. A smooth transition from the exhaustively sampled data

region to the rest of the simulation domain is observed on both the mean and

variance maps. It is found that the transition zone is seen by some radial effect on

the mean maps. The simulation results of the intrinsic cokriging approach with

projection are very similar to the results of the conventional cokriging-based con-

ditioning. Minor differences are justified by the different number of data used in
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the conditioning. Both realizations of random functions Y1 and Y2 are individu-

ally normal. The bivariate relationship in Fig. 4.50 is binormal. Data values and

correlation coefficient are honored. Fig. 4.51 contains experimental variograms

computed from the realizations along with the variogram model in directions of

maximum and minimum continuity. The variogram model is reproduced quite

well for shorter lag distances. Some deviations of the experimental variograms

from the model are observed for longer lag distances, and are deemed to be due

to spatial structure inherited in the data.

Figure 4.48: Example of the conditioning using the intrinsic cokriging with
projection – map of first realization, histogram of all realizations, mean map
of all realizations, and estimation error variance map of random function Y1.
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Figure 4.49: Example of the conditioning using the intrinsic cokriging with
projection – map of first realization, histogram of all realizations, mean map
of all realizations, and estimation error variance map of random function Y2.

Figure 4.50: Example of the conditioning using the intrinsic cokriging with
projection – scatter plot between all realizations of the simulated random func-

tions Y1 and Y2.
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Figure 4.51: Example of the conditioning using the intrinsic cokriging with
projection – experimental variograms in green computed from 50 realizations,
their average in blue, and variogram model in red of the random functions
Y1 and Y2 in major and minor directions of the continuity. Violet dots are

experimental variograms of random function Y2 computed from data.

4.2.4 Point-Scale Block Value Representation

Most of the time, the exhaustively sampled data are measured at a scale larger

than a point scale. Seismic data is a good example of this. A methodology

is explained next to bring block-scale data to a pseudo point scale in a grid

free manner to avoid block-scale conditioning artifacts caused by abrupt changes

across the adjacent block-scale data values. This block data representation with

pseudo point-scale values is an alternative way to block cokriging for assimilation
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block-scale data artifact-free [69]. There is no need to compute point scale-

block scale covariances between data sampled at different scales. This reduces

computational time for conditioning realizations to block-scale data. Thus, the

advantage of the PSB value representation is simplicity and complete consistency

within the proposed grid free framework.

The exhaustively sampled data at a block scale are usually gridded. The

grid consists of a set of data volumes in 3-D (or areas in 2-D, and intervals

in 1-D). A single block-scale data value is assigned to the entire data volume.

This block-scale data value represents an average of the point-scale data values

contained within the volume. The average is computed arithmetically, if the

studied geological property scales linearly. The location of any data volume is

tied to the centre of the grid block. The schematic of 2-D gridded exhaustively

sampled block-scale data is presented in Fig. 4.52. Black dots represent the

centres of grid blocks or nodes of the block-scale data characterized by location

indices i, j, and k, which define location order of each block in the data grid.

Dashed lines define boundary between data volumes. The transition between

any two adjacent volumes is not necessarily smooth, which creates artifacts in

the models conditioned to this type of data, unless a conventional block cokriging

approach is applied [36].

The grid-free simulation algorithm requires knowledge of the exhaustively

sampled data at every location in the data region at a point scale. Therefore,

the block-scale data should be transformed to a point scale for scale consistency.

A point-scale block (PSB) value interpolation is proposed between centres of

the block data to smooth transition between the adjacent block-scale data by

representing block-scale data in a grid-free form and approximate the block-scale

data to a pseudo point-scale data. This approach is not a downscaling. The

smoothing algorithm does not bring any additional information, however it has

a unique solution. These PSB values will be defined analytically as a function of
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Figure 4.52: A schematic of a portion of the gridded exhaustively sampled
block-scale data in plan view.

the coordinates of the location u in the space. The PSB representation of the

secondary data produces more extreme values than original data. The average

of the point-scale block values within the block volume should be equal to the

block-scale data value. The global mean of the PSB values should match the

mean of the data. The global variance of the PSB values may be larger than the

variance of the block data, partly due to the introduction of more fluctuations

by block-scale values regridding. The PSB should be applied before any normal

score transformation.

The PSB value representation procedure is as follows. The block-scale

data values Z(V (uα)), α = 1, ..., N, in original units are assigned to the centers

of corresponding grid blocks and are called data nodal values. These data nodal

values form another mesh shown as solid lines in Fig. 4.53. The dashed lines

form grid blocks of original data. Then, these data nodal values Z(V (xi, yj , zk))

presented by black dots are used as anchor points in the linear interpolation
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model to obtain smooth pseudo point-scale block data values Z(x, y, z), which

are expressed in a grid-free manner as a function of the coordinates x, y, and z.

The linear algorithm is summarized in Eqs. (4.49) – (4.55) through seven steps

for 3-D data systems. Eq. (4.56) combines all previous seven equations to a single

equation. Fig. 4.53 and Fig. 4.54 are provided for a visual explanation. Each

equation depicts one calculation step. In the first step, a PSB value is calculated

as in Eq. (4.49) between any two data nodal values at required coordinate on

axis, which defines direction between two nodal values. In the second step,

another PSB value is calculated between other two data nodal values, which

are parallel to the first two data nodal values, as presented in Eq. (4.50). In

the third step, new PSB value is interpolated between two previously computed

PSB values. Similar steps are carried out for the data nodal values located in

adjacent parallel plane. In the last seventh step, final PSB value is interpolated

between PSB values computed at steps 3 and 6 to get pseudo point-scale block

value at the required location u with coordinates x, y, and z. The order of the

calculations shown in the equations and figures has been chosen arbitrarily. The

indices i = 0, ..., NX + 1, j = 0, ..., NY + 1, and k = 0, ..., NZ + 1, imply the

location of the data nodal values in the grid. The integers NX , NY , and NZ are

the number of the blocks in three principal directions of the gridded data. The

edge data nodes, which are shown as hollow dots in Fig. 4.53, are assumed to

be equal to the neighbouring data node value.

Z(x ∈ {xi : xi+1}, yj , zk) = Z(V (xi, yj , zk))

+ (Z(V (xi+1, yj , zk))− Z(V (xi, yj , zk)))

(
x− xi
xi+1 − xi

) (4.49)
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Z(x ∈ {xi : xi+1}, yj+1, zk) = Z(V (xi, yj+1, zk))

+ (Z(V (xi+1, yj+1, zk))− Z(V (xi, yj+1, zk)))

(
x− xi
xi+1 − xi

) (4.50)

Z(x ∈ {xi : xi+1}, y ∈ {yj : yj+1}, zk) = Z(x ∈ {xi : xi+1}, yj , zk)

+ (Z(x ∈ {xi : xi+1}, yj+1, zk)− Z(x ∈ {xi : xi+1}, yj , zk))

·
(

y − yj
yj+1 − yj

) (4.51)

Z(x ∈ {xi : xi+1}, yj , zk+1) = Z(V (xi, yj , zk+1))

+ (Z(V (xi+1, yj , zk+1))− Z(V (xi, yj , zk+1)))

(
x− xi
xi+1 − xi

) (4.52)

Z(x ∈ {xi : xi+1}, yj+1, zk+1) = Z(V (xi, yj+1, zk+1))

+ (Z(V (xi+1, yj+1, zk+1))− Z(V (xi, yj+1, zk+1)))

(
x− xi
xi+1 − xi

) (4.53)

Z(x ∈ {xi : xi+1}, y ∈ {yj : yj+1}, zk+1) = Z(x ∈ {xi : xi+1}, yj , zk+1)

+ (Z(x ∈ {xi : xi+1}, yj+1, zk+1)− Z(x ∈ {xi : xi+1}, yj , zk+1))

·
(

y − yj
yj+1 − yj

) (4.54)
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Z(x ∈ {xi : xi+1}, y ∈ {yj : yj+1}, z ∈ {zk, zk+1})

= Z(x ∈ {xi : xi+1}, y ∈ {yj : yj+1}, zk)

+ (Z(x ∈ {xi : xi+1}, y ∈ {yj : yj+1}, zk+1)

−Z(x ∈ {xi : xi+1}, y ∈ {yj : yj+1}, zk)) ·
(

z − zk
zk+1 − zk

) (4.55)

Z(x ∈ {xi : xi+1}, y ∈ {yj : yj+1}, z ∈ {zk, zk+1}) = Z(V (xi, yj , zk))

+ (Z(V (xi+1, yj , zk))− Z(V (xi, yj , zk)))

(
x− xi
xi+1 − xi

)
+ (Z(V (xi, yj+1, zk))− Z(V (xi, yj , zk)))

(
y − yj

yj+1 − yj

)
+ (Z(V (xi, yj , zk+1))− Z(V (xi, yj , zk)))

(
z − zk

zk+1 − zk

)
+ (Z(V (xi, yj , zk))− Z(V (xi+1, yj , zk))

+ Z(V (xi+1, yj+1, zk))− Z(V (xi, yj+1, zk)))

(
x− xi
xi+1 − xi

y − yj
yj+1 − yj

)
+ (Z(V (xi, yj , zk))− Z(V (xi+1, yj , zk))

− Z(V (xi, yj , zk+1)) + Z(V (xi+1, yj , zk+1)))

(
x− xi
xi+1 − xi

z − zk
zk+1 − zk

)
+ (Z(V (xi, yj , zk))− Z(V (xi, yj+1, zk))

− Z(V (xi, yj , zk+1)) + Z(V (xi, yj+1, zk+1)))

(
y − yj

yj+1 − yj
z − zk

zk+1 − zk

)
+ (−Z(V (xi, yj , zk)) + Z(V (xi+1, yj , zk))

− Z(V (xi+1, yj+1, zk)) + Z(V (xi, yj+1, zk))

+ Z(V (xi, yj , zk+1))− Z(V (xi+1, yj , zk+1))

+ Z(V (xi+1, yj+1, zk+1))− Z(V (xi, yj+1, zk+1)))

·
(

x− xi
xi+1 − xi

y − yj
yj+1 − yj

z − zk
zk+1 − zk

)

(4.56)
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Figure 4.53: Point-scale block data representation paradigm – mesh in 2-D.
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Figure 4.54: Point-scale block data representation paradigm – algorithmic
steps in 3-D.

The major criteria for the interpolation is that local means of the point-

scale block values within each block should match block-scale data value for each

block. It can be done by discretizing block-scale data into finite number of the

point-scale block values. The average of the point-scale block values is computed

and compared with the original block-scale data value. The initial setting, when
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data nodal values equal to the block-scale data, does not ensure reproduction

of the block-scale data by local PSB averages. An iterative procedure is im-

plemented to match local averages with corresponding original block-scale data

by changing data nodal values in the interpolation equations. The data nodal

values are adjusted through the Eqs. (4.57) – (4.60) by matching the averages

of the PSB values with the input block-scale data. Integers ∆NX , ∆NY , and

∆NZ are the number of the discretization PSB points in X, Y, and Z directions

used to compute local averages of the PSB representation model values. First,

the data nodal values are assumed to be equal to the original block-scale data as

shown in Eq. (4.57). Then, nodal PSB values are adjusted through coefficient fs

according to Eq. (4.58). The coefficient in Eq. (4.59) is just a ratio of the block

datum to the corresponding local PSB averages computed through Eq. (4.60).

The mismatch between model and actual data is presented by mean square error

ε in Eq. (4.61). The procedure is repeated for several other iterations. The iter-

ation number s that gives the minimal discrepancy is chosen for the final model

of grid-free PSB value representation model. The iterations can be terminated

after particular number or when ε reaches some minimal threshold value. In this

way, the original block-scale data are transformed to point-scale block values

with no systematic bias.

Zs=0(xi, yj , zk) = Z(V (xi, yj , zk)) (4.57)

Zs+1(xi, yj , zk) = Zs(xi, yj , zk)fs(xi, yj , zk) (4.58)

fs(xi, yj , zk) =
Z(V (xi, yj , zk))

Z̄s

(
x∈{xi−1/2:xi+1/2},
y∈{yj−1/2:yj+1/2},
z∈{zk−1/2:zk+1/2}

) (4.59)
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Z̄s

(
x∈{xi−1/2:xi+1/2},
y∈{yj−1/2:yj+1/2},
z∈{zk−1/2:zk+1/2}

)
=

∆NX∑
i′=1

∆NY∑
j′=1

∆NZ∑
k′=1

Zs

(
xi′∈{xi−1/2:xi+1/2},
yj′∈{yj−1/2:yj+1/2},
zk′∈{zk−1/2:zk+1/2}

)
∆NX∆NY ∆NZ

(4.60)

εs =

NX+1∑
i=0

NY +1∑
j=0

NZ+1∑
k=0

(
Z̄s

(
x∈{xi−1/2:xi+1/2},
y∈{yj−1/2:yj+1/2},
z∈{zk−1/2:zk+1/2}

)
− Z(V (xi, yj , zk))

)2

(NX + 2)(NY + 2)(NZ + 2)
(4.61)

Four examples are prepared to demonstrate implementation details and

characteristics of the point-scale block value representation method for repre-

senting block-scale data as pseudo point-scale block values. The interpolated

values are still at the block scale, but infinitely resolved.

The first example motivates need for the PSB value representation of the

secondary exhaustively sampled data. Fig. 4.55 presents realizations of the bi-

variate system conditional to secondary exhaustively sampled data of random

variable 2. When no PSB representation of the secondary block data is assumed

(plots on the left-hand side), the resulting realization of the random variable 1

has artifacts related to the sharp boundaries between adjacent secondary data.

The realization of the random variable 2 precisely depicts the conditioning data.

Only values of secondary data collocated with simulation locations are used.

These secondary data values are assumed constant throughout entire block re-

gion. The artifacts are removed (plots on the right-hand side), when the PSB

value representation of the secondary data is applied. The realization of random

variable 1 is similar to the previous realization, but without boundary affect.

Secondary data dictate high and low regions of the simulated random variable

1. The realization of random variable 2 is the PSB value-based interpolation of

four block data, values of which are centered in the middle of the appropriate
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blocks.

The second example consists of 10 block-scale data values distributed along

line axis as shown in Fig. 4.56 in red. The PSB value representation is performed

on this data set to get pseudo point-scale block data values. Each block datum

is discretized into 10 point data. The PSB value-based interpolation results are

presented in the same Fig. 4.56, where PSB values are shown by a green line

and their local averages are presented by blue line. It is clear that the initial

setting of the nodal PSB values produces an interpolated model that is far from

the data. After 4 iterations, the model improves significantly. The mismatch

between the data and local averages of the PSB values in terms of the mean

square error is presented in Fig. 4.57 for each of 20 iterations. Based on this

bar chart, it can be argued that in this 1-D case 4 – 8 iterations are enough to

match PSB value model with the data quite well. The statistics in the form of

a histogram is presented in Fig. 4.58 for data, PSB values, and their averages.

The local averages of PSB values coincide with the data statistics for higher

iteration numbers. The match is not so good for the initial setting and the first

iteration. The number of iterations depends on the complexity of the block-scale

data. It is recommended to run at least several iterations to get acceptable data

reproduction. The mean and standard deviation of the data and local averages

of last iteration are the same. While the mean of PSB values of the last iteration

is the same as the data mean, the standard deviation is higher (0.56 versus 0.53)

because of some higher values in high blocks and lower values in some low blocks;

there is no scale change, but the point representation still calls for some more

extreme values.

The third example is a small 2-D case, which consists of 16 (4 × 4) block-

scale data values. A map of the original data is shown in Fig. 4.59. There

are sharp boundaries between adjacent block-scale data. The objective is to

represent part of this data set at a point-scale in the area shown by the black
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Figure 4.55: Example of 2-D point-scale block value representation – plots of
conditioning secondary data and realizations of the bivariate system with and

without PSB value representation of secondary data.
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Figure 4.56: Example of 1-D point-scale block value representation – plots
of original block-scale data, PSB values, and their local averages for several

iterations.

box. The required number of point-scale block data is 800 (40 × 20). The results

of the point-scale block value representation are shown in the same Fig. 4.59.

It contains PSB values and their local averages for the initial setting and for

iteration 30. It is clear that the block-scale data are not matched with initial

PSB values, but are perfectly reproduced with the adjusted PSB values after

30 iterations. The mismatch between local averages of the tuned PSB values

and data is presented as a bar chart of mean square error in Fig. 4.60 for each

iteration. From this chart it can be suggested to run 10 – 15 iterations for this

2-D case to get a close match. Fig. 4.61 contains histograms of the data, PSB
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Figure 4.57: Example of 1-D point-scale block value representation – mis-
match between original block-scale data and local averages of PSB values in

terms of mean square error for each iteration.

values for initial setting and last iteration with corresponding local averages at

block scale. It is obvious that neither global mean or variance of the PSB values

match the data parameters for the initial setting. Similar observations can be

said about the match between local averages of the PSB and original data for

initial setting. On the other hand, global means of PSB values and their local

averages match the data mean exactly for iteration 30. The global variance of

the local averages are the same as of the data for iteration 30. The variance of

PSB values is larger as expected.

The fourth example involves PSB representation of a large 3-D model.

The sampling grid of the block-scale data consists of 62500 (50 × 50 × 25)

blocks of 5.0 × 5.0 × 1.0 m3 size each. The data are generated synthetically

with sequential Gaussian simulation according to the anisotropic spatial function

presented in Eq. (4.62). The data are shown in Fig. 4.62 in 3-D. The bottom slice

of the data model and histogram of the data are also presented in this figure.

The distribution of the data is Gaussian with 0.02 mean and 0.88 variance.



Chapter 4. Conditioning 194

Fr
eq

ue
nc

y

Block-scale value
-4.0 -2.0 0.0 2.0 4.0

0.0

0.1

0.2

0.3

Data
Number of Data 10

mean -0.46
std. dev. 0.53

maximum 0.45
upper quartile -0.09

median -0.60
lower quartile -0.97

minimum -1.14

Fr
eq

ue
nc

y

Point-scale value
-4.0 -2.0 0.0 2.0 4.0

0.0

0.1

0.2

0.3

Discretization PSB Values, Initial Setting
Number of Data 100

mean -0.46
std. dev. 0.45

maximum 0.45
upper quartile -0.11

median -0.56
lower quartile -0.83

minimum -1.14 Fr
eq

ue
nc

y

Block-scale value
-4.0 -2.0 0.0 2.0 4.0

0.0

0.1

0.2

0.3

Averages of PSB Values, Initial Setting
Number of Data 10

mean -0.46
std. dev. 0.43

maximum 0.22
upper quartile -0.19

median -0.54
lower quartile -0.83

minimum -1.06

Fr
eq

ue
nc

y

Point-scale value
-4.0 -2.0 0.0 2.0 4.0

0.0

0.1

0.2

0.3

Discretization PSB Values, Iteration 1
Number of Data 100

mean -0.46
std. dev. 0.53

maximum 0.69
upper quartile -0.02

median -0.58
lower quartile -0.88

minimum -1.25 Fr
eq

ue
nc

y

Block-scale value
-4.0 -2.0 0.0 2.0 4.0

0.0

0.1

0.2

0.3

Averages of PSB Values, Iteration 1
Number of Data 10

mean -0.46
std. dev. 0.50

maximum 0.38
upper quartile -0.12

median -0.61
lower quartile -0.93

minimum -1.11

Fr
eq

ue
nc

y

Point-scale value
-4.0 -2.0 0.0 2.0 4.0

0.0

0.1

0.2

0.3

Discretization PSB Values, Iteration 20
Number of Data 100

mean -0.46
std. dev. 0.56

maximum 0.80
upper quartile 0.02

median -0.57
lower quartile -0.86

minimum -1.37 Fr
eq

ue
nc

y

Block-scale value
-4.0 -2.0 0.0 2.0 4.0

0.0

0.1

0.2

0.3

Averages of PSB Values, Iteration 20
Number of Data 10

mean -0.46
std. dev. 0.53

maximum 0.45
upper quartile -0.09

median -0.60
lower quartile -0.97

Figure 4.58: Example of 1-D point-scale block value representation – his-
tograms of original block-scale data, PSB values, and their local averages for

several iterations.
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Figure 4.59: Example of 2-D point-scale block value representation – maps
of original block-scale data, initial PSB values and after 30 iteration, and their

local averages.
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Figure 4.60: Example of 2-D point-scale block value representation – mis-
match between original block-scale data and local averages of PSB values in

terms of mean square error for each iteration.

Discretized PSB values and their local averages for the initial setting are shown

in Fig. 4.63. The distribution of these values is Gaussian, but do not match

the original data statistics precisely. Fig. 4.64 contains corrected PSB values

after 30 iterations. The global mean and variance of local averages of PSB

values match the data statistics exactly. The global variance of the PSB values

is higher as expected. It is recommended to run more than 20 iterations for

this 3-D case based on the bar chart of mean square error in Fig. 4.65. Fig.

4.66 shows the experimental variograms computed for the original data at block

scale (dark blue dots), initial PSB values at point scale (light green dots), and

corrected PSB values at block-scale (light blue dots) for iteration 30. The shape

of all experimental variograms is similar. Variogram sills are different for all

three cases as reflected in the summary statistics next to the histograms. The

experimental variogram points of the corrected PSB values are higher than of

the data, because of the slight increase in variance.
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Figure 4.61: Example of 2-D point-scale block value representation – his-
tograms of original block-scale data, initial PSB values and after 30 iteration,

and their local averages.



Chapter 4. Conditioning 198

CYE (h) = Sphr1=50.0
r2=50.0
r3=10.0
α=0o

(h) (4.62)

(a)

(b)

Figure 4.62: Example of 3-D point-scale block value representation – (a)
maps of original gridded block-scale data, and (b) histogram of original data.

Note that data in all four cases are in original units. When real exhaus-

tively sampled data are used, similar PSB value-based representation should be

applied first in original units. Then, the PSB values are converted to the normal

space and conditional simulation is performed. The corrected data nodal PSB

values at the centers of the grid blocks can be used as reference points for the

table-based normal score transformation (Chapter 5).
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(a)

(b)

Figure 4.63: Example of 3-D point-scale block value representation – (a)
maps of discretization point-scale block values and their local averages before

nodal data correction, and (b) corresponding histograms.
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(a)

(b)

Figure 4.64: Example of 3-D point-scale block value representation – (a)
maps of discretization point-scale block values and their local averages after

nodal data correction, and (b) corresponding histograms.
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Figure 4.65: Example of 3-D point-scale block value representation – mis-
match between original block-scale data and local averages of PSB values in

terms of mean square error for each iteration.
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perimental variograms of PSB values after correction shown by light blue line

for major, minor, and vertical directions of continuity.



Chapter 5

Implementation Aspects

This chapter is devoted to various implementation aspects of the grid-free sim-

ulation, validation of the algorithm, and comparison of the proposed simulation

method with other more conventional geostatistical simulation methods.

5.1 Data Pre-Processing and Simulation Post-Processing

The algorithm of grid-free simulation has been presented in normal units in

previous Chapters 3 and 4. The real distributions of the geological properties are

rarely normal. Therefore, a normal score transformation procedure is required

to bring the conditioning data from original to normal units and back transform

simulation results from normal units back to original units. Two normal score

transformation procedures based on the table and kernel approximation of the

CDF are explained in this section.

The grid-free simulation is performed at a point scale. But, sometimes, it is

required to get realizations at a larger scale, for instance, for reserve estimation,

when equipment selectivity is large. A post-processing upscaling procedure is

explained to get simulation at a block scale in original units.

202
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Simulation of non-stationary systems with the GFS, which are frequently

encountered in practice, is also explained briefly.

5.1.1 Normal Score Transformation

Normal score transformation of the data values from original units to normal

scores and back transformation of simulation values from normal units to orig-

inal units is required for all Gaussian/normal simulation methods. The NST

considers only transformation of the point-scale values or block-scale values re-

solved at a point-scale. The NST can be employed in different ways [17]. The

NST approaches based on the transformation table and kernel approximation of

the CDF of original data are described. The transformation table-based NST

method is good for medium size data sets. The kernel-based NST method is more

appropriate for small and large data sets. Despite the type of the approach, the

NST procedure requires knowledge of CDF of original data distribution and the

Gaussian distribution. It consists of a data pre-processing step and simulated

values post-processing step.

NST is applied to univariate and multivariate systems, where different data

types are transformed independently. An assumption about the multi-Gaussian

behavior in normal space of different variables is made. For systems, where

variables do not support the multi-Gaussian distribution, various decorrelation

techniques may be applied. The altered distributions of the multiple random

functions become normal and independent from each other. Stepwise conditional

transformation allows decorrelating multivariate systems in normal units, but is

limited to relatively few variables (3 to 5 at a time) [42]. Sufficiently large

amount of the data is required for successful transformation. The projection

pursuit multivariate transform is another option [6].

The transformation table-based NST is depicted in Fig. 5.1. The trans-

formation proceeds as follows. First, the data values are transformed to normal
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units. To do so, the unbiased CDF of the data Zd is constructed in original

units. The data values in original units z(uα), α = 1, ..., N, are sorted in ascend-

ing order with corresponding weights υ(uα), α = 1, ..., N, where N is the total

number of data. If the weights are not specified, the same weight υ(uα) = 1/N is

assigned to each datum z(uα). Then, the weights are transformed to N +2 CDF

values F (z), where the first and last CDF values are 0 and 1 (Eq. (5.1)) with

corresponding data values being lower z(u0) and upper z(uN+1) extrapolation

tails specified by a modeler. The relationship between the rest of CDF values

and corresponding weights is shown in Eq. (5.1). Finally, the CDF values F (z)

are mapped to the CDF G(y) of normal distribution, and normal score values

corresponding to the original data are found through the inversion of the normal

CDF as in Eq. (5.2). The CDF G(y) of normal scores can be easily computed

numerically according to Eq. (5.3), where erf() is the error function [62].

F (z(uα)) =


0.0, α = 0

−0.5υ(u1) +
α∑

α′=1

υ(uα′), α = 1, ..., N

1.0, α = N + 1

(5.1)

y(uα) = G−1 (F (z(uα))) , α = 1, ..., N (5.2)

G (y(uα)) = 0.5

(
1 + erf

(
y(uα)√

2

))
(5.3)

Second, the back transformation of the simulated value y(u) or data y(uα)

is performed. The CDF value G(y(u)) is defined for the simulated value y(u) in

normal units, which is equivalent to the CDF F (z(u)) in original units as in Eq.

(5.4). Then, the simulated value z(u) is inferred from interpolation as presented

in Eq. (5.5). For the back transformation of simulated values from normal

scores y(u) to original units z(u), the form of the CDF F (z) in original units



Chapter 5. Implementation Aspects 205

 
 

  

 

z 

F(z) 

z(u0) z(uα) z(uα+1) z(uN+1) 

F(z(uα)) 

F(z(uα+1)) 

1.0 

0.0 y 

G(y) 

y(u0) y(uα) y(uα+1) y(uN+1) 

G(y(uα)) 

G(y(uα+1)) 

1.0 

0.0 

F(z(u)) G(y(u)) 

y(u) z(u) 

Linear form 

Power law form 

Power law form 

Gaussian CDF 

Figure 5.1: Schematic of normal score transformation procedure based on the
transformation table.

is assumed linear between data values and in power law relationship between

lower extrapolation tail z(u0) and first data value z(u1), and between last data

value z(uN ) and upper extrapolation tail z(uN+1). The practical distribution of

the tails is often non-uniform and quite important [17]. The ωl and ωu are the

parameters that define nonlinear degree of the extrapolation functions for lower

and upper tails, respectively.

F (z(u)) = G (y(u)) (5.4)
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z(u) =



z(u0)+ (z(u1)− z(u0))

(
F (z(u))

F (z(u1))

)ωl
,

0.0 ≤ F (z(u)) ≤ F (z(u1))

z(uα)+ (z(uα+1)− z(uα))

(
F (z(u))− F (z(uα))

F (z(uα+1))− F (z(uα))

)
,

F (z(uα)) ≤ F (z(u)) ≤ F (z(uα+1)) ,

α = 1, ..., N − 1

z(uN )+ (z(uN+1)− z(uN ))

(
1.0− F (z(u))

1.0− F (z(uN ))

)ωu
,

F (z(uN )) ≤ F (z(u)) ≤ 1.0

(5.5)

This tables-based NTS procedure should work the best for medium size

data sets. It can handle between 20 to several ten thousand values. However,

because of the imprecise interpolation between scarce data values, the use of the

transformation table directly for very small data sets (less than 20 data values)

is not reliable. On the other hand, the computational time might be an issue

for very large data sets (larger than several ten thousand data values), where

constructing and interpolating between large number of the tabulated values

is a tediously long process. For these reasons, the kernel approximation of the

data CDF is proposed for very small and very large data sets, where only limited

manageable number NA of the anchor points ẑα′ , α
′ = 0, ..., NA−1, on the kernel

curve is used in the NST instead of actual data z(uα), α = 1, ..., N [27]. The

number NA of the anchor points is recommended to be around 101 to enable

precise and fast transformation of the data values to normal scores and back

transformation of simulated values to original units. When 101 anchor points

are placed evenly on the CDF axis, the corresponding random function values

become distribution percentiles. These anchor points form 100 intervals on the

CDF plot. The kernel-based NST procedure also requires interpolation between
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the data values z(uα) and corresponding CDF value F (z(uα)) pairs. The CDF

values are computed in similar way as in Eq. (5.1) from the data weights. The

local regression fitting procedure is presented in Eqs. (5.6) – (5.18), where the

CDF is treated as an argument or independent variable, and data values are

dependent variable. The axes are switched to ensure faster computation of the

quantile values. Fig. 5.2 provides some basic principles of the local regression

fitting, linear interpolation between anchor points, and back transformation of

the simulated value from normal units to original units.

  

 

z 

F(z) 

' 1ẑ 
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Figure 5.2: Schematic of normal score transformation procedure based on the
kernel approximation of the data CDF.

The local linear regression in Eq. (5.6) states that a fitted anchor point

ẑα′ is the linear estimate derived from two local coefficients aα′ and bα′ and an

argument in the form of CDF F (ẑα′), which is one of the evenly placed quantiles.

The argument takes values shown in Eq. (5.7). The coefficients aα′ and bα′ are

derived by minimizing local weighted mismatch between actual data values and

their estimates from the same local regression model within some window of size

ω on the CDF axis as presented in Eq. (5.8). The minimization of the error

is expressed mathematically in Eq. (5.9). The locality is ensured by a kernel

Kω(α′,uα), which is inversely proportional to the distance between input CDF
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and its adjacent data CDF values as presented in Eq. (5.10). The parameter

c is required to avoid division by zero, it should be relatively small. The local

coefficients aα′ and bα′ can be easily derived in the matrix form of the local linear

regression by taking derivative of the mismatch in respect to the coefficient vector

as in Eqs. (5.11) – (5.18). The estimated data values are computed for NA − 2

anchor values using Eq. (5.17), and remaining 2 anchor values at the tails of the

distribution are specified by a user.

ẑ(uα′) = aα′ + bα′F (ẑα′) (5.6)

F (ẑα′) =
α′

NA − 1
, α′ = 0, ..., NA − 1 (5.7)

ẑ(uα) = aα′ + bα′F (z(uα)) (5.8)

εα′ =
N∑
α=1

Kω(α′,uα) (ẑ(uα)− z(uα))2 (5.9)

Kω(α′,uα) =

 1
|F (ẑα′ )−F (z(uα))|+c , |F (ẑα′)− F (z(uα)) | ≤ ω

0, |F (ẑα′)− F (z(uα)) | > ω
(5.10)

min εα′ =
[
Zd − FPα′

]T
Kα′

[
Zd − FPα′

]
(5.11)

Zd =


z(u1)

...

z(uN )

 (5.12)
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F =


1 F (z(u1))

... ...

1 F (z(uN ))

 (5.13)

Pα′ =

aα′
bα′

 (5.14)

Kα′ = [Kα′ ]
T =


Kω(α′,u1) ... 0

... ...

0 Kω(α′,uN )

 (5.15)

∂εα′

∂Pα′
= 0⇒ P̂α′ =

[
FTKα′F

]−1
FTKα′Z

d (5.16)

ẑα′ = F′α′P̂α′ = F′α′
[
FTKα′F

]−1
FTKα′Z

d (5.17)

F′α′ = [1 F (ẑα′)] (5.18)

Therefore, NA anchor points ẑα′ , α
′ = 0, ..., NA−1, are defined for each reg-

ularly spaced CDF values. Then, the NST procedure is performed as described

above, where data values are replaced with the anchor values and CDF values

are equally spaced. The normal score transformation is carried out according

to Eqs. (5.19) and (5.20) taking into account linear interpolation between an-

chor points. First, the approximated CDF F̂ (z(uα)) of each data point is found

through linear interpolation between anchor points computed from local regres-

sion. Second, the quantile of the Gaussian distribution is found by matching

approximated CDF value of the data point with Gaussian CDF value.
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F̂ (z(uα)) = F (ẑα′) + (F (ẑα′+1)− F (ẑα′))

(
z(uα)− ẑα′
ẑα′+1 − ẑα′

)
,

ẑα′ ≤ z(uα) ≤ ẑα′ ,

α′ = 0, ..., NA − 1, α = 1, ..., N

(5.19)

y(uα) = G−1
(
F̂ (z(uα))

)
, α = 1, ..., N (5.20)

The back transformation of the simulated value y(u) is carried out ac-

cording to Eqs. (5.21) and (5.22), which are very similar to the equations from

previous section with data replaced by anchor values.

F (z(u)) = G (y(u)) (5.21)

z(u) = ẑα′+ (ẑα′+1 − ẑα′)
(
F (ẑ(u))− F (ẑα′)

F (ẑα′+1)− F (ẑα′)

)
,

F (ẑα′) ≤ F (z(u)) ≤ F (ẑα′+1) ,

α′ = 0, ..., NA − 1

(5.22)

An example of kernel-based normal score transformation of the small data

set is presented in Fig. 5.3. The data set consists of 23 data values. The local

window is 10% of the CDF range with the c parameter of 1% of the CDF range.

The data points are presented as red dots. A total of 101 anchor points are shown

as blue dots as a result of the fitting. The regression fit follows the data values

quite closely. The normal scores of the data do not look symmetric, because the

interpolated CDF values from the local linear regression model are not equally

spaced any longer. The statistics of the normal scores of the data are close to

the target zero mean and unit variance.
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Figure 5.3: Example of kernel-based approximation of data CDF curve – (a)
local regression model fitted to the CDF of small data set and (b) histogram

of normal scored data.

5.1.2 Block Scale Realizations

Simulation at a block scale is performed by simulating at a point scale within the

blocks, and then computing the block-scale values by averaging the point-scale

values. This is straightforward when the property averages linearly with scale;

Eq. (2.3) presented in Chapter 2 is used to compute effective value at a block

scale from point-scale values. Other properties such as permeability would be

upscaled based on appropriate physics such as the flow simulation equations [18].

Ideally, an infinitely large number of the point-scale simulation nodes

should be used to compute each block-scale simulation value Z(V (u)) tied to

a location u. In practice, the optimal number of the discretization points that

could be simulated with the GFS approach at a point scale must be considered.

Two cases are examined: conditional 2-D simulation with a small variogram

range and unconditional 3-D simulation with a larger variogram range. The 3-D

case with a variogram range much larger than the block size is frequently en-

countered in practice. Porosity and permeability properties are selected for the
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study. Data values are transformed to normal units for the simulation, and the

simulated point-scale values are mapped back to original units for the upscaling.

The spatial distribution of the conditioning data is an evenly spaced 16

locations as presented in Fig. 5.4. The size of the 2-D model, which represents a

block-scale volume, is 100.0 × 100.0 m2. Simulated block-scale values of porosity

and permeability are found by simulating point-scale values within this model

at the discretization nodes and upscaling them to the block scale. Porosity is

upscaled by simply taking arithmetic average of the simulated values within

the model. Permeability is upscaled by running flow simulation (solving the

pressure equation based on conservation of mass and Darcy’s Law) for the model

and inferring a single effective value for each principal direction. The number

of discretization nodes for each of two dimensions is varied between 2 and 50

with an increment of 2. An isotropic variogram with a variogram range of 10.0

m in one case and 100.0 m in another is selected for the simulation. These

variogram ranges are smaller than the block-scale. A total of 10 realizations are

simulated. First realizations of porosity and permeability at 1 × 1, 18 × 18, and

50 × 50 discretization nodes for small and medium variogram ranges are shown

in Figs. 5.5 and 5.7, respectively. Data reproduction and the proper spatial

structure are seen on the realization maps. The upscaled results are summarized

in Figs. 5.6 and 5.8 for ten realizations for various numbers of discretization

nodes. Each plot indicates the relationship between the number of point-scale

discretization values and the ratio of the effective value, which corresponds to

the upscaled point-scale values, to the effective block-scale value computed from

50 × 50 point-scale values. For the short variogram range, the effective values

stabilize at around 10 discretization nodes in each dimension for both porosity

and permeability. For medium variogram range, the effective values level out

at around 6 discretization nodes in each dimension also for both porosity and

permeability. Porosity stabilizes faster than permeability. This indicates that
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somewhere from 6 × 6 to 10 × 10 point-scale values within each model block

produce reasonable results for 2-D systems.

Figure 5.4: Choice of number of point-scale discretization values in 2-D –
porosity and permeability data location maps.

The results are slightly different for upscaling 3-D properties. Single per-

meability property is generated at a point-scale and flow-based upscaled to a

block scale. The model size (block volume) is selected to be 100.0 × 100.0 ×

10.0 m3. Isotropic variogram ranges are 50.0 m and 1000.0 m for two cases. The

first of ten realizations is shown in Figs. 5.9 and 5.11 at 1 × 1 × 1, 6 × 6 × 6,

and 20 × 20 × 20 discretization points for medium and long variogram ranges.

The number of discretization points varies between 1 and 20 with an increment

of 1 between 1 and 10, and with an increment of 2 between 10 and 20. The

upscaled results for ten realizations through the flow simulation are shown in

Figs. 5.10 and Fig. 5.12 for different variogram ranges. The upscaled values for

various numbers of discretization nodes are shown relative to the effective values

at 20 × 20 × 20 discretization density in the form of their ratio. In this 3-D

unconditional case, the effective values become stable at about 5 discretization

nodes in each dimension for medium variogram range and 4 discretization nodes

in each dimension for long variogram range.
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Figure 5.5: Location maps of point-scale discretization values for porosity
and permeability – location map of single discretization value, location map
of 18 × 18 discretization values, and location map of 50 × 50 discretization
values used for block representation in 2-D. Point-scale values are simulated

conditionally with 10.0 m variogram range.
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Figure 5.6: Choice of number of point-scale discretization values in 2-D –
relationship between upscaled rock properties and number of point-scale dis-
cretization values: (a) porosity, and (b) permeability. Point-scale values are

simulated conditionally with 10.0 m variogram range.
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Figure 5.7: Location maps of point-scale discretization values for porosity
and permeability – location map of single discretization value, location map
of 18 × 18 discretization values, and location map of 50 × 50 discretization
values used for block representation in 2-D. Point-scale values are simulated

conditionally with 100.0 m variogram range.
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Figure 5.8: Choice of number of point-scale discretization values in 2-D –
relationship between upscaled rock properties and number of point-scale dis-
cretization values: (a) porosity, and (b) permeability. Point-scale values are

simulated conditionally with 100.0 m variogram range.
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Figure 5.9: Location maps of point-scale discretization values for permeabil-
ity – location map of single discretization value, location map of 6 × 6 × 6
discretization values, and location map of 20 × 20 × 20 discretization values
used for block representation in 3-D. Point-scale values are simulated uncondi-

tionally with 50.0 m variogram range.
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Figure 5.10: Choice of number of point-scale discretization values in 3-D
– relationship between upscaled permeability and number of point-scale dis-
cretization values. Point-scale values are simulated unconditionally with 50.0

m variogram range.



Chapter 5. Implementation Aspects 217

Figure 5.11: Location maps of point-scale discretization values for perme-
ability – location map of single discretization value, location map of 6 × 6
× 6 discretization values, and location map of 50 × 50 × 50 discretization
values used for block representation in 3-D. Point-scale values are simulated

unconditionally with 1000.0 m variogram range.
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Figure 5.12: Choice of number of point-scale discretization values in 3-D – re-
lationship between upscaled permeability and number of point-scale discretiza-
tion values. Point-scale values are simulated unconditionally with 1000.0 m

variogram range.
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Therefore based on the conditional 2-D case study and unconditional 3-D

case study, it is recommended to simulate between 4 and 10 point-scale values

with the GFS in each dimension to generate block-scale values with a minimum

computational effort.

5.1.3 Modeling Non-Stationary Systems

There are many forms of non-stationarity. The treatment of non-stationarity

in this thesis is only partial and quite conventional; non-stationary systems are

modeled with the GFS by modeling boundary between or zones of stationary do-

mains and performing GFS within each stationary domain separately. Sequential

indicator simulation, multiple point statistics simulation, and object-based mod-

eling are some examples of modeling categorical domains [31, 64, 74].

A case study of modeling mineral grade in a 2-D cross-sectional view,

which is represented by two stationary domains A and B separated by a fault,

is shown below. Even though the boundary between two zones are modeled

deterministically here, it can be also modeled stochastically. It is assumed that

the location of the fault is known precisely. It is believed that domain A to the left

of the fault is presented by horizontally stacked geologic strata, while domain B to

the right of the fault is tilted. Therefore, to account for such geological deposition

and study the area around fault more precisely, a particular configuration of the

simulation node locations has been chosen. A 2-D slice with the simulation

nodes and conditioning data are shown in Fig. 5.13 along with data values and

their histograms. The data from the two populations are distinct. Domain A

contains lower values than domain B. A single realization is generated for the

two domains separately at point-scale locations in normal scores units and later

back transformed to original units. The spatial structure of the entire system

in normal units is determined by the covariance functions shown in Eqs. (5.23)

and (5.24) for domains A and B, respectively. The result of the simulation is
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shown in Fig. 5.14. Here, two domains are shown separately and together as a

single model. Another representation of the simulated system can be found in

Fig. 1.8 of Chapter 1, where polygonal declustering is performed to divide the

modeled area fairly between the simulation nodes. The histogram reproduction

for separated domains is accurate. The combined histogram looks a bit different

from the data histogram, because there are more simulation nodes for domain B

(1488 simulation nodes) than for domain A (810 simulation nodes). Therefore,

it is relatively straightforward to generate a realization of the non-stationary

system with the GFS method on the irregular grid taking into account several

distinct stationary domains, which have to be defined beforehand by categorical

variable simulation techniques.
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Figure 5.13: Modeling a non-stationary system – (a) locations of simulation
nodes and data for stationary domains A and B, (b) histograms of the data for

domains A and B separately and together.
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CYA(h) = 0.1Nugget (h) + 0.9Sphr2=100.0
r3=20.0
α=90.0o

(h) (5.23)

CYB (h) = 0.1Nugget (h) + 0.9Sph r2=100.0
r3=20.0
α=−28.4o

(h) (5.24)

As another example, the non-stationarity could be presented by a trend

Z̃(u). Detrending would be performed as shown in Eq. (2.27) of Chapter 2.

Then, the trend mZ(u) and local variations Z(u) are modeled in a grid-free

manner and combined.

5.2 Additional Implementation Details

Additional implementation aspects of the grid-free simulation and its applica-

tion including simulation with zonal anisotropy, grid coordinates transformation,

fast matrix inversion, and the two-level grid-free simulation code paradigm are

discussed in this section.

5.2.1 Zonal Anisotropy Simulation

Natural phenomena quite often exhibit spatial structure with zonal anisotropy,

which implies that variogram does not reach the sill within the size of the simu-

lation domain in one of the principal directions of the continuity, i.e. there is a

clear zonation in one or more directions not seen in the other directions [64]. Sim-

ulation with zonal anisotropy is implemented in the grid-free algorithm through

the representation of the simulation Y as a linear model of (co-)regionalization,

where some independent factors X are presented in a lower dimensional space

than the model itself. This approach is sometimes referred to a lower dimensional

decomposition of the variogram [10].



Chapter 5. Implementation Aspects 221

Figure 5.14: Modeling s non-stationary system – simulation results for sta-
tionary domains A and B separately and together, and corresponding his-

tograms.
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The simulation of a single random function Y with zonal anisotropy is

presented and can be easily extended to a multivariate case. A target random

function Y can be expressed as a weighted sum of the independent random factors

Xp, p = 0, ..., P, as shown in Eq. (5.25). The argument of the variables, spatial

coordinate u, is decomposed into its projections u1, u2, and u3 on three principal

directions of continuity as presented in Eq. (5.26). The first two principal

directions of continuity are usually defined in the horizontal plane (especially

for stratabound deposits), and the third one corresponds to a vertical direction.

The parameters ω1, ω2, and ω3 define zonal anisotropy in these three principal

directions of continuity and are stored in a matrix ω as shown in Eq. (5.27).

The parameters take binary values 0 or 1, where 0 is used when corresponding

dimension of a random factor is omitted, and 1 is used if corresponding dimension

of a random factor is present. Therefore, by adjusting parameters in ω the

dimensionality of the constituent random factors Xp, p = 0, ..., P, can be lowered

as presented in Eq. (5.28). Note that only last random factors can exhibit

lower dimensionality in the simulated random function Y . Covariance function

of Y can be decomposed into weighted sum of covariances of random factors

Xp, p = 0, ..., P , as shown in Eq. (5.29). The covariance weights are squares

of random factor coefficients ap, p = 0, ..., P, in the LMR/LMC definition. As

a result, the separation lag vector h is also decomposed into three components

aligned with the three principal directions of the continuity as in Eq. (5.30) and

combined with zonal anisotropy parameters as in Eq. (5.31). By looking at the

standardized lag distance in Eq. (5.32), which is used in the computation of the

covariance values in the simulation, it can be interpreted that due to binary 0-1

nature of the parameters ω, they lower the dimension of the covariances of the

random factors and target random function Y .
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Y (u) =
P∑
p=0

apXP (u) (5.25)

u = [u1 u2 u3]T (5.26)

ω =


ω1 0 0

0 ω2 0

0 0 ω3

 (5.27)

ωu = [ω1u1 ω2u2 ω3u3]T (5.28)

CY (h) =
P∑
p=0

a2
pCXP (h) (5.29)

h = [h1 h2 h3]T (5.30)

ωh = [ω1h1 ω2h2 ω3h3]T (5.31)

h

r
=

√(
ω1h1

r1

)2

+

(
ω2h2

r2

)2

+

(
ω3h3

r3

)2

(5.32)

An example of a realization exhibiting zonal anisotropy is shown in Fig.

5.15. Fifty unconditional realizations are generated in normal units with the

grid-free simulation approach, spatial structure of which is spherical with zonal

anisotropy presented in Eq. (5.33). The variogram range in the major direction

of continuity (red dots) is 30.0 units, which comprises only 0.5 of the total sill

1.0, and variogram range in minor direction of continuity (blue dots) is 10.0

units. The target variogram with zonal anisotropy is reproduced by average of
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the individual experimental variograms computed from the realizations. The

features of the zonal anisotropy also appear on the realization map.

CY (h) = 0.5Sphr1=30.0
r2=10.0
α=90.0o

(h) + 0.5Sphr2=10.0
α=90.0o

(h) (5.33)
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Figure 5.15: Simulation with zonal anisotropy – realization map and vari-
ogram reproduction. Red dots represent direction of maximum continuity. Blue
dots represent direction of minimum continuity. Variogram model is shown by

lines.

5.2.2 Grid Coordinates Transformation

Sometimes the grid of exhaustively sampled data does not align with the coor-

dinate axes. Coordinates x, y, and z of the simulation location or conditioning

data should be transformed to local coordinates within the exhaustively sampled

data grid to find location of the collocated pseudo point-scale block secondary

data value, which is later interpolated in between the block-scale data. The data

grid is characterized by number of the blocks N1, N2, and N3 for three dimen-

sional data set, size of a regular block S1, S2, and S3, Cartesian coordinates of a

center of the first block xmin, ymin, and zmin, and rotational angles plunge αX ,

dip αY , and azimuth αZ , which are formed by rotating coordinate axes X, Y,

and Z to align with the data grid. The blocks are indexed as shown in Fig. 4.52
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of Chapter 4 starting from bottom lower left block, cycling index i first along

X axis, then index j along Y axis, and finally index k along Z axis. The trans-

formation, which defines coordinates x′, y′, and z′ of secondary data location in

the data grid coordinate system, is depicted in Eq. (5.34) [17]. The rotation

matrices MRX′ , MRY ′ , and MRZ′ are defined in Eqs. (5.35) – (5.37). The center

of first data grid block (i = 1, j = 1, k = 1) is assumed to be the origin of the

local coordinate system. Eq. (5.38) defines the position of the location (x, y, z)

relative to the indices of the data block (i, j, k), which are necessarily for the

PSB value representation in Eq. (4.56).


x′

y′

z′

 = MRX′MRY ′MRZ′


x− xmin

y − ymin

z − zmin

 (5.34)

MRX′ =


1 0 0

0 cosαX − sinαX

0 sinαX cosαX

 (5.35)

MRY ′ =


cosαY 0 − sinαY

0 1 0

sinαY 0 cosαY

 (5.36)

MRZ′ =


cosαZ sinαZ 0

− sinαZ cosαZ 0

0 0 1

 (5.37)
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i

j

k

 = int




1
S1

0 0

0 1
S2

0

0 0 1
S3



x′

y′

z′


 (5.38)

Similar Eq. (5.39) can be applied to define Cartesian coordinates xi,j,k,

yi,j,k, and zi,j,k of a simulation node (i, j, k) of the rotated grid, when GFS

algorithm is performed on a grid. Here, xmin, ymin, and zmin are the Cartesian

coordinates of the first simulation node (i = 1, j = 1, k = 1), and fixed distances

between any two adjacent nodes are S1, S2, and S3. The rotation matrices MRX ,

MRY , and MRZ were defined in Eqs. (3.73) – (3.75) of Chapter 3.


xi,j,k

yi,j,k

zi,j,k

 =


xmin

ymin

zmin

+ MRXMRYMRZ


(i− 1)S1

(j − 1)S2

(k − 1)S3

 (5.39)

Therefore, transformation of the coordinates is an integral part of grid-

free simulation conditional to the exhaustively sampled gridded data or when

the simulation is performed on the rotated grid of the simulation nodes.

5.2.3 Matrix Inversion Algorithm

The matrix inversion is the computationally demanding aspect of the condi-

tioning step of the grid-free simulation. The conditioning is performed with

(co)kriging in a dual form. Robust and efficient inversion of the data covariance

matrix is explained [62].

The data covariance matrix C is a square symmetric matrix of size N×N ,

which should be inverted once to compute dual kriging weights. Therefore,

square matrix inversion procedure should be implemented. The product of the

matrix and its inverse is an identity matrix as shown in Eq. (5.40), where

inverse C−1 is an unknown quantity, and the identity matrix I is a N × N
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diagonal matrix with zero terms except unit diagonal elements. This equality

can be seen as a set of linear systems of Eqs. (5.41). By rewriting this set of

linear systems of equations and looking at its parts separately as in Eq. (5.42),

it becomes clear that there are N sets that have to be solved separately to get

all elements of the matrix inverse C−1. Each system of equations in Eq. (5.42)

can be stated as a separate problem and simply rewritten as in Eq. (5.43). The

solution to this equation can be presented through LU decomposition or Cholesky

decomposition for the symmetric positive-definite matrix of C as presented in Eq.

(5.44). Matrix L is the lower triangular matrix of the Cholesky decomposition

of the matrix C, see Eq. (5.45). Matrix LT is the transpose of L. Linear system

of equations (5.43) can be rewritten into two separate equations as shown in Eq.

(5.46) for easy and fast computation of vector x, which contains some elements

of C−1. First, elements of L are computed as shown in Eq. (5.47). Then, vectors

y and x can be easily found as in Eqs. (5.48) and (5.49), respectively, for each of

N linear systems of equations (5.42). Finally, the inverse C−1 is reconstructed

from x values found from each of the system of equations.

CC−1 = I (5.40)


C11 ... C1N

... ...

CN1 ... CNN



C ′11 ... C ′1N

... ...

C ′N1 ... C ′NN

 =


1 ... 0

... ...

0 ... 1

 (5.41)
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C11 ... C1N

... ...

CN1 ... CNN



C ′11

...

C ′N1

 =


1

...

0


...
C11 ... C1N

... ...

CN1 ... CNN



C ′1N

...

C ′NN

 =


0

...

1


(5.42)

Cx = b (5.43)

C = LLT (5.44)

L =


L11 ... 0

... ...

LN1 ... LNN

 (5.45)

Cx = b⇒

 Ly = b

LTx = y
(5.46)



L11 =
√
C11

Lij =

√
Cij −

j−1∑
k=1

L2
jk, i = j

Li1 = Ci1
|L11|

Lij =
Cij−

j−1∑
k=1

LikLjk

|Ljj | , i > j

Lij = 0, i < j

, i, j = 1, ..., N (5.47)
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y1 = b1

|L11|

yi =
bi−

i−1∑
j=1

Lijyj

|Lii| , i = 2, ..., N

(5.48)


xN = yN

|LNN |

xi =
yi−

ND∑
j=i+1

Lijxj

|Lii| , i = N − 1, ..., 1

(5.49)

Such computational algorithm of the matrix inversion allows finding stable

inverse of any large square symmetric matrix. This allows effective conditioning

unconditional simulation to a large number of data.

5.2.4 Semi-Positive Definiteness Check

An important aspect of the multivariate modeling is that the structure of the

covariance functions in the form of LMC should be checked for its plausibility.

The main requirement is that the sill contribution of each structure (random

factor Xp, p = 0, ..., P ) in the LMC should be semi-positive definite. This means

that the determinant of each sill contribution matrix Bp, p = 0, ..., P , should be

equal to or larger than zero (Eqs. (2.51) – (2.52) of Chapter 2). The size of any

matrix Bp is K ×K, where K is the number of simulated variables. Because all

sill contribution matrices are symmetric, they can be decomposed by Cholesky

decomposition into triangular matrices as shown in Eq. (5.50). The determinant

of a lower triangular matrix Lp equals to the product of its diagonal elements as

presented in Eq. (5.51) [3, 62]. Diagonal elements of the lower triangular matrix

can be computed from the corresponding sill contribution matrix as it explained

in the previous section. It happens that the determinant of the product of two

matrices is equal to the product of the determinants of these two matrices as

shown in Eq. (5.52). Thus, the determinant of the matrix Bp is computed as

shown in Eq. (5.53). Finally, for the LMC covariance/variogram model to be
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licit, all determinants det{Bp}, p = 0, ..., P, of sill contribution matrices should

conform to the inequality in Eq. (5.53). Same requirement applies to the diagonal

elements bp,kk of the matrices Bp, p = 0, ..., P .

Bp = LpL
T
p , p = 0, ..., P (5.50)

det{Lp} =

K∏
k=1

Lp,kk, p = 0, ..., P (5.51)

det{Bp} = det{LpLTp } = det{Lp}det{LTp }, p = 0, ..., P (5.52)


det{Bp} =

K∏
k=1

(Lp,kk)
2 ≥ 0

bp,kk ≥ 0, k = 1, ...,K

, p = 0, ..., P (5.53)

Therefore, the semi-positive definiteness of the LMC variogram model can

be checked according to the determinant and diagonal elements of the sill con-

tribution matrices.

5.2.5 Computational Cost Reduction

Computational cost reduction can be achieved through matrix manipulation and

parallel programming. Some matrix manipulation for improved computational

time, such as kriging implementation in the dual form and block matrix inversion,

have been explained in the previous chapters. Parallel programming would allow

using several processors to perform simulation at several simulation nodes and/or

of several realizations simultaneously [57]. In this case, the reduction in time

would be achieved by utilizing more hardware power, but not by the optimization

of the code.



Chapter 5. Implementation Aspects 231

Another interesting aspect for computational cost reduction is to imple-

ment the GFS algorithm in two separate programs. This would allow saving time

by setting up the Fourier coefficients, defining covariance matrices, computing

matrix inverse, performing PSB value interpolation, etc., in a first program only

once, and using already processed data in the second program for the simula-

tion. The concept of two-level code is depicted in Fig. 5.16. The first program

would process raw data and make some preliminary calculations, while second

program would simulate values of required realizations of specified variables at

target locations. By doing so, the computational time taken by first program

will not be wasted next time, when simulation is performed over and over again.

These two programs are called gfsim1 and gfsim2, parameter files of which are

described in the Appendix. A one-level grid-free simulation program gfsim is

described in the Appendix as well.

 

 

INPUT 0 

Raw Data in the Form of 
- data values 

- variogram model 

- simulation parameters 
o number of Fourier coefficients 

o simulation domain size 

o nugget effect grid specification 

o random number seed, etc.  

GFS Program 1 – Pre-Processing 

Realizations at specified locations 

GFS Program 2 – Simulation 

INPUT 1 

Processed Data in the Form of 
- normal scores of data values 

- data covariance matrix 

- optimal simulation parameters 
o Fourier coefficients, etc. 

INPUT 2 

Simulation Parameters in the Form of 
o simulation location 

o random variable type to simulate 

o realization number to simulate 

Figure 5.16: Conceptual paradigm of two-level grid-free simulation program.
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5.3 Choice of Grid-Free Simulation Parameters

This section is devoted to selection of the proper grid-free simulation parameters:

number of the Fourier coefficients required for the accurate 1-D covariance de-

composition for turning line processes, and number of the turning lines required

to get simulation without artifacts for the 2-D and 3-D models.

5.3.1 Number of Fourier Coefficients

Number of the Fourier coefficients required to properly represent a 1-D covari-

ance function, which is used to simulate 1-D processes on turning lines, is rec-

ommended based on a 2-D case study. The number of coefficients is selected to

approximate the 1-D covariance with low error, which is computed as a ratio of

the smallest Fourier coefficient to the largest and is expressed in percent. Ideally,

when infinitely large number of the coefficients is used, this ratio would be zero.

In practice, a limited number of coefficients is used to reduce computational

time. The errors of 10%, 5%, 1%, and 0.5% are selected to generate realizations

with the GFS on a regular 100 × 100 grid with 1.0 × 1.0 m2 grid node spacing.

A total of 50 unconditional realizations are generated with an exponential vari-

ogram model shown in Eq. (5.54) and a total number of 100 turning lines. The

corresponding numbers of Fourier coefficients that lead to such errors are 61, 81,

161, and 241, respectively. The number of the Fourier coefficients are selected

with an increment of 20 starting with 21. The associated computational times

to generate all 50 realizations are 172, 232, 450, and 659 seconds, respectively.

The computations are performed on a 64-bit Windows machine with Intel i7 pro-

cessor of 2.8 GHz and 24.0 GB RAM. When the proportions of the number of

Fourier coefficients (1.00 : 1.33 : 2.67: 4.00) are compared with the proportions

of the simulation time (1.00 : 1.34 : 2.61 : 3.89), the direct relationship between

them can be seen as expected. The maps of the first realizations for various
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error thresholds are presented in Fig. 5.17. When the threshold is large such

as 10% or 5%, the spatial structure of the realizations looks more continuous

than exponential. An error threshold of 1% and lower produces realizations with

the expected spatial features. Note that because of the different numbers of the

Fourier coefficients used in the grid-free simulation, there are a different number

of random terms, resulting in realizations that look different. Fig. 5.18 presents

the histograms of all 50 realizations, which look normal with distribution pa-

rameters close to the target zero mean and unit variance for all cases. Mean and

variance maps of the realizations are shown in Fig. 5.19. A small number of

Fourier coefficients leads to too much continuity. The reproduction of the vari-

ogram model by the experimental variograms computed from the realizations is

presented in Fig. 5.20 for directions X (east) and Y (north). The exponential

variogram model is shown by a red line. The individual experimental variograms

are presented by green lines with their averages in blue. The target variogram

model is reproduced well at longer ranges for all error thresholds. However, the

variogram is not reproduced at the very short scales [0.0 – 2.0 m] for realizations

with larger decomposition errors such as 10% and 5%. On the other hand, the

variogram model is reproduced accurately for short ranges for small decomposi-

tion errors of 1% and 0.5%. Medium and long ranges are reproduced similarly

in all four cases, with 10% producing the worst fit overall and 1% and 0.5%

producing the best fit overall.

CY (h) = Expr=20.0 (h) (5.54)

To sum up, in order to get a simulation with target variogram model and

avoid poor variogram reproduction at short ranges, a 1-D covariance functions

should be decomposed to the 1% error threshold or better. The correspond-

ing number of the Fourier coefficients would differ depending on the covariance
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Figure 5.17: A 2-D case study to define proper number of the Fourier coeffi-
cients – realization maps with different precision degrees of covariance decom-

position.

function form used as a target spatial structure model, the ratio of the vari-

ogram ranges used in the variogram model, and size of the periodic domain for

target covariance decomposition in comparison with the variogram ranges. The

gfsim code allows users to choose a degree of the error threshold in the grid-free

simulation.
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Figure 5.18: A 2-D case study to define proper number of the Fourier co-
efficients – histograms of all realizations with different precision degrees of

covariance decomposition.

5.3.2 Number of Turning Line Processes

Two case studies are examined on 2-D and 3-D systems to choose the proper

number of the turning lines to be used in the grid-free simulation. The turning

lines should be placed evenly in the space and originate from one point to avoid

any artifacts in the simulation. A direction of a turning line in the 2-D space is

defined from the centre of the circle of unit radius to its perimeter. A direction

of a turning line in the 3-D space is determined from the centre of the sphere of

unit radius to its surface. Centers of both unit circle and unit sphere are placed

at the coordinates system origin. The procedure of the turning lines placement

has been described in Section 3.2 of Chapter 3. The number of evenly placed
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Figure 5.19: A 2-D case study to define proper number of the Fourier coeffi-
cients – mean and variance maps of realizations with different precision degrees

of covariance decomposition.
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Figure 5.20: A 2-D case study to define proper number of the Fourier co-
efficients – variograms in X and Y directions for realizations with different
precision degrees of covariance decomposition. Individual experimental vari-
ograms are shown by green lines, their average is presented by a blue line, and

variogram model is a red line.
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lines that are tested in the simulation are 10, 50, and 100 for 2-D models and

12, 42, and 162 for 3-D models. The optimal number of the lines is defined for

2-D and 3-D grid-free simulation based on the examination of 50 unconditional

realizations generated with the exponential covariance functions.

The 2-D model is generated on a 100 × 100 grid with 1.0 × 1.0 m2 grid

node spacing. Target variogram model is presented by an isotropic covariance

function in Eq. (5.55). The computational times for 10, 50, and 100 turning lines

are 44, 211, and 427 seconds, respectively, which is proportional to the number

of the lines used in the simulation. The computations are performed on a 64-bit

Windows machine with Intel i7 processor of 2.8 GHz and 24.0 GB RAM. Maps

of the first realizations for each case along with the histograms of all realizations

are shown in Fig. 5.21. The generated realizations look normal for all cases.

There are some artifacts in the form of the lines in the realization produced

by 10 turning lines. No artifacts are observed on the other realizations. Fig.

5.22 presents the variogram reproduction, the experimental variograms computed

from individual realizations are shown by green lines, their averages over the

realizations are shown by blue lines, and the variogram model is presented by

a red line. The variogram is approximately reproduced for 10 turning lines.

The average experimental variogram is lower than the expected variogram sill.

Variogram reproduction for 50 lines is very close to the target, and average

of experimental variograms for 100 turning lines very accurately describes the

variogram model. Therefore, it is recommended to use at least 50 turning lines

for simulation of 2-D models with the GFS to avoid artifacts and get plausible

target variogram reproduction. More turning lines would lead to better statistics

reproduction with the downside of increased computational time.

CY (h) = Expr=20.0 (h) (5.55)



Chapter 5. Implementation Aspects 239

Figure 5.21: A case study to define proper number of the turning lines in
2-D – realization maps and histograms with different numbers of the turning

line processes.
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Figure 5.22: A case study to define proper number of the turning lines in 2-D
– variograms in X and Y directions for realizations with different numbers of
the turning line processes. Individual experimental variograms are shown by
green lines, their average is presented by a blue line, and variogram model is a

red line.
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The 3-D model is simulated on a 100 × 100 × 50 grid with 1.0 × 1.0 ×

0.1 m3 grid node spacing. The target spatial structure used in the simulation is

presented by an anisotropic covariance function in Eq. (5.56). The variogram

range in the vertical direction differs from the variogram ranges on the horizontal

plane. The number of turning lines used in the simulation are 12, 42, and 162,

respectively. The computational time is about 2.5 hours, 10.0 hours, and 36.0

hours. Again, the proportions of the computational time are directly related to

the number of the turning lines used in the simulation. A total of 50 realizations

are generated for each case. The first realizations are shown in Figs. 5.23 – Fig.

5.25 in a 3-D and cross-sectional views. Obvious line artifacts are seen on the

realization maps generated with 12 and 42 lines. The realization generated with

162 turning lines look artifact-free. Variogram reproduction for the three cases

is depicted in Fig. 5.26. Variogram reproduction in the form of the average

experimental variogram in blue of the individual variograms in green computed

from each realization improves with an increasing number of turning lines, as

well as the spread of the individual realizations becomes smaller. The variogram

model is shown by red line.

CY (h) = Expr1=20.0
r2=20.0
r3=1.0

(h) (5.56)

Therefore, it is recommended to use at least 50 turning lines to simulate 2-D

models and 162 turning lines to simulate 3-D models with exponential covariance

spatial structure in a grid-free form to avoid artifacts in the realizations and to

get proper variogram reproduction. Simulation models generated with spherical

covariance function in 3-D space as in the 3-D example of Section 4.1.1 of Chapter

4 reproduce the imposed variogram model better with the same recommended

simulation parameters discussed here. Therefore, the recommendation about the

optimal number of the turning lines may change depending on the form of the
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Figure 5.23: A case study to define proper number of the turning lines in
3-D – realization maps constructed with 12 lines.

Figure 5.24: A case study to define proper number of the turning lines in
3-D – realization maps constructed with 42 lines.
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Figure 5.25: A case study to define proper number of the turning lines in
3-D – realization maps constructed with 162 lines.

input variogram model.

5.4 Validation of Grid-Free Simulation

The realizations generated by the proposed grid-free simulation algorithm are

validated to conform to the criteria for plausible geostatistical simulation. Also,

the GFS is compared with other conventional simulation algorithms on a small

case study to define its advantages and highlight possible shortcomings.

5.4.1 Verification of Grid-Free Simulation Algorithm

The realizations generated by the GFS algorithm should be fair samples from the

multivariate Gaussian spatial distribution parameterized by the transformation

to Gaussian units and the covariance function in Gaussian units. Checking this is

difficult, but there are four main criteria that simulated conditional realizations

have to comply with to represent underlying system plausibly [43]:
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Figure 5.26: A case study to define proper number of the turning lines in 3-D
– variograms in X, Y, and Z directions for realizations constructed with different
numbers of the turning line processes. Individual experimental variograms are
shown as green lines, their average is presented by a blue line, and variogram

model is a red line.

1. the simulated values at the data locations should honour the data values

2. the distribution of the simulated values on average should be the same as

distribution of the data

3. the distribution parameters such as mean and variance of the simulated

values on average should match the distribution parameters of the data

4. the average experimental variogram computed from individual uncondi-

tional realizations should reproduce target variogram model in normal

scores, and the average experimental variogram computed from individual
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conditional realizations should be a combination of the target variogram

model and experimental variogram computed from data in normal scores

A 2-D example is assembled in original units to demonstrate that simula-

tion generated by the GFS meets all four criteria. The simulation is generated

on a 100 × 100 regular grid with 1.0 × 1.0 m2 node spacing. The spatial data

distribution is shown in Fig. 5.27 along with the polygons used for the polygonal

declustering of the data values and a scatter plot between the true data values

versus the simulated values at the data locations for the first realization. There

are 55 data values. The simulation is performed in the normal units. The trans-

formation table-based NST procedure is implemented. The spatial structure

used in the simulation of the normal scores is presented by a spherical isotropic

covariance function in Eq. (5.57). The declustering is performed to get unbiased

data statistics for the normal score transformation of the data to normal scores.

It can be seen from the scatter plot that the simulated values at the data loca-

tions from the first realization produced by the GFS honor the data values. All

the points are on a 45◦ line on the scatter plot of Fig. 5.27. The histograms of

the data, simulated values in original units, and normal scores are presented in

Fig. 5.28 with summary statistics. By comparing the data distribution with the

distribution of simulated values from all 50 realizations in original units, it can

be claimed that the second criteria of simulation goodness is also satisfied. Note

that the simulated values in normal units look normal with statistical parameters

close to the target zero mean and unit variance. The distribution parameters in

original units of the simulated values are very close to the data parameters, and,

thus, third criterion is met. Maps of the first realization in original units and

normal scores, and of the mean and variance of the realizations are presented

in Fig. 5.29. The data are honored. The mean map looks similar to map of

kriged estimates as it should. The variance that describes the local uncertainty

is zero at data locations and increases as the data spacing becomes larger. No
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obvious visual artifacts are present in the realizations. Fig. 5.30 demonstrates

reproduction of the target variogram model in red by experimental variograms

in green computed from individual realizations and their average in blue. The

variogram is reproduced quite well before it reaches the sill. Some slight de-

viations of the average experimental variogram from the model in the form of

the cyclicity are seen for ranges longer than the spatial correlation range. As

a result of the variogram reproduction, all presented four criteria for plausible

geostatistical simulation are met. In addition to this example, numerous case

studies have been shown in Chapter 4 to empirically check that the grid-free

simulation algorithm generates plausible realizations of the described reality in

normal units.

CY (h) = Sphr=20.0 (h) (5.57)

Figure 5.27: A 2-D case study to show plausible nature of the realizations
generated by the GFS – data location map, polygonal data declustering, and

data reproduction by the simulation.

Note that the data reproduction in the GFS is ensured, because the condi-

tioning is performed with kriging, which is an unbiased minimum error variance

estimation method [10, 17, 26, 35, 36]. Variogram reproduction is ensured by

accurate Fourier series-based decomposition of the covariance function. Cyclic-

ity can be present in the experimental variograms, when the periodicity domain
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Figure 5.28: A 2-D case study to show plausible nature of the realizations
generated by the GFS – histograms of data values and simulated values in

original units and normal scores.

Figure 5.29: A 2-D case study to show plausible nature of the realizations
generated by the GFS – map of first realization in original units and normal

scores, and maps of the realization mean and variance.



Chapter 5. Implementation Aspects 248

Figure 5.30: A 2-D case study to show plausible nature of the realizations
generated by the GFS – variograms in X and Y directions for grid-free real-
izations. Individual experimental variograms are shown by green lines, their

average is presented by a blue line, and variogram model is a red line.

selected to decompose the covariance function is relatively small in comparison

with the simulation domain, or when the simulation domain is not large enough

in comparison with the variogram range. Also, the multivariate relationship in

systems with multiple variables should be honored. According to the minimum

acceptance criteria for geostatistical simulation in [43], simple 3-D/2-D visual-

ization of the model is a simple, yet effective check of the plausibility of the

realizations. Simulated realizations could be also checked against geological in-

terpretation of the studied area. Cross-validation and jack-knife can be used to

check quality of the variogram model. Any small deviations can be claimed to be

caused by ergodic fluctuations caused by a small simulation domain in compari-

son with the variogram range, limited random numbers used in the simulation,

and precision errors in the computation. Additional primary or secondary data

may be used to check the closeness of the simulation to the reality.

5.4.2 Comparison of Simulation Methods

The unconditional part of the GFS algorithm is compared with the widely used

SGS and LUS on a small 2-D example with Gaussian variogram model in normal
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units. A total of 50 realizations are generated by each method on a regular 100

× 100 grid with 1.0 × 1.0 m2 grid spacing with isotropic Gaussian spatial struc-

ture presented in Eq. (5.58). The maps of the first realizations produced by each

technique along with the histogram of all realizations are shown in Fig. 5.31. All

methods generate realizations with Gaussian spatial features. The histograms

look normal with statistics close to the target zero mean and unit variance. The

variogram reproduction is presented in Fig. 5.32 for X and Y directions. Green

lines represent experimental variograms computed from the individual realiza-

tions with their average shown in blue line. The variogram model is in red. All

techniques reproduce the target variogram accurately. There are some slight

deviations, which are believed to be due to ergodicity. The spread between the

individual experimental variograms is about the same for the GFS and SGS,

but larger for the LUS. Experimental variograms computed from the first real-

izations of each simulation method are compared in Fig. 5.33. The averages of

the experimental variograms are presented in the same figure. The variogram

model is shown in red. The green line corresponds to the experimental vari-

ogram computed from the GFS simulation, orange – from the SGS, and purple

– from the LUS. There are significant deviations in the individual experimen-

tal variograms from the target model. The average of the realizations precisely

follows the variogram model for each method. As a result of this comparison

study, it is deemed that all three methods produce unconditional simulation of

similar quality. The computational time for 50 realizations generated by GFS

with 100 lines and 41 Fourier coefficients is 116 seconds. The computational time

required to generate 50 realizations with SGS is 31 seconds. The computational

time for 50 realizations generated by LUS is 2340 seconds. The computations

are performed on a 64-bit Windows machine with Intel i7 processor of 2.8 GHz

and 24.0 GB RAM. The SGS algorithm is the least computationally costly. The

GFS is slightly slower than SGS. The LUS method is quite slow in comparison.
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CY (h) = Gausr=20.0 (h) (5.58)

An advantage of GFS over SGS and LUS is a grid-free form of the resulting

realizations allowing consistent zooming to any grid and easiness of the simula-

tion of the multivariate systems. Another benefit of using GFS over SGS that

comes from the conditioning through kriging is that the additionally assimilated

data would not change current realizations dramatically, but would change them

only locally within the correlation range domain. Small drawback lies in the

computational time of GFS algorithm, which is more demanding than SGS, but

faster than LUS.
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Figure 5.31: A 2-D comparison study for the GFS, SGS, and LUS – realization
maps and histograms of simulated values for different simulation methods.
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Figure 5.32: A 2-D comparison study for the GFS, SGS, and LUS – vari-
ograms in X and Y directions for realizations generated by different simulation
methods. Individual experimental variograms are shown by green lines, their

average is presented by a blue line, and variogram model is a red line.
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Figure 5.33: A 2-D comparison study for the GFS, SGS, and LUS – individual
experimental variograms and averages of all experimental variograms in X and
Y directions for realizations generated by different simulation methods. The
variogram in green corresponds to the GFS, orange line is the SGS, the LUS is

in purple, and variogram model is a red line.



Chapter 6

Case Study – Firebag Oil

Sands Project

The developed geostatistical grid-free simulation algorithm is applied to the Fire-

bag oil sands project located in northern Alberta for petroleum reservoir char-

acterization. Essential petrophysical properties, such as porosity, permeability,

and water saturation, are modeled by-facies at various resolutions over several

domains conditional to hard point-scale core and log data and soft exhaustively

sampled block-scale seismic attributes. Resulting models are consistent with

each other and can be used for the oil reserve estimation and fluid flow simula-

tion. All of the data used in this case study were taken from public records and

processed as required. No data or information was provided by the operator.

6.1 Geostatistical Reservoir Characterization

The general methodology for modeling heavy oil reservoirs in a grid-free manner

is explained to meet specific objectives.

254
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6.1.1 Heavy Oil Reservoirs in Alberta

A large volume of oil sands reserves are found in northern Alberta, Canada. The

steam assisted gravity drainage (SAGD) heavy oil extraction technique is widely

implemented to extract the bitumen when deposits are deeper than 200.0 m be-

low the surface [9]. A number of SAGD pads are built over the oil deposits, from

which several horizontal SAGD well pairs are drilled. A SAGD well pair consists

of a production well placed roughly 5.0 m below an injection well. Both wells

are placed as close as possible to the reservoir base for increased oil production.

Steam is injected to lower the viscosity of the accumulated bitumen and allow it

to drain to the production well.

For the effective oil production, the SAGD wells should be placed in ac-

cordance with the geological setting of the reservoir. Numerical modeling of the

petrophysical properties within a geological conceptual model of the reservoir is

used for horizontal well placement [64]. Conventional geostatistical simulation

techniques like SGS for continuous variables and SIS for categorical variables are

commonly used for geomodeling and uncertainty management, where the model

grid is specified beforehand [17]. Subsequent grid refinement or regridding is

required, but previously simulated realizations are not necessarily reproduced

with these conventional geostatistical techniques. Therefore, GFS technique can

be implemented to represent a simulation as a function of the coordinates of the

simulation location honoring data values, spatial structure of the system, and

relationship between system’s variables. The GFS has been successfully applied

to several synthetic case studies in the previous chapters of this thesis. Here, the

GFS method is applied to an oil sands project called Firebag, which is operated

by Suncor in northern Alberta using SAGD technology [75].
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6.1.2 Modeling Objectives

The objective of this realistic case study is to build three consistent petrophysical

models of the Firebag subsurface geology at a point scale for oil reserve estimation

at coarse resolution grid, for flow simulation around all available SAGD well

pads at medium resolution grid, and for flow simulation around an individual

SAGD well pad at a fine resolution conditional to point-scale core data, log

data, and exhaustively sampled block-scale seismic measurements. Correlated

realizations of porosity φ, permeability k, and water saturation s models are built

for this purpose within the stratigraphic surfaces of the reservoir. The porosity

defines void space in the rock, and, therefore, implies the storage capacity of the

reservoir. The permeability is important, because it indicates how easily reservoir

fluids can flow from the reservoir to the production wells. The water saturation

is modeled to estimate hydrocarbon reserves, which are stored in the void space

of the rock unoccupied by water. The water saturation is also important for

thermal oil extraction processes such as SAGD, because it is a key parameter

of thermal capacity of the reservoir. It is used in the computation of required

energy that should be carried by heating agent (steam).

6.1.3 Modeling Procedure

A routine geomodeling workflow is presented below for petroleum reservoir char-

acterization [64]. The workflow would change depending on the data availability

and geological complexity of the reservoir. The first set of steps involves data

analysis. The second set is related to simulation and post-processing including

model validation.

The data analysis can be performed as follows.

1. Define reservoir stratigraphic top and base and possible compartmental-

ization. Core data, core pictures, and log data analysis along with seismic
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surveys and a conceptual geological model can be of use. One of the sur-

faces is picked as a reference, relative to which the structure of the reservoir

is built, that is, the vertical coordinates are adjusted to conform to the

stratigraphic layers.

2. Define geological facies with distinct petrophysical properties required for

the stationarity assumption in the modeling. Core data, core pictures, and

log data analysis along with a conceptual geological model are used for this

purpose.

3. Choose geological attributes to model and available data for the condition-

ing. Usually petrophysical properties such as porosity and permeability are

modeled conditional to hard data (measured observations) and soft seismic

attributes.

4. Group data of petrophysical properties in accordance with the facies types.

5. Clean the data and look for outliers and measurement errors, note the

scale difference in the data. The core data are direct measurements of

the petrophysical properties of the rock. But, the log data are indirect

observations of the petrophysical properties. Therefore, because limited

core data are more reliable than abundantly available log data, correct the

log data with the core data for each facies, and proceed modeling with the

corrected log data.

6. Transform all data values to normal scores for simulation. For multivariate

data sets, consider keeping the relationship between the variables after the

simulation is done. Cosimulation or decorrelation procedure are considered

for dependent random variables.

7. Build variogram models of facies and all properties for the geostatistical

modeling.
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The simulation and model checking are carried out after the data analysis

as explained below.

1. Perform simulation of geological facies, which provide the main source of

the reservoir heterogeneity; object-based modeling can be an alternative

to grid-free simulation of categorical variables, but it has some limitations

and issues with conditioning [17, 31–33]. SIS is commonly used.

2. Simulate key petrophysical properties within corresponding facies (station-

ary domains) in normal space conditional to all relevant information.

3. Back transform the simulated normal scores to the original units. If re-

quired, perform upscaling to get the realizations at a block scale.

4. Validate the data reproduction, statistical and spatial properties (vari-

ogram for two-point statistics) reproduction, preservation of the variables

relationship in original units, and consistency of the numerical model with

the conceptual model.

5. Post-process the model to meet the study objectives, e.g. estimate reserves,

evaluate economic feasibility of the area, run the model through the flow

simulation, etc.

6.2 Data Analysis

The data related to the Firebag project are cleaned, analyzed, and sorted. The

major parts of the data analysis are presented in this section.

6.2.1 Firebag Project Overview

The Firebag Oil Sands Project is located in the northern Alberta, about 100 km

Northeast of Fort McMurray as shown in Fig. 6.1. The project is operated by



Chapter 6. Case Study 259

Suncor Energy [75]. The SAGD technology is used to extract the bitumen. The

target reservoir is located in the McMurray Formation. The lease area covers

approximately 15.0 × 15.0 km2.
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Figure 6.1: Map of the geographical location of the Firebag oil sands project,
which is shown by a red star.

The stratigraphy of the lease area can be described as shown in Fig. 6.2

[75]. The major elements are:

• Muskeg Formation

• Glacial till

• Clearwater Formation, which represents the cap of the reservoir and con-

sists mostly of shale

• McMurray Formation, which is the target reservoir with good reservoir

properties. It consists of shoreface, tidal flat, channel complex, and con-

tinental parts with channel complex being the most economical feasible

strata to produce from. Four facies are distinguished in the McMurray
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Formation: impermeable shale, permeable sand, semipermeable inclined

heterolithic strata (IHS), and permeable breccia.

• Eroded Devonian carbonate depositions below the McMurray Formation
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Figure 6.2: Stratigraphy of the Firebag Project area in cross-sectional view
and schematic representation of wells.

The numerical data have been obtained from the geoSCOUT data base soft-

ware in LAS format [23]. The wells within the lease area are represented by

233 SAGD well pairs (yellow), 545 delineation wells (dark blue), 180 observation

wells (light blue), and 31 miscellaneous service wells (red) totaling to 1222 as

shown in Figs. 6.3 and 6.4. There are 1682 wells in the Firebag region (Fig.

6.3). The topography of the study area is shown in Fig. 6.3.

There are three main sources of information available. Fig. 6.5 shows well

locations with points-scale core and log data along with the block-scale seismic

survey coverage. Not all wells have all data variables. The number of wells with

some core data within McMurray Formation is 303: with some porosity core data

– 295, with some horizontal permeability core data - 291, and with some water

saturation core data – 214. The number of core data are: 19474 measurements
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Figure 6.3: Map of well locations at the Firebag project and lease area. Total
number of the wells is 1682. Number of the wells under study within lease area

is 1222.

of porosity, 2857 values of horizontal permeability, and 13402 measurements of

water saturation. There are 230 wells with all required logs.

The objective is geomodels for oil reserve estimation and subsequent flow

simulation at three different resolutions. The key geomodeling variables are:

• Geological facies: sand, shale, breccia, and IHS

• Structural geology: reservoir top and base of the McMurray Formation

• Petrophysical properties: porosity by-facies, permeability (horizontal per-

meability) by-facies, fluid saturation by-facies (water saturation, where oil

saturation is the remaining fraction), and the volume fraction of shale min-

eral (V-shale) by-facies

• Seismic acoustic impedance

Because of the unprocessed nature of the data, several assumptions and

simplifications are required. Given the information above, the geostatistical data

analysis for the Firebag project is as follows.

1. Perform facies classification based on the well log data
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Figure 6.4: Well trajectories at the Firebag lease area. Total well number is
1222. There are 233 SAGD well pairs (233 production wells and 233 injection
wells) shown in yellow, 545 delineation wells shown in dark blue, 180 obser-
vation wells shown in light blue, and 31 miscellaneous service wells shown in

red.
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Figure 6.5: Plan view of data locations – 302 wells with core data, 224 wells
with log data, and seismic coverage resolution for all facies. Not all shown wells
have measurements of the entire set of modeled geologic reservoir properties.

2. Define McMurray Formation top and base elevations from facies classifica-

tion and adjust vertical coordinates to the top of McMurray Formation

3. Clean core data by-facies: porosity, permeability, water saturation, and

V-shale

4. Define log porosity and V-shale data for each facies

5. Infer log permeability and water saturation data from log porosity data,

assuming permeability and water saturation have similar spatial structure

as porosity and using core data relationship between porosity and perme-

ability, porosity and water saturation

6. Compute variogram models of key properties in normal scores units

7. Process seismic data: get volumes from the Gassmann’s fluid substitution

model using log data of all facies at once

8. Finally, perform grid-free simulation conditional to all available scattered

and exhaustively sampled data to get petrophysical models of various res-

olutions
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6.2.2 Facies Classification

The gamma ray (GR) and photoelectric effect (PE) logs are used to define the

facies types [20]. The sand facies is characterized by low gamma ray and low

photoelectric effect values. The shale facies has high readings of gamma ray and

photoelectric effect. The IHS facies is closer to sand, and breccia facies is closer to

shale in their log properties. Based on these characteristics, an algorithm shown

in Fig. 6.6 is applied to assign facies based on the gamma ray and photoelectric

effect log values. When the proposed facies classification algorithm is applied to

the wells, realistic stratigraphy is defined along the well bores. As an example,

facies defined in the well 1AA102009405W400 are shown in Fig. 6.7 that appear

in compliance with the stratigraphic conceptual model presented in Fig. 6.2. The

facies statistical distribution and horizontal and vertical experimental variograms

derived from all available data with corresponding variogram models for each

facies type are shown in Figs. 6.8 and 6.9, respectively. Because of the particular

geological deposition of the facies, the experimental variograms do not reach

corresponding theoretical sill values for distances of 3.0 km for all facies. It may

indicate zonal anisotropy. The variogram model in the form of the covariance

function is depicted in Eq. (6.1). These statistics and variogram models are used

later to generate stationary domains with SIS for subsequent grid-free simulation

of geological properties of the petroleum reservoir in the Firebag project.

C(h) =



Cshale(h) = 0.10Sphrh=400.0 m
rv=2.6 m

(h) + 0.08Exprh=1300.0 m
rv=25.0 m

(h)

Csand(h) = 0.12Sphrh=300.0 m
rv=2.5 m

(h) + 0.10Exprh=1000.0 m
rv=30.0 m

(h)

CIHS(h) = 0.07Sphrh=500.0 m
rv=1.5 m

(h) + 0.04Exprh=550.0 m
rv=12.0 m

(h)

Cbreccia(h) = 0.024Exprh=300.0 m
rv=2.0 m

(h)

(6.1)
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Figure 6.6: Facies classification scheme based on the gamma ray (GR) and
photoelectric effect (PE) logging measurements.

6.2.3 Reservoir Surfaces Definition

The target petroleum reservoir comprises McMurray Formation rock. The strati-

graphic top and base of the reservoir are found using facies definition considering

that McMurray Formation is bounded by impermeable layers of shale deposition.

Thus, the McMurray top and base are inferred from the long shale intervals that

are typical to Wabiskaw or Clearwater Formations overlying the McMurray For-

mation and eroded Devonian Age rock underlying the McMurray Formation as

shown in Fig. 6.7 for well 1AA102009405W400. A total of 224 wells with classi-

fied facies are found. The picks of top and base are carried out for all wells in the

same way as for the well 1AA102009405W400 shown above. The target reservoir

top is easier to distinguish. Once the reservoir boundaries are defined along each

of 224 wells, the surfaces can be modeled with the grid-free simulation to model
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Figure 6.7: Facies classification example of well 1AA102009405W400 –
gamma ray, neutron porosity, and photoelectric effect log data are used for
the facies classification. Four facies are distinguished: shale (0), sand (1), IHS

(2), and breccia (3). The example well is indicated by red arrow.
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Figure 6.8: Histogram of McMurray Formation facies. Four facies are distin-
guished: shale (0), sand (1), IHS (2), and breccia (3).

the vertical limits to the geological model. First, the reservoir top elevation

and thickness, which is the reservoir base elevation subtracted from the reser-

voir top elevation, are modeled to better constrain the reservoir base. Second,

the reservoir base elevation is found by subtracting the modeled thickness from

the modeled top elevation. The data histograms of the structural elements are

presented in Fig. 6.10. The scatter plots between reservoir top and thickness in

original units and normal scores are shown in Fig. 6.11. The experimental direct

and cross-variograms for normal scores of reservoir top elevation and thickness

with associated variogram model, which is used for the simulation, are depicted

in Fig. 6.12 and expressed in Eq. (6.2). Fig. 6.13 contains the kriging maps of

three structural elements of the reservoir to better understand the shape of the

formation. The variogram model used in the estimation is not presented. The

top of the reservoir seems very continuous. The reservoir thickness resembles the

complexity of the channelized (fluvial and deltaic) nature of the Firebag deposit

quite well.
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Figure 6.9: Experimental horizontal and vertical variograms and associated
models for McMurray Formation facies. Experimental variograms are shown

by red dots. Variogram models are presented by solid red lines.
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CY (h) =


CYtop(h) = 1.00Expr=3000.0 m (h)

CYtopYthickness(h) = 0.56Expr=3000.0 m (h)

CYthickness(h) = 1.00Expr=3000.0 m (h)

(6.2)

Figure 6.10: Definition of the McMurray Formation top and base elevations
– histograms of the data elevation and thickness.

Figure 6.11: Definition of the McMurray Formation top and base elevations –
scatter plots of the formation top data elevation and formation data thickness

in meters and normal scores.

Because the McMurray top is relatively undisturbed and the McMurray

base is deposited on an eroded surface, the adjustments to vertical coordinates

are made for all subsequent calculations relative to the McMurray Formation

top to make sure that data at similar adjusted elevations correspond to the same

position of geological deposition within each well [68]. The vertical coordinate z

of a location u(x, y, z) in the space is adjusted to coordinate z′ as shown in Eq.
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Figure 6.12: Definition of the McMurray Formation top and base elevations
– experimental omnidirectional direct and cross-variograms shown by red dots
and resulting variogram model for formation top elevation and formation thick-

ness presented by red line.

Figure 6.13: Definition of the McMurray Formation top and base elevations
– kriging maps of formation top elevation, base elevation, and thickness.

(6.3), where ztop(x, y) is the elevation of the McMurray Formation just above

location u. Therefore, modeling of the reservoir top in a grid-free manner is very

useful to define ztop for deviated wells and wells without reservoir boundaries

picks. Note that the relative vertical coordinates z′ are negative. To get original

elevations z back, Eq. (6.4) can be used.

z′ = z − ztop(x, y) (6.3)

z = z′ + ztop(x, y) (6.4)

Therefore, the vertical boundaries of the model are defined to be within

McMurray Formation, and horizontal boundaries are defined by the lease area
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extent. The modeling is performed relative to the McMurray Formation top.

6.2.4 Core Data Analysis

The petrophysical data analysis applied to the data is explained next. First, the

core data are analyzed by-facies. Then, the log data are processed and used in

the GFS-based modeling, because of wider coverage, greater data number, and

denser sampling rate along the wells. The variables to be analyzed from core

and log data are porosity, permeability (horizontal permeability, because there

are no relibale data on vertical permeability), and water saturation. No gas is

assumed to present in the reservoir, and, therefore, the oil saturation is simply

the remaining of the rock porous volume after water saturation is subtracted.

The by-facies histograms of cleaned porosity, permeability, and water sat-

uration are shown in Fig. 6.14. The cleaning involves removal of the outliers and

suspiciously large or small data values. The sand facies, breccia and IHS have

the highest porosity and permeability. The shale facies is lower quality relative

to the other three facies. The water saturation is the highest in the shale and

the lowest in the sand. The values for the IHS and breccia facies are in between

shale and sand. The by-facies scatter plots between the porosity and permeabil-

ity data are shown in Fig. 6.15. The by-facies scatter plots between the porosity

and water saturation data are shown in Fig. 6.16.

6.2.5 Log Data Analysis

The by-facies histograms of the corrected neutron log porosity φ′ are shown in

Fig. 6.17. The neutron porosity φ is corrected by V-shale, as shown in Eq. (6.5).

The V-shale is derived from the gamma ray as expressed in Eq. (6.6), where

GRmin and GRmax are the minimum and maximum readings of the gamma ray

along the well bore. The porosity log data represent more variability than the

core data. The mean of the porosity neutron log data matches the mean of the
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Figure 6.14: Histograms of core data of porosity, permeability, and water
saturation for each facies.

porosity core data for all facies except for shale. The mean of the porosity log

data for shale is intentionally lower, because it is believed that core data are

preferentially sampled in better quality rock. Next, the porosity log data are

sampled randomly at 5.0 m for the remainder of the case study. One sample

from 5.0 m interval is selected randomly to be a representative of the entire

interval. Corresponding by-facies histograms of the porosity log data are shown

in Fig. 6.18, and they are in compliance with previous histograms in Fig. 6.17.
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Figure 6.15: Scatter plots between porosity core data and permeability core
data for each facies.

φ′ = φ(1.0− Vshale) (6.5)

Vshale =
GR−GRmin

GRmax −GRmin
(6.6)

Porosity is reliably measured by logging tools. The permeability and water

saturation are derived from the porosity log data using cloud transformation/P-

field simulation technique [73]. The direct physical relationships could be used to

derive permeability and water saturation from porosity data. But it would dimin-

ish the uncertainty in the relationships between these properties. In cloud trans-

formation, values are drawn from the conditional distributions between these

two variables, which can be presented analytically or in the form of a scatter
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Figure 6.16: Scatter plots between porosity core data and water saturation
core data for each facies.

plot. First, correlated probabilities are simulated at the well locations honoring

spatial structure of the variable to be assigned. Second, the simulated values of

the secondary variables are drawn from the conditional distributions using these

correlated probabilities and collocated values of the primary variable. Here, the

primary variable is porosity, and the secondary variables are permeability and

water saturation. The probability fields for horizontal permeability and water

saturation are generated with the GFS using variogram models computed from

the core data of permeability and water saturation for sand facies, which are

shown in Fig. 6.19. For most faces, the relationship between core porosity data

and core permeability data are approximated analytically by bivariate Gaussian

distribution. The relationship between core porosity data and core water satura-

tion data for each facies are described by the conditional distribution computed
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Figure 6.17: Histograms of corrected neutron porosity log data by-facies.

within local windows of porosity. The fitted relationships are shown in Figs. 6.20

and 6.21 for permeability and water saturation, respectively. The resulting sim-

ulated permeability pseudo-log data and water saturation pseudo-log data are

shown on the same figures as scatter plots with the neutron porosity log data

for each facies. Simulated log data relationships have been slightly adjusted by

the P-field simulation from core data to meet petrophysical properties expected

by each facies. Both core and log data types match each other quite well for

all facies except shale, where log porosity values are lower than core porosity

values, and are deemed more realistic. The pseudo-log data of permeability and

water saturation are not unique. Several realizations of the pseudo-log data could

be generated and used in the conditioning corresponding simulation realization.

Even though the porosity-water saturation relationship is well defined by core

data, the cloud transformation allows to sort out outliers and make all data types
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Figure 6.18: Histograms of grouped corrected neutron porosity log data by-
facies.

consistent in the form of the log data. The uncertainty in the data, such as mea-

surement errors, could be addressed through the data imputation technique [5].

The idea of imputation is based on the noise injection into the data for various

realizations, and synthetic simulation of missing homotopic (collocated) data of

various geological properties.

The locations of the log data of porosity, permeability, and water satura-

tion, which are used as conditional data in the grid-free simulation, are shown in

Fig. 6.22 by-facies. The experimental direct and cross-variograms for these three

variables in normal scores of log data for sand facies and corresponding LMC

variogram model are presented in Fig. 6.23 for the horizontal direction and in

Fig. 6.24 for the vertical direction. It is deemed that the sand facies variogram

model can be applied with a small error to model geological properties within
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Figure 6.19: Horizontal and vertical variograms of permeability and water
saturation core data for sand facies. Experimental variograms are presented

by red dots. Variogram model is a red line.

other facies. The variogram model has the form shown in Eq. (6.7). It is an

exponential variogram type with isotropic horizontal component with a range of

600.0 m and a vertical range of 8.0 m.
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Figure 6.20: Bivariate relationship model between porosity and permeability
core data and resulting permeability pseudo-log data for each facies.
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Figure 6.21: Bivariate relationship model between porosity and water satu-
ration core data and resulting water saturation pseudo-log data for each facies.
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CY (h) =



CYφ(h) = 0.93Exprh=600.0 m
rv=8.0 m

(h)

CYφYk(h) = 0.69Exprh=600.0 m
rv=8.0 m

(h)

CYφYs(h) = −0.02Exprh=600.0 m
rv=8.0 m

(h)

CYk(h) = 0.93Exprh=600.0 m
rv=8.0 m

(h)

CYkYs(h) = 0.09Exprh=600.0 m
rv=8.0 m

(h)

CYs(h) = 1.0Exprh=600.0 m
rv=8.0 m

(h)

(6.7)

6.2.6 Seismic Data Generation

A seismic survey was conducted over part of the lease area, but these data are

not available to the public. Synthetic seismic data is generated to make the case

study more realistic in the use of an exhaustive secondary data. Gassmann’s fluid

substitution model is adopted to generate synthetic acoustic impedance based

on the porosity, water saturation, and V-shale data [39, 84]. These variables

were calculated for all facies, because seismic surveys measure acoustic properties

independent of facies. The acoustic impedance can be computed using Eqs. (6.8)

- (6.18) of Gassmann’s fluid substitution model adapted for a petroelastic model,

where AI is the P-wave acoustic impedance; Kb is the elastic bulk modulus; Ks is

the elastic shear modulus; φ is the porosity; and ρ is the density. The saturated

sat and dry dry rocks are distinguished. It is assumed that the rock matrix is a

binary mixture of the clay and quartz minerals of varying concentrations defined

by V-shale. Physical parameters of the clay and quartz minerals, water and oil

fluids can be found in Table 6.1 and Table 6.2. It is also assumed that no gas is

present in the reservoir. The reservoir fluid comprises brine reservoir water and

heavy viscous oil.
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Figure 6.22: Plan view of log data locations for porosity, permeability, and
water saturation.
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Figure 6.23: Experimental direct and cross-variograms as red dots and asso-
ciated variogram model shown by red line for normal scores of porosity, per-
meability, water saturation of sand facies, and their interactions in horizontal

direction.
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Figure 6.24: Experimental direct and cross-variograms as red dots and asso-
ciated variogram model shown by red line for normal scores of porosity, per-
meability, water saturation of sand facies, and their interactions in vertical

direction.
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AI =

√
ρsat

(
Kb,sat +

4

3
Ks,sat

)
(6.8)

ρsat = (1− φ)ρmatrix + φρfluid (6.9)

ρmatrix = Vshaleρclay + (1− Vshale)ρquartz (6.10)

ρfluid = sρwater + (1− s)ρoil (6.11)

Kb,sat

Kb,matrix −Kb,sat
=

Kb,dry

Kb,matrix −Kb,dry
+

Kb,fluid

φ(Kb,matrix −Kb,fluid)
(6.12)

Ks,sat = Ks,dry (6.13)

Kb,dry = Kb,matrix(1− φ)
3

1−φ (6.14)

Ks,dry = Ks,matrix(1− φ)
3

1−φ (6.15)

Kb,matrix =
1

2

(
Kb,clay +Kb,quartz+

1− Vshale
(Kb,quartz −Kb,clay)−1 + Vshale(Kb,clay + 4

3Ks,clay)−1
+

Vshale

(Kb,clay −Kb,quartz)−1 + (1− Vshale)(Kb,quartz + 4
3Ks,quartz)−1

) (6.16)
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Ks,matrix =
1

2

(
Ks,clay +Ks,quartz+

1− Vshale
(Ks,quartz −Ks,clay)−1 + 2Vshale

Kb,clay+2Ks,clay
5Ks,clay(Kb,clay+ 4

3
Ks,clay)

+

Vshale

(Ks,clay −Ks,quartz)−1 + 2(1− Vshale)
Kb,quartz+2Ks,quartz

5Ks,quartz(Kb,quartz+ 4
3
Ks,quartz)

) (6.17)

Kb,fluid =

(
s

Kb,water
+

1− s
Kb,oil

)−1

(6.18)

Table 6.1: Physical properties of clay and quartz minerals.

Mineral Density ρ Bulk modulus Kb Shear modulus Ks

Units g/cm3 GPa GPa

Clay (kaolinite) 1.58 15.0 6.0
Quartz 2.65 37.0 44.0

Table 6.2: Physical properties of reservoir fluids.

Fluid Density ρ Bulk modulus Kb

Units g/cm3 GPa

Pure water 0.99 2.2
Heavy Oil 1.01 1.7

The log data used to generate the acoustic impedance is shown in Fig. 6.25

in a plan view. The histograms of log porosity, V-shale, and water saturation

data along with the scatter plots can be found in Fig. 6.26. Computed horizontal

and vertical experimental variograms as red dots with the variogram model in a

red line are shown in Figs. 6.27 and 6.28, respectively. The expression for the

variogram model is provided in Eq. (6.19) in the covariance function form.
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CY (h) =



CYφ(h) = 0.83Exprh=600.0 m
rv=8.0 m

(h)

CYφYVshale (h) = −0.55Exprh=600.0 m
rv=8.0 m

(h)

CYφYs(h) = −0.15Exprh=600.0 m
rv=8.0 m

(h)

CYVshale (h) = 0.72Exprh=600.0 m
rv=8.0 m

(h)

CYVshaleYs(h) = 0.20Exprh=600.0 m
rv=8.0 m

(h)

CYs(h) = 1.00Exprh=600.0 m
rv=8.0 m

(h)

(6.19)

Figure 6.25: Plan view of well locations, log data from which are used for
the synthetic acoustic impedance generation.

The simulation of three input variables (porosity, V-shale, and water sat-

uration) is performed with the GFS in normal space at a point scale to provide

the inputs to Gassmann’s fluid substitution model. The seismic coverage area

has been shown previously in Fig. 6.5. The simulation is performed on a grid

with adjusted vertical coordinates to align with the formation top. The size of

the seismic data grid is 100 × 100 × 20 blocks of 50.0 × 50.0 × 5.0 m3 spacing.

First, the seismic attributes are computed at a point scale from the simulated

input variables according to the explained Gassmann’s fluid substitution model.
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Figure 6.26: Histograms and scatter plots of log porosity, V-shale, and water
saturation data used for the synthetic acoustic impedance generation.
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Figure 6.27: Experimental variograms shown by red dots in horizontal direc-
tion computed from the log data used for the synthetic seismic data generation

and associated variogram model presented by a red line.
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Figure 6.28: Experimental variograms shown by red dots in vertical direction
computed from the log data used for the synthetic seismic data generation and

associated variogram model presented by a red line.
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Then, these point-scale acoustic impedance is arithmetically averaged over 200.0

× 200.0 × 20.0 m3 cubes to get block-scale seismic data. Note that in reality

acoustic impedance is not an additive attribute. Thus, it is assumed that re-

sulting acoustic impedance is resolved at a block scale of 200.0 × 200.0 × 20.0

m3 volume. Histograms of the simulated input variables and output acoustic

impedance data at point-scale are shown in Fig. 6.29. The histogram of the

acoustic impedance at a block scale is shown in Fig. 6.30 and looks to follow

normal distribution. The mean has been preserved, and variance has been re-

duced. The scatter plots between all variables at a point scale are shown in next

Fig. 6.31. The acoustic impedance is highly inversely related to porosity. The

correlation between acoustic impedance and V-shale or water saturation is weak.

The relationships between input variables are preserved, when compared to the

data scatter plots in Fig. 6.26. The derived acoustic impedance data are shown

in 3-D in original units at point and block scales in Fig. 6.32. The experimental

variogram of the synthetic seismic attributes at a point scale in normal scores for

vertical and horizontal directions and suggested variogram model are presented

in Fig. 6.33. Surprisingly, the variogram structure derived for the key petrophys-

ical properties also fit the acoustic impedance in normal scores. Therefore, the

final LMC covariance model for the GFS simulation of the porosity, permeabil-

ity, water saturation, and acoustic impedance in normal scores is presented in

Eq. (6.20). The contributions of every direct- and cross-variogram are licit. The

contributions of cross-varioagrams of acoustic impedance with other variables

are chosen approximately based on the correlation coefficients between acoustic

impedance and rest of the variables.
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CY (h) =



CYφ(h) = 0.93Exprh=600.0 m
rv=8.0 m

(h)

CYφYk(h) = 0.69Exprh=600.0 m
rv=8.0 m

(h)

CYφYs(h) = −0.02Exprh=600.0 m
rv=8.0 m

(h)

CYφYAI (h) = −0.90Exprh=600.0 m
rv=8.0 m

(h)

CYk(h) = 0.93Exprh=600.0 m
rv=8.0 m

(h)

CYkYs(h) = 0.09Exprh=600.0 m
rv=8.0 m

(h)

CYkYAI (h) = −0.50Exprh=600.0 m
rv=8.0 m

(h)

CYs(h) = 1.0Exprh=600.0 m
rv=8.0 m

(h)

CYsYAI (h) = 0.20Exprh=600.0 m
rv=8.0 m

(h)

CYAI (h) = 1.00Exprh=600.0 m
rv=8.0 m

(h)

(6.20)

6.3 Grid-Free Simulation

The key petrophysical properties including porosity, permeability, and water

saturation are modeled in a grid-free manner within the McMurray Formation

reservoir conditional to hard log data presented at point-scale and soft acoustic

impedance resolved at a block scale. Three grids are generated to meet the

objectives of the case study: a model at coarse resolution for reserve estimation,

at medium resolution for flow simulation within the high quality reservoir zone,

and at fine resolution around a SAGD well pad in the upper right corner. The

grid resolutions are 200.0 × 200.0 × 20.0 m3, 100.0 × 100.0 × 10.0 m3, and 20.0

× 50.0 × 3.0 m3, respectively. The projection of the grid nodes are shown in

Fig. 6.34. The modeling is performed within each facies independently. The key

point is to generate a consistent realizations at various resolutions that would

be part of same random function despite the locations of the simulation nodes

and resolution. One realization is generated for illustration in this case study.
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Figure 6.29: Histograms of simulated input parameters (porosity, V-shale,
and water saturation) and output synthetic acoustic impedance data at a point

scale.

Figure 6.30: Histogram of derived acoustic impedance data at a block-scale.
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Figure 6.31: Scatter plots between simulated input (parameters porosity, V-
shale, and water saturation) and output synthetic acoustic impedance data at

a point scale.
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Figure 6.32: A plan view of synthetic seismic data in original units at a point
and block scales.
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Figure 6.33: Experimental horizontal and vertical variograms shown by red
dots of the synthetic acoustic impedance data at a point scale in normal scores

and suggested variogram model shown by red line.

The number of the turning lines for 3-D is 161. The number 3161 of the Fourier

coefficients is selected to keep the error less than 1.0 % in the 1-D covariance

decomposition.

6.3.1 Reservoir Surfaces Simulation

Reservoir top elevation and reservoir thickness are generated with the GFS at

the grid node projections shown in Fig. 6.34 to impose limits on the simulation

domains. The variogram model of the correlated reservoir top elevation and

thickness were presented above in Eq. (6.2) and Fig. 6.12. The reservoir base

is derived from simulated reservoir top and thickness. The resulting elevations

and thickness are shown in Fig. 6.35. These boundaries are used to limit the

simulation grids in the vertical dimension. The simulation of key geological

variables is performed relative to the simulated reservoir top. Later, vertical

coordinates z′ are adjusted back to original elevations z.
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Figure 6.34: Plan view of the simulation grid nodes projections at coarse,
medium, and fine resolutions, and together with well trajectories.

6.3.2 Facies Simulation

A realization of facies is generated with SIS according to the variograms in Eq.

(6.1) and Figs. 6.8 and 6.9 to get four stationary domains for petrophysical prop-

erties simulation. The resulting conditional simulation is presented in Fig. 6.36.

Because the SIS method considers only two-point statistics, complex curvilinear

features that may be expected in a channelized formation are not prominently

seen in the realization [75]. MPS or object-based modeling technique could be
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Figure 6.35: Grid-free realizations of the McMurray top elevation, base ele-
vation, and reservoir thickness resolved on three grids.

used to inject these features in the facies model. The facies model could have

been conditioned to the seismic data to honor not only the hard facies picks, but

also soft data. The seismic data would be converted to the facies probabilities

based on the collocated facies and acoustic impedance data, and used as the

locally varying mean in the categorical model simulation with SIS [17, 64].

Figure 6.36: Single realization of the categorical facies model for stationary
domains definition.
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6.3.3 Geological Properties Simulation

The simulation of the porosity, permeability, water saturation, and complimen-

tary acoustic impedance is performed by-facies on three grids of various reso-

lutions at a point scale conditional to point-scale hard data and blocks-scale

soft seismic data with the LMC covariance structure shown in Eq. (6.20). The

difference in the scale of the seismic data is addressed through the PSB value

representation method. The intrinsic co-kriging with data and simulation loca-

tions projection is used to assimilate exhaustively sampled acoustic impedance.

The simulation is performed in the normal space, prior to which the data values

are transformed to the normal space using normal score transformation. As an

example, the simulation results for the sand facies over the sparsest simulation

domain (grid 1) are shown in Figs. 6.37 and 6.38 in normal scores and in Figs.

6.40 and 6.41 in original units. The univariate and bivariate distributions of

the variables are honored in normal space and original units. The variogram

model in red line and experimental variograms computed from simulated normal

scores resolved on grid 1 in horizontal plane are shown in Fig. 6.39 for this single

realization. The variogram reproduction looks well, except the cross-variogram

between porosity and water saturation, which could be addressed by very low cor-

relation coefficient (small sill contribution in comparison with sill contributions

of other direct- and cross-variograms), what infused computational precision er-

ror. Resulting models of the key petrophysical properties are shown in Figs. 6.42

- 6.45 by-facies and for all facies at once. Note the seismic data reproduction in

the last figure when all facies are combined together. Because the PSB values

of the acoustic impedance are represented at the larger block scale than other

data type, and, hence, more continuous, the simulated acoustic impedance in

the data region looks also more continuous in comparison with the rest of the

model. Similar observation is applied to the rest of the variables: simulated

values within the seismic data look more continuous than in the other parts of
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the simulation domain, because of the continuous nature of the soft block-scale

seismic data. The hard data have been honored.

Figure 6.37: Histograms of simulated porosity, permeability, water satura-
tion, and acoustic impedance in normals scores for sand facies over simulation

grid 1.

6.3.4 Discussion

The grid-free simulation entitles for being a practical method for petroleum reser-

voir characterization. In this case study, the developed simulation method was

applied in three different circumstances: the probabilities within the wells for cal-

culation of pseudo-log permeability and water saturation values, target reservoir

top and base elevations, and geological properties resolved at various resolutions

were computed in a grid-free manner with great deal of flexibility of resolving re-

alizations at any simulation node configuration. Therefore, the modeling results
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Figure 6.38: Scatter plots of simulated porosity, permeability, water satura-
tion, and acoustic impedance in normals scores for sand facies over simulation

grid 1.
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Figure 6.39: Horizontal experimental variograms shown by green lines of
simulated geological properties in normal scores for sand facies resolved on
grid 1 and target variogram model presented by a red line. The reproduction
of cross-variogram between porosity and water saturation is poor, because their
correlation is weak in comparison with sill contributions of other variograms.
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Figure 6.40: Histograms of simulated porosity, permeability, water satura-
tion, and acoustic impedance in original units for sand facies over simulation

grid 1.

presented in this chapter proves the potential of the GFS technique for the appli-

cation to real case studies and one in particular – Firebag Oil Sands Project. The

simulation remains consistent regardless of the simulation grid density and orien-

tation, what enables three models built for various purposes being a part of the

infinitely resolvable model presented in the polynomial grid-free form. The data

values and data distribution are honored in final realizations. The variogram

is reproduced quite accurately. Note that most geological variation comes from

the difference between facies properties, and not the variation within the facies.

The uncertainty could have been assessed by generating multiple realizations and

subsequent post-processing.
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Figure 6.41: Scatter plots of simulated porosity, permeability, water satura-
tion, and acoustic impedance in original units for sand facies over simulation

grid 1.



Chapter 6. Case Study 304

Figure 6.42: Porosity realization for each facies domain separately and to-
gether at a point scale.
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Figure 6.43: Permeability realization for each facies domain separately and
together at a point scale.
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Figure 6.44: Water saturation realization for each facies domain separately
and together at a point scale.
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Figure 6.45: Acoustic impedance realization for each facies domain separately
and together at a point scale, and conditioning gridded block-scale data.



Chapter 7

Conclusions

The framework of grid-free geostatistical simulation of multivariate properties

of a natural phenomena in presence of multiscale data has been developed and

demonstrated with numerous 2-D and 3-D synthetic small examples and a real

case study. Final remarks, conclusions, and future work of the GFS implemen-

tation for research and industrial purposes are summarized in this chapter.

7.1 Contributions

Simulation of the coregionalized variables is an important task for the petroleum,

mining, and other industrial projects. Even though most conventional geosta-

tistical methods are inherently grid-free, they are not implemented in this way.

When the simulation is performed on a new set of simulation node locations, the

results depend on the ordering of simulation or are not consistent with previ-

ously simulated values. The presented grid-free simulation approach is a novel

idea to express geostatistical simulation as a function of the coordinates of the

simulation locations. The regridding of the simulation model, modeling with

locally refined areas, simulation on unstructured grids, and the assimilation of

additional data is straightforward with the proposed approach.

308
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Therefore, the multivariate geostatistical simulation of properties of nat-

ural phenomena in a grid-free manner is the main contribution of this research

work. The simulation is conditioned to multiscale data in the form of the point-

scale hard data and exhaustively sampled block-scale measurements. The Fourier

series decomposition of target input variogram model is performed to preserve

spatial structure of the system. The high dimensional simulation is derived from

the modified turning bands concept by combining several line processes resolved

with the newly developed grid-free Fourier series simulation. The multiple corre-

lated attributes are easily cosimulated with the linear model of coregionalization

concept. Thus, the conditional realization of grid-free simulation is expressed

as a finite-length series of the weighted cosine functions. The two-step condi-

tional grid-free simulation also ensures that integration of new data preserves

previously resolved realizations and changes model locally. The gradual changes

would affect regions of the simulation domain only within correlation range from

the new data locations. The resulting simulation is infinitely resolvable in space.

Other essential contributions of this thesis can be highlighted as follows.

• The assimilation of gridded block-scale data with point-scale block value

representation method is proposed and developed. Frequently, an exhaus-

tively sampled data at a block scale in the form of seismic attributes are

available for the conditioning of the geological properties of the natural

deposit. However, block-scale data cannot be assimilated into the geo-

statistical model as provided, because the difference between block values

at their boundaries will create artifacts in the GFS realizations. Thus, a

linear interpolation algorithm is developed to represent the block values

continuously in space.

• The GFS implementation algorithm considers intrinsic cokriging approach

for conditioning model to exhaustively sampled data with the intrinsic
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variogram formalism. The well established screening assumption allows

efficient assimilation of large data sets. Also, the implemented projection

approach in the intrinsic cokriging removes edge effects in the realizations

caused by the exhaustively sampled data that partially covers the simula-

tion domain.

• The computational cost of the GFS is reduced by several enhancements to

the original algorithm. The combination of multiple 1-D line simulations

generated by the Fourier series simulation within the turning bands frame-

work for higher dimensional simulation, conditioning based on the cokriging

in a dual form, and effective matrix manipulation including block matrix

inversion for the exhaustively sampled data assimilation, where only part

of the matrix is inverted, provide improvement in the computational time.

• Inherently random white noise with nugget effect variogram is represented

as a function of the approximate coordinates of the simulation location.

The simulation space is gridded at fine resolution. An index is assigned

to each block of the mesh and represents the random number seed in the

pseudo-random number generator. Therefore, resulting random numbers

are independent of each other, but tied to the particular grid block location

in the space.

• A study has been conducted to assess optimal number of regularly spaced

point-scale discretization nodes for the accurate representation of the block

scale value after their upscaling. It is recommended to use between 4 and

8 discretization nodes for each dimension of a block volume to properly

represent associated block-scale value.

The extensively examined GFS method, a successful real 3-D case study,

and readily available code gfsim allow to simulate properties of the natural
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phenomena at industrial scale. The proposed method would improve managerial

decisions and make geomodels prepared for multiple purposes consistent with

each other and accurate. Regridding and grid refinement of coarse scale models

would no longer be issues.

7.2 Limitations

The GFS method is very effective for the simulation of multivariate geological at-

tributes in presence of multiscale data. There are, however, a series of conceptual

and computational limitations.

The proposed method considers only stationary domains, i.e., the global

mean and covariance structure of the variables under study are assumed constant

throughout the simulation domain. Some geological attributes may show a trend,

which should be removed before the GFS is applied. The boundaries between

stationary domains should be defined clearly by deterministic or stochastic tech-

niques. The multivariate system is modeled with the LMC, which also assumes

multivariate stationarity.

A large number of Fourier series coefficients and turning lines have to be

used to generate realizations with the required spatial structure and free off

artifacts. When a small number of Fourier coefficients are used, the realizations

appear too continuous. When a small number of turning lines are used, linear

artifacts are present in the realizations. GFS is approximately 5 times slower

than conventional SGS.

Another computationally demanding step is the simulation at block scale.

The simulation at point-scale nodes and subsequent upscaling to block scale is

costly in practice. This drawback is not particularly related to GFS, but would

be relevant to any geostatistical simulation method that produces simulation at

a point-scale.
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7.3 Future Work

The GFS has a great potential to be applied in practice. There are a number of

suggestions that could bring the performance of the proposed grid-free simulation

to a new level.

The computational time could be improved by a parallel programming,

another more efficient decomposition method of the covariance function that re-

quires fewer coefficients, and replacement of turning lines with other technique

that allows combining lower dimensional simulations to a larger dimensional sim-

ulation. The relationship between number of the Fourier coefficients, correlation

range of the modeled variables, and size of the simulation domain could be stud-

ied further to understand better the nature of the Fourier coefficients for keeping

fewer the most significant ones in the simulation.

The wavelet representation of the simulation would allow to perform up-

scaling and downscaling in a straightforward manner and condition realizations

to multiscale data sets [49]. The wavelet decomposition ensures proper relation-

ship between realizations resolved at different scales and their covariances. Un-

fortunately, the wavelets are gridded in the current implementation and should

be expressed in a grid-free manner to be applied within GFS framework. The

GFS could be expanded for simulation of non-stationary systems.

Parallel programming would allow using multiple processors to simulate

several realizations at multiple locations simultaneously. The GFS algorithm is

inherently parallel in that multiple locations and realizations can be processed

independently; unlike sequential simulation algorithms. The two-level code is

a first step to this approach. It processes raw data and sets up all required

information to be directly used for the grid-free simulation.

The GFS method could be coupled with various geostatistical techniques,

such as grid-free simulation of categorical variables, and all reservoir components,
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such as structural elements, compartmentalization, geological attributes, trends,

etc., could be simulated at once to perform simulation and visualization of the

entire reservoir on the fly. The grid-free simulation of categorical variables can

be performed with truncated Gaussian simulation (TGS) within GFS paradigm,

where simulated continuous random functions are truncated at some thresholds

to obtain distribution of categories in space [26].

Decorrelation techniques including principal component analysis and other

for multivariate systems could be implemented to better preserve the relationship

of the simulated variables in the original units.
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Appendix A

Appendix – Description of

Fortran Programs

A description and documentation of the Fortran programs prepared specifically

for the grid-free simulation paradigm is provided in this Appendix. The presented

programs are ffsim for grid-free Fourier series simulation, gfsim for grid-free

simulation with turning lines, gfsim1 and gfsim2 for two-level grid-free simu-

lation with turning lines, and psbv for point-scale block value representation of

the gridded block-scale data.

A.1 Program ffsim

A Fortran program called ffsim is prepared to perform grid-free Fourier series

simulation, which is presented in Section 3.1 of Chapter 3. A default parameter

file of the program ffsim is shown in Table A.1. The first four lines are the header

of the parameter file. The number of the variables to simulate is entered on line

5. Next block is devoted for the data specification. Line 6 is reserved for input

data file name of first variable to simulate. The data can be stored in a scattered

(option 0) or gridded (option 1) format in the data file. Columns with x, y, and z
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coordinates are specified for the scattered data sets. Grid specification is required

for the regularly gridded data sets, where number of the data nodes in X, Y, and

Z directions, x, y, and z coordinates of the first ordered datum, and spacing

between the data nodes in X, Y, and Z directions are needed. Same parameters

are entered for any other remaining data files. If the data files are missing,

unconditional simulation is performed. The number of the realizations must be

specified along with the random number seed on lines 18 and 19, respectively.

The grid-free simulation can be performed at scattered simulation nodes (option

0) or on regularly structured grid of simulation nodes (option 1). This option is

indicated on line 20. In order to represent realizations at the scattered simulation

nodes, the input data file with Cartesian x, y, and z coordinates is required (lines

21 and 22). When realizations are resolved on regularly placed simulation nodes,

the grid orientation along with the grid specification are entered on lines 23 –

26. Option for precision of target covariance decomposition with the Fourier

series is specified on line 27: option 1 implies 10% precision error, option 2 –

5%, option 3 – 1%, and option 4 would approximate covariance function with

0.1% error. The size of the periodic domain is defined on line 28. Lines 29 –

31 are reserved for the nugget effect mesh specification. The output file name

for the realizations of grid-free simulation is specified on line 32. The resulting

simulation is presented in normal scores at a point scale. The target variogram

model of normal scores of the simulated system in the LMR/LMC form are

entered last in the parameter file. The direct- and cross-variogram should be

specified for multivariate case. The number of the nested structures, types of

the structures, their sill contributions, principal directions of the anisotropy, and

variogram ranges are all needed to set up the variogram model in normal units.
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Table A.1: Default parameter file of program ffsim.

1- Parameters for FFSIM

2- ********************

3-
4- START OF PARAMETERS:

5- 2 -number of variables

6- data1.dat -input file with variable 1 data

7- 1 0 - data, scatter/grid (0/1)

8- 2 3 4 - if (0): columns for x, y, z

9- 50 0.5 1.0 - if (1): nx, xmin, xsize

10- 50 0.5 1.0 - ny, ymin, ysize

11- 50 0.5 1.0 - nz, zmin, zsize

12- data2.dat -input file with variable 2 data

13- 1 1 - data, scatter/grid (0/1)

14- 2 3 4 - if (0): columns for x, y, z

15- 50 0.5 1.0 - if (1): nx, xmin, xsize

16- 50 0.5 1.0 - ny, ymin, ysize

17- 50 0.5 1.0 - nz, zmin, zsize

18- 100 -number of realizations to generate

19- 69069 -random number seed

20- 0 -simulation: grid-free/gridded (0/1)

21- simnodes.dat - if (0): file with coordinates

22- 1 2 3 - columns for x, y, z

23- 0.0 0.0 0.0 - if (1): azimuth, plunge, dip

24- 50 0.5 1.0 - nx, xmin, xsize

25- 50 0.5 1.0 - ny, ymin, ysize

26- 50 0.5 1.0 - nz, zmin, zsize

27- 3 -option for covariance approximation

28- 200.0 -covariance discretization domain size

29- 5000 0.005 0.01 -nugget effect grid: nx, xmin, xsize

30- 5000 0.005 0.01 -nugget effect grid: ny, ymin, ysize

31- 5000 0.005 0.01 -nugget effect grid: nz, zmin, zsize

32- gfsim.out -output file for simulated realizations

33- 1 0.1 -variogram 1: nst, nugget

34- 1 0.9 0.0 0.0 0.0 - it, cc, ang1, ang2, ang3

35- 30.0 30.0 30.0 - a1, a1, a3

36- 1 0.1 -variogram 12: nst, nugget effect

37- 1 -0.5 0.0 0.0 0.0 - it, cc, ang1, ang2, ang3

38- 30.0 30.0 30.0 - a1, a1, a3

39- 1 0.1 -variogram 2: nst, nugget

40- 1 0.9 0.0 0.0 0.0 - it, cc, ang1, ang2, ang3

41- 30.0 30.0 30.0 - a1, a1, a3
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A.2 Program gfsim

A grid-free simulation method GFS based on the Fourier series simulation and

turning bands is implemented in the program gfsim; default parameter file is

shown in Tables A.2 and A.3. This parameter file is similar to the parameter file

of program fssim with some changes as follows. The weights for the debiased

data distribution can be specified in a parameter file for each data file. The

column for weight within the data file for simulation of bivariate systems are

entered on lines 7 and 21 for variable 1 and 2, respectively. Trimming limits for

the data are specified on lines 8 and 22 for the different data sets. The weights are

required for accurate normal score transformation, which is also implemented in

this code. The option for the NST is specified on line 16 for first data set, and on

line 30 for second date set. There are two options how the transformation can be

performed. It is either based on the transformation table or kernel approximation

of the debiased data CDF as explained in Section 5.1.1 of Chapter 5. The lower

and upper tail values (or possible minimum and maximum data values) are

specified next along with the power used for the interpolation between lower

tail – minimum data and maximum data – upper tail in the data CDF curve.

An additional parameter is required for the kernel-based NST: the size of the

window used to fit local liner regression model to the CDF – data value pairs.

The number of realizations to consider and simulate in this run are specified on

line 34. Additional realizations can be generated with other runs of the program

as required. The particular realizations to generate are defined on line 35. The

option for the number of the turning lines to use in the simulation is also defined.

For 2-D modeling, option 1 implies 10 lines, option 2 – 50 lines, option 3 – 100

lines, and option 4 – 200 line processes are used in the simulation. For 3-D

modeling, number of the lines is slightly different: option 1 – 12 lines, option

2 – 42 lines, and option 3 – 162 equally spaced lines on a unit 3-D sphere are
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used in the simulation. The rest of the parameters remain the same as explained

in Section A.1 of Appendix for program ffsim. The simulation is performed

in normal scores at point scale, but output is reported in original units, when

normal score transformation option is specified. Otherwise, the realizations are

stored in the output file in the normal scores.

A.3 Program gfsim1

The program gfsim1 performs pre-processing of the data, simulation parameters,

and input variogram model, output of which is used in gfsim2 for grid-free

simulation of the realizations at required locations in the space. The gfsim1

incorporates a big initial portion of the gfsim, but no simulation is performed. A

default parameter file of gfsim1 is presented in Tables A.4 and A.5. It is identical

to most of the gfsim parameter file as explained in Section A.2 of Appendix,

except that the dimension of the simulated system should be specified on line

34. The output file name for the pre-processed data is entered on line 43.

A.4 Program gfsim2

The program gfsim2, a default parameter file of which is presented in Table

A.6, performs grid-free simulation using the pre-processed data in the form of

output file of program gfsim1. Some parts of the parameter file are similar

to the parameter file of gfsim as explained in Section A.2 of Appendix. The

input file generated by the gfsim1 is specified on line 5. The number of the

realizations to generate and indices of these realizations are entered on lines 6

and 7, respectively. The total number of the realizations is stored in the input

data file. The simulation is performed either at scattered locations or on a

grid as explained in Section A.1 of Appendix for program ffsim. The resulting

realizations are stored in the output file specified on line 15. This two-level
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Table A.2: Default parameter file of program gfsim.

1- Parameters for GFSIM

2- ********************

3-
4- START OF PARAMETERS:

5- 2 -number of variables

6- data1.dat -input file with variable 1 data

7- 1 0 0 - data, weight, scatter/grid (0/1)

8- 0.0 1.0e21 - trimming limits for data

9- 2 3 4 - if (0): columns for x, y, z

10- 0.0 - if (1): angle of data grid

11- 50 0.5 1.0 - nx, xmin, xsize

12- 50 0.5 1.0 - ny, ymin, ysize

13- 50 0.5 1.0 - nz, zmin, zsize

14- 10 10 10 - discretization

15- 30 - number of iterations

16- 1 0 - no/yes NST (0/1), table/kernel (0/1)

17- 0 1.0 - if (1): lower tail, power option

18- 1 2.0 - upper tail, power option

19- 10.0 - if (1) and (1): averaging window

20- data2.dat -input file with variable 2 data

21- 1 0 1 - data, weight, scatter/grid (0/1)

22- 0.0 1.0e21 - trimming limits for data

23- 2 3 4 - if (0): columns for x, y, z

24- 0.0 - if (1): angle of data grid

25- 50 0.5 1.0 - nx, xmin, xsize

26- 50 0.5 1.0 - ny, ymin, ysize

27- 50 0.5 1.0 - nz, zmin, zsize

28- 10 10 10 - discretization

29- 30 - number of iterations

30- 1 0 - no/yes NST (0/1), table/kernel (0/1)

31- 0 1.0 - if (1): lower tail, power option

32- 1 2.0 - upper tail, power option

33- 10.0 - if (1) and (1): averaging window

34- 10 3 -number of realizations: all, simulate

35- 1 5 7 - realizations to generate

36- 69069 -random number seed
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Table A.3: Default parameter file of program gfsim. Continuation of Table
A.2.

37- 0 -simulation: grid-free/gridded (0/1)

38- simnodes.dat - if (0): file with coordinates

39- 1 2 3 - columns for x, y, z

40- 0.0 0.0 0.0 - if (1): azimuth, plunge, dip

41- 50 0.5 1.0 - nx, xmin, xsize

42- 50 0.5 1.0 - ny, ymin, ysize

43- 50 0.5 1.0 - nz, zmin, zsize

44- 3 -option for covariance approximation

45- 200.0 -covariance discretization domain size

46- 3 -option for number of turning lines

47- 5000 0.005 0.01 -nugget effect grid: nx, xmin, xsize

48- 5000 0.005 0.01 -nugget effect grid: ny, ymin, ysize

49- 5000 0.005 0.01 -nugget effect grid: nz, zmin, zsize

50- gfsim.out -output file for simulated realizations

51- 1 0.1 -variogram 1: nst, nugget

52- 1 0.9 0.0 0.0 0.0 - it, cc, ang1, ang2, ang3

53- 30.0 30.0 30.0 - a1, a1, a3

54- 0 0 0 - zonal: no/yes (0/1)

55- 1 0.1 -variogram 12: nst, nugget effect

56- 1 -0.5 0.0 0.0 0.0 - it, cc, ang1, ang2, ang3

57- 30.0 30.0 30.0 - a1, a1, a3

58- 0 0 0 - zonal: no/yes (0/1)

59- 1 0.1 -variogram 2: nst, nugget

60- 1 0.9 0.0 0.0 0.0 - it, cc, ang1, ang2, ang3

61- 30.0 30.0 30.0 - a1, a1, a3

62- 0 0 0 - zonal: no/yes (0/1)

implementation of the grid-free simulation algorithm allows resolving simulation

at any locations and of any realizations easily and efficiently.

A.5 Program psbv

A default parameter file of the program psbv for the points-scale block value rep-

resentation of the regularly gridded block-scale data (Section 4.2.4 of Chapter

4) is presented in Table A.7. The name of the input data file with the gridded
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Table A.4: Default parameter file of program gfsim1.

1- Parameters for GFSIM1

2- *********************

3-
4- START OF PARAMETERS:

5- 2 -number of variables

6- data1.dat -input file with variable 1 data

7- 1 0 0 - data, weight, scatter/grid (0/1)

8- 0.0 1.0e21 - trimming limits for data

9- 2 3 4 - if (0): columns for x, y, z

10- 0.0 - if (1): angle of data grid

11- 50 0.5 1.0 - nx, xmin, xsize

12- 50 0.5 1.0 - ny, ymin, ysize

13- 50 0.5 1.0 - nz, zmin, zsize

14- 10 10 10 - discretization

15- 30 - number of iterations

16- 1 0 - no/yes NST (0/1), table/kernel (0/1)

17- 0 1.0 - if (1): lower tail, power option

18- 1 2.0 - upper tail, power option

19- 10.0 - if (1) and (1): averaging window

20- data2.dat -input file with variable 2 data

21- 1 0 1 - data, weight, scatter/grid (0/1)

22- 0.0 1.0e21 - trimming limits for data

23- 2 3 4 - if (0): columns for x, y, z

24- 0.0 - if (1): angle of data grid

25- 50 0.5 1.0 - nx, xmin, xsize

26- 50 0.5 1.0 - ny, ymin, ysize

27- 50 0.5 1.0 - nz, zmin, zsize

28- 10 10 10 - discretization

29- 30 - number of iterations

30- 1 0 - no/yes NST (0/1), table/kernel (0/1)

31- 0 1.0 - if (1): lower tail, power option

32- 1 2.0 - upper tail, power option

33- 10.0 - if (1) and (1): averaging window

34- 3 -dimensional size of the simulated system

35- 10 -number of realizations to consider

36- 69069 -random number seed

37- 3 -option for covariance approximation

38- 200.0 -covariance discretization domain size

39- 3 -option for number of turning lines
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Table A.5: Default parameter file of program gfsim1. Continuation of Table
A.4.

40- 5000 0.005 0.01 -nugget effect grid: nx, xmin, xsize

41- 5000 0.005 0.01 -nugget effect grid: ny, ymin, ysize

42- 5000 0.005 0.01 -nugget effect grid: nz, zmin, zsize

43- gfsim.dat -output file for pre-processed data

44- 1 0.1 -variogram 1: nst, nugget

45- 1 0.9 0.0 0.0 0.0 - it, cc, ang1, ang2, ang3

46- 30.0 30.0 30.0 - a1, a1, a3

47- 0 0 0 - zonal: no/yes (0/1)

48- 1 0.1 -variogram 12: nst, nugget effect

49- 1 -0.5 0.0 0.0 0.0 - it, cc, ang1, ang2, ang3

50- 30.0 30.0 30.0 - a1, a1, a3

51- 0 0 0 - zonal: no/yes (0/1)

52- 1 0.1 -variogram 2: nst, nugget

53- 1 0.9 0.0 0.0 0.0 - it, cc, ang1, ang2, ang3

54- 30.0 30.0 30.0 - a1, a1, a3

55- 0 0 0 - zonal: no/yes (0/1)

Table A.6: Default parameter file of program gfsim2.

1- Parameters for GFSIM2

2- *********************

3-
4- START OF PARAMETERS:

5- gfsim.dat -input file with pre-processed data

6- 3 -number of realizations to simulate

7- 1 5 7 - realizations to generate

8- 0 -simulation: grid-free/gridded (0/1)

9- simnodes.dat - if (0): file with coordinates

10- 1 2 3 - columns for x, y, z

11- 0.0 0.0 0.0 - if (1): azimuth, plunge, dip

12- 50 0.5 1.0 - nx, xmin, xsize

13- 50 0.5 1.0 - ny, ymin, ysize

14- 50 0.5 1.0 - nz, zmin, zsize

15- gfsim.out -output file for simulated realizations
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block-scale data is defined on line 5. Column for the attribute and grid speci-

fication with number of the realizations are entered on next lines 6 – 10. The

numbers of the discretization nodes for each dimension are specified on line 11.

These discretization nodes are used to discretize the block-scale data in order to

find optimal nodal values of the point-scale block values used in the interpola-

tion. The number of the iterations implemented in the nodal values calculation

is defined on line 12. Next, line 13 is reserved for the output file with the re-

ported point-scale block values, which are presented either at scattered locations

(option 0 on line 14) or on a structured set of nodes (option 1 on line 14). The

parameters of the output nodes are presented on lines 15 – 20 for both options.

Table A.7: Default parameter file of program psbv.

1- Parameters for PSBV

2- *******************

3-
4- START OF PARAMETERS:

5- data.dat -input file with block data

6- 1 - column for attribute

7- 50 0.5 1.0 - nx, xmin, xsize

8- 50 0.5 1.0 - ny, ymin, ysize

9- 50 0.5 1.0 - nz, zmin, zsize

10- 1 - number of realizations

11- 10 10 10 -number of discretization nodes

12- 30 -number of iterations

13- psbv.out -output file for point-scale block data

14- 0 - output: grid-free/gridded (0/1)

15- simnodes.dat - if (0): file with coordinates

16- 1 2 3 - columns for x, y, z

17- 0.0 0.0 0.0 - if (1): azimuth, plunge, dip

18- 50 0.5 1.0 - nx, xmin, xsize

19- 50 0.5 1.0 - ny, ymin, ysize

20- 50 0.5 1.0 - nz, zmin, zsize
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