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Summary

• Technical decision making and process evaluaƟon for mine projects is oŌen dependent
on mulƟvariate relaƟonships that exist between geometallurgical variables. It is there-
fore important for geostaƟsƟcal models to reproduce those relaƟonships.

• ConvenƟonal geostaƟsƟcal algorithms (cosimulaƟon, min./max auto-correlaƟon factors,
etc.) are based on the assumpƟon that the covariance matrix fully characterizes mulƟ-
variate relaƟonships. MulƟvariate complexiƟes that exist between geometallurgical vari-
ables cause this assumpƟon to fail, meaning that the mulƟvariate relaƟonships will not
be reproduced.

• To address this problem, the CCG has developed the ProjecƟon Pursuit MulƟvariate
TransformaƟon (PPMT), which transforms data of virtually any size and form to be mul-
Ɵvariate Gaussian and uncorrelated. The transformed variables can then be indepen-
dently simulated, before the back-transform restores the original mulƟvariate relaƟon-
ships, including any complexity that may exist.

• Using a mining case study, the PPMT workflow is demonstrated to be simpler than con-
venƟonal mulƟvariate simulaƟon workflows, while yielding superior results that can be
expected to improve mine technical decision making and process evaluaƟon.

1 The Seƫng

EvaluaƟng the process performance of mining operaƟons requires numerical models of many re-
lated geological variables, such as resource variables, contaminant variables, processability vari-
ables, etc. Taken together, they provide a characterizaƟon of the geologic deposit that forms the
basis for engineering design and decision making. As an example, consider a Ni laterite deposit,
which is frequently processed with an electro-arc furnace. Several auxilary variables must be mod-
eled in addiƟon to the Ni resource, including Fe, SiO2 andMgO. As the joint values of these variables
dictates plant performance, effecƟve geostaƟsƟcal models should reproduce their mulƟvariate re-
laƟonships. For example consider the SiO2-MgO relaƟonship in Figure 1.

It is criƟcal that this complex relaƟonship is reproduced, as the SiO2-MgO raƟo (SMR) of the
furnace feed impacts the process heat. Exceeding a criƟcal SMR threshold will likely damage the
furnace lining.

2 The Problem

ConvenƟonal mulƟvariate simulaƟon assumes that the data is mulƟvariate Gaussian (mulƟGaus-
sian). AmulƟGaussian distribuƟon is schemaƟcally represented in the right panel of Figure 2, where
the relaƟonship follows ellipƟcal density contours that are fully characterized by covariance. Unfor-
tunately, geological data is rarely mulƟGaussian. Instead, geological data will likely contain mulƟ-
variate complexiƟes, such as those shown in the remaning panels. Note that all of the complexiƟes
that are schemaƟcally illustrated are present in the SiO2-MgO relaƟonship.

Common transformaƟons such as the normal score transform (Verly, 1983), principal compo-
nent analysis (PCA) (Davis & Greenes, 1983), and min./max auto-correlaƟon factors (MAF) (Des-
barats & Dimitrakopoulos, 2000) do not remove these mulƟvariate complexiƟes. As a result, con-
venƟonalmulƟvariate simulaƟon algorithmswill not generate realizaƟons thatmatch the data distri-
buƟon. Consider the normal score transformof SiO2 andMgO in Figure 3, which yields variables that
are univariate Gaussian, but notmulƟGaussian. Using cosimulaƟon generatesmulƟGaussian realiza-
Ɵons (blue) that match the correlaƟon of the data, but not the distribuƟon. AŌer back-tranforming
(boƩom right panel), the original data distribuƟon is not reproduced.
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Figure 1: Cross-plot of SiO2 and Mgo.

Figure 2: SchemaƟc illustraƟons of mulƟvariate complexiƟes and a mulƟGaussian distribuƟon.

3 The SoluƟon

To address the described problem issue, a variety of techniques have beed developed by the CCG
for transforming variables to be mulƟGaussian (BarneƩ et al., 2014; Leuangthong & Deutsch, 2003).
ConvenƟonal Gaussian simulaƟon algorithms may then be used with data that matches their as-
sumpƟons, before using the associated back-transformaƟons to return the original complexity to
simulated realizaƟons. Many of these transformaƟons will also decorrelate the variables so that
modeling is simplified to independent simulaƟon. Associated back-transformaƟons are then used
to return the original correlaƟon to simulated realizaƟons. This workflow is illustrated using the Ni
laterite variables in Figure 4.

Observe that the complex data is transformed to be bivariate Gaussian and uncorrelated (top
right). As a result, independently simulaƟon yields realizaƟons that match the distribuƟon of the
transformed data (boƩom right). Back-transformaƟon of the realizaƟons reintroduces the original
complexity and correlaƟon (boƩom leŌ). Since the SiO2-MgO is criƟcal to reproduce, results of the
above workflow would lead to improved operaƟonal planning (relaƟve to the convenƟonal covari-
ance based workflow). As will be demonstrated, this result is achieved using a workflow that is also
easier to implement than the convenƟonal workflow.
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Figure 3: CosimulaƟon results with complex mulƟvariate data.

Figure 4: MulƟvariate transformaƟon results with complex mulƟvariate data.
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4 ProjecƟon Pursuit MulƟvariate Transform

The ProjecƟon PursuitMulƟvariate Transform (PPMT) (BarneƩ et al., 2014; Friedman& Tukey, 1974)
was recently developed for transforming data of virtually any size and form to be uncorrelated and
mulƟGaussian. Details of the PPMTwill now be summarized. It should be emphasized that although
the PPMT involves several steps, they are all accomplished within a single program.

Consider the data as a matrixZ : zαi, α = 1, ..., n, i = 1, ...,K. The univariate andmulƟvariate
properƟes of theZ1 andZ2 variables that are used for demonstraƟon appear in Figure 5; the spaƟal
properƟes appear in Figure 6. Note the complex mulƟvariate features of the data and differing
spaƟal conƟnuity of each variable; it will be important to reproduce these features in geostaƟsƟcal
modeling.

Figure 5: CDFs and KDE scaƩerplot of the variables.

Figure 6: Semivariograms and cross-semivariogram of the variables.

Pre-processing

The first step of the PPMT applies the normal score transform to all of the variables according to:

yαi = G−1 (Fi(zαi)) , for α = 1, ..., n, i = 1, ...,K

This transforms the variables to univariate standard Gaussian, providing properƟes that will ben-
efits subsequent steps. The 2-D data are normal scored in Figure 7, as is evident from their univariate
staƟsƟcs.

The second step of the PPMT applies data sphereing (Fukunaga, 1972) to all of the variables
according to:
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Figure 7: CDFs and KDE scaƩerplot of the normal score transformed variables.

X = (Y − E{Y})S−1/2, S−1/2 = VD−1/2VT

This transforms the variables to be uncorrelated with unit variance, which is required for ap-
plying the next step of the PPMT. The 2-D data are sphered in Figure 8, as is evident from their
correlaƟon of zero and variance of one.

Figure 8: CDFs and KDE scaƩerplot of the sphere variables.

ProjecƟon Pursuit

Consider a Kx1 unit length vector, θ, and the associated projecƟon of the data upon it, p = Xθ.
Any θ should yield a p that is univariate Gaussian if X is mulƟGaussian. With this in mind, define
the projecƟon index, I(θ), as a test staƟsƟc that measures univariate non-Gaussianity. For any θ
where the associated p is perfectly Gaussian, I(θ) is zero.

The PPMT performs an opƟmized search to find the θ that maximizes I(θ). Once found, the
mulƟvariate data, X, is transformed so that its associated projecƟon, p = Xθ, is made standard
normal Gaussian. This search and normalize procedure is repeated unƟlX is made mulƟGaussian.
This process is referred to as projecƟon pursuit, and is demonstrated in Figure 9.

Following the 25th projecƟon pursuit iteraƟon, the data are transformed to be uncorrelated and
mulƟGaussian. According toGaussianmodel definiƟon, this also renders the data independent. The
variables can therefore be simulated independently, before inverƟng the described transforms to
return the Gaussian realizaƟons to original space.
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Figure 9: Progression of the data through the projecƟon pursuit algorithm.
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SimulaƟon Results

MulƟvariate reproducƟon of the back-transformed realizaƟons is evaluated in Figure 10; spaƟal
reproducƟon is evaluated in Figure 11. Observe that the mulƟvariate complexiƟes are reproduced,
as well as the spaƟal variability. The one potenƟal concern with the PPMT workflow results is the
cross-variogram reproducƟon, which relates to the fact that data are made independent at h = 0
lag (zero lag), but not necesarrily at h > 0 lag distances (spaƟal lags). To address this, the PPMT
program has the opƟon of performing a subsequent MAF rotaƟon, which generally removes any
remaining spaƟal cross-correlaƟon. Note that the PPMT/MAF results have beƩer reproducƟon of
the semi-variograms and (in parƟcular) the cross-variogramwhen using a subsequentMAF rotaƟon.

Figure 10: KDE scaƩerplot for a simulated realizaƟon following the PPMT workflow.

Figure 11: Semivariograms and cross-variograms with and without the use of a chained MAF trans-
formaƟon.

To provide a relaƟve comparison of the PPMT results in terms of mulƟvariate reproducƟon, sev-
eral other workflows were executed using more convenƟonal geostaƟsƟcal modeling techniques.
These include:
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• Applying the normal score transformaƟon to each of the variables before using colocated
cosimulaƟon;

• Applying the normal score transformaƟon to each of the variables before usingMAF to decor-
related the. Independent simulaƟon is then performed with the decorrelated variables;

• Applying the stepwise condiƟonal transformaƟon (Leuangthong & Deutsch, 2003) to the data
to transform them to amulƟGaussian distribuƟon. Independent simulaƟon is then performed
with the decorrelated variables.

All factors about the mulƟvariate workflow are held constant, such as the variogram modeling
approach, simulaƟon grid, and simulaƟon engine. Figure 12 displays the mulƟvariate reproducƟon
of each convenƟonal workflow; the PPMT/MAF workflow result is also displayed for comparison.
Observe that that the PPMT workflow leads to beƩer reproducƟon of the mulƟvariate features
in terms of visual validaƟon, correlaƟon error, and root mean squared error (RMSE) of the kernel
density esƟmaƟon. As a result, the PPMT workflow would lead to superior process performance
evaluaƟon with transfer funcƟons that are dependent on the joint distribuƟon of Z1 and Z2.

Figure 12: KDE scaƩerplots of the various transformaƟon and simulaƟon workflows.

5 Geometallurgical Case Study

The PPMTworkflowwill now be demonstratedwith data from an operaƟngNi lateritemine. At least
four variables have to bemodeled for properly informing the blend planning of thismine. As already
discussed, SiO2 andMgO aremodeled because their raƟo impacts the operaƟng temperature of the
electro-arc furnace. Fe is also modeled because high values can impact the resource recovery rate,
as increasing Fe makes it difficult to seperate Ni from the slag. Finally, the Ni resource must be
modeled for predicƟng recovery. Reproducing the mulƟvariate relaƟonships of all four variables
is important because blend planning will segregate the material in stockpiles based on their joint
values.

As with almost any hierarchical modeling workflow, the first step for modeling this Ni laterite
data is to subdivide the data into staƟonary populaƟons. Figure 13 displays the spaƟal configuraƟon
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of geologic rocktypes that will be used for staƟonary subseƫng; Figure 14 displays the univariate
and mulƟvariate properƟes of the rocktypes. The described PPMT workflow will be applied to each
of these rocktypes in parallel.

Figure 13: Various perspecƟves of the data locaƟons, colored by rock type.

Note from the rocktype scaƩerplots that somemulƟvariate complexiƟywill be removed through
rocktype subseƫng. Nevertheless, Figure 15 (scaƩerplot of Rocktype 1) shows that mulƟvariate
complexity clearly remains within the rocktypes, moƟvaƟng the use of the PPMT workflow.

The first step of the workflow applies the PPMT to the data, transforming the four variables
to be mulƟGaussian and uncorrelated. Figure 16 displays the transformed data of Rocktype 1. As
the variables are now independent, it is appropriate to simulate them independently before back-
transforming to restore the original complexity.
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Figure 14: CDFs and scaƩerplots of the data, colored by rock type.

ccgalberta.com/soluƟons ©2016 Centre for ComputaƟonal GeostaƟsƟcs 10

http://www.ccgalberta.com/solutions/


Figure 15: CDFs and scaƩerplots of Rocktype 1.

AŌer recombining the simulated variables within each rocktype, Figure 17 compares scaƩer-
plots of a simulated realizaƟon with the original data (termed True). Observe that the mulƟvariate
complexiƟes are well reproduced. As a result, the simple PPMT workflow has yielded simulated
realizaƟons that will be effecƟve for blend planning and other technical decision making of this Ni
laterite mine.
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Figure 16: CDFs and scaƩerplots of the PPMT data.
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Figure 17: KDE scaƩerplots of a realizaƟon, with the true values shown for comparison.
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WhoWe Are

The CCG was launched by Professor Clayton V. Deutsch with the vision of becoming a leader in
the educaƟon of geostaƟsƟcians and the delivery of geostaƟsƟcal tools for modeling heterogeneity
and uncertainty. The main objecƟve of the CCG is to support the mutual needs of industry and
academia in research and educaƟon. The benefits to industry include the opportunity to influence
geostaƟsƟcal research and educaƟon, interacƟonwith students as potenƟal employees, early access
to publicaƟons and access to faculty members for discussions and presentaƟons. The CCG provides
a mechanism for industry to contribute to and sustain geostaƟsƟcal research and teaching, which
is of long term interest to many companies.

Contact Us

For more informaƟon regarding the demonstrated SoluƟon or to discuss another problem that your
project presents, please contact Professor Clayton V. Deutsch at: <cdeutsch@ualberta.ca>
Or drop by our offices at:

Centre for ComputaƟonal GeostaƟsƟcs
6-247 Donadeo InnovaƟon Centre For Engineering

9211-116 Street, University of Alberta
Edmonton, Alberta, Canada T6G 1H9
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