1 /ICCG=:- Solutions
. §E jul

Multivariate Modeling for Resources
and Geometallurgy

March 18, 2016
Prepared by Ryan M. Barnett

© Centre for Computational Geostatistics



Summary

e Technical decision making and process evaluation for mine projects is often dependent
on multivariate relationships that exist between geometallurgical variables. It is there-
fore important for geostatistical models to reproduce those relationships.

e Conventional geostatistical algorithms (cosimulation, min./max auto-correlation factors,
etc.) are based on the assumption that the covariance matrix fully characterizes multi-
variate relationships. Multivariate complexities that exist between geometallurgical vari-
ables cause this assumption to fail, meaning that the multivariate relationships will not
be reproduced.

e To address this problem, the CCG has developed the Projection Pursuit Multivariate
Transformation (PPMT), which transforms data of virtually any size and form to be mul-
tivariate Gaussian and uncorrelated. The transformed variables can then be indepen-
dently simulated, before the back-transform restores the original multivariate relation-
ships, including any complexity that may exist.

e Using a mining case study, the PPMT workflow is demonstrated to be simpler than con-
ventional multivariate simulation workflows, while yielding superior results that can be
expected to improve mine technical decision making and process evaluation.

1 The Setting

Evaluating the process performance of mining operations requires numerical models of many re-
lated geological variables, such as resource variables, contaminant variables, processability vari-
ables, etc. Taken together, they provide a characterization of the geologic deposit that forms the
basis for engineering design and decision making. As an example, consider a Ni laterite deposit,
which is frequently processed with an electro-arc furnace. Several auxilary variables must be mod-
eled in addition to the Niresource, including Fe, SiO2 and MgO. As the joint values of these variables
dictates plant performance, effective geostatistical models should reproduce their multivariate re-
lationships. For example consider the Si02-MgO relationship in Figure 1.

It is critical that this complex relationship is reproduced, as the Si02-MgO ratio (SMR) of the
furnace feed impacts the process heat. Exceeding a critical SMR threshold will likely damage the
furnace lining.

2 The Problem

Conventional multivariate simulation assumes that the data is multivariate Gaussian (multiGaus-
sian). A multiGaussian distribution is schematically represented in the right panel of Figure 2, where
the relationship follows elliptical density contours that are fully characterized by covariance. Unfor-
tunately, geological data is rarely multiGaussian. Instead, geological data will likely contain multi-
variate complexities, such as those shown in the remaning panels. Note that all of the complexities
that are schematically illustrated are present in the Si02-MgO relationship.

Common transformations such as the normal score transform (Verly, 1983), principal compo-
nent analysis (PCA) (Davis & Greenes, 1983), and min./max auto-correlation factors (MAF) (Des-
barats & Dimitrakopoulos, 2000) do not remove these multivariate complexities. As a result, con-
ventional multivariate simulation algorithms will not generate realizations that match the data distri-
bution. Consider the normal score transform of SiO2 and MgQO in Figure 3, which yields variables that
are univariate Gaussian, but not multiGaussian. Using cosimulation generates multiGaussian realiza-
tions (blue) that match the correlation of the data, but not the distribution. After back-tranforming
(bottom right panel), the original data distribution is not reproduced.
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Figure 1: Cross-plot of SiO2 and Mgo.
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Figure 2: Schematic illustrations of multivariate complexities and a multiGaussian distribution.

3 The Solution

To address the described problem issue, a variety of techniques have beed developed by the CCG
for transforming variables to be multiGaussian (Barnett et al., 2014; Leuangthong & Deutsch, 2003).
Conventional Gaussian simulation algorithms may then be used with data that matches their as-
sumptions, before using the associated back-transformations to return the original complexity to
simulated realizations. Many of these transformations will also decorrelate the variables so that
modeling is simplified to independent simulation. Associated back-transformations are then used
to return the original correlation to simulated realizations. This workflow is illustrated using the Ni
laterite variables in Figure 4.

Observe that the complex data is transformed to be bivariate Gaussian and uncorrelated (top
right). As a result, independently simulation yields realizations that match the distribution of the
transformed data (bottom right). Back-transformation of the realizations reintroduces the original
complexity and correlation (bottom left). Since the Si0O2-MgQ is critical to reproduce, results of the
above workflow would lead to improved operational planning (relative to the conventional covari-
ance based workflow). As will be demonstrated, this result is achieved using a workflow that is also
easier to implement than the conventional workflow.
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Figure 3: Cosimulation results with complex multivariate data.
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Figure 4: Multivariate transformation results with complex multivariate data.
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Projection Pursuit Multivariate Transform

The Projection Pursuit Multivariate Transform (PPMT) (Barnett et al., 2014; Friedman & Tukey, 1974)
was recently developed for transforming data of virtually any size and form to be uncorrelated and
multiGaussian. Details of the PPMT will now be summarized. It should be emphasized that although
the PPMT involves several steps, they are all accomplished within a single program.

Consider thedataasamatrixZ : z.;,a = 1,...,n,i = 1, ..., K. The univariate and multivariate

properties of the Z; and Z, variables that are used for demonstration appear in Figure 5; the spatial
properties appear in Figure 6. Note the complex multivariate features of the data and differing
spatial continuity of each variable; it will be important to reproduce these features in geostatistical

modeling.
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Figure 5: CDFs and KDE scatterplot of the variables.
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Figure 6: Semivariograms and cross-semivariogram of the variables.

Pre-processing

The first step of the PPMT applies the normal score transform to all of the variables according to:

yOéi = G71 (Fz(Zoﬂ)), fora = 1, ...,n7i = 17 ..

K

e

This transforms the variables to univariate standard Gaussian, providing properties that will ben-
efits subsequent steps. The 2-D data are normal scored in Figure 7, as is evident from their univariate

statistics.

The second step of the PPMT applies data sphereing (Fukunaga, 1972) to all of the variables

according to:
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Figure 7: CDFs and KDE scatterplot of the normal score transformed variables.

X =(Y - E{Y})S™'/? s 1/2 = vD V2T

This transforms the variables to be uncorrelated with unit variance, which is required for ap-
plying the next step of the PPMT. The 2-D data are sphered in Figure 8, as is evident from their
correlation of zero and variance of one.
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Figure 8: CDFs and KDE scatterplot of the sphere variables.

Projection Pursuit

Consider a Kx1 unit length vector, 8, and the associated projection of the data upon it, p = X86.
Any 0 should yield a p that is univariate Gaussian if X is multiGaussian. With this in mind, define
the projection index, I(8), as a test statistic that measures univariate non-Gaussianity. For any 6
where the associated p is perfectly Gaussian, I(8) is zero.

The PPMT performs an optimized search to find the 8 that maximizes I(0). Once found, the
multivariate data, X, is transformed so that its associated projection, p = X8, is made standard
normal Gaussian. This search and normalize procedure is repeated until X is made multiGaussian.
This process is referred to as projection pursuit, and is demonstrated in Figure 9.

Following the 25th projection pursuit iteration, the data are transformed to be uncorrelated and
multiGaussian. According to Gaussian model definition, this also renders the dataindependent. The
variables can therefore be simulated independently, before inverting the described transforms to
return the Gaussian realizations to original space.
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Figure 9: Progression of the data through the projection pursuit algorithm.
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Simulation Results

Multivariate reproduction of the back-transformed realizations is evaluated in Figure 10; spatial
reproduction is evaluated in Figure 11. Observe that the multivariate complexities are reproduced,
as well as the spatial variability. The one potential concern with the PPMT workflow results is the
cross-variogram reproduction, which relates to the fact that data are made independentat h = 0
lag (zero lag), but not necesarrily at h > 0 lag distances (spatial lags). To address this, the PPMT
program has the option of performing a subsequent MAF rotation, which generally removes any
remaining spatial cross-correlation. Note that the PPMT/MAF results have better reproduction of
the semi-variograms and (in particular) the cross-variogram when using a subsequent MAF rotation.
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Figure 10: KDE scatterplot for a simulated realization following the PPMT workflow.
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Figure 11: Semivariograms and cross-variograms with and without the use of a chained MAF trans-
formation.

To provide a relative comparison of the PPMT results in terms of multivariate reproduction, sev-
eral other workflows were executed using more conventional geostatistical modeling techniques.
These include:
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e Applying the normal score transformation to each of the variables before using colocated
cosimulation;

¢ Applying the normal score transformation to each of the variables before using MAF to decor-
related the. Independent simulation is then performed with the decorrelated variables;

¢ Applying the stepwise conditional transformation (Leuangthong & Deutsch, 2003) to the data
to transform them to a multiGaussian distribution. Independent simulation is then performed
with the decorrelated variables.

All factors about the multivariate workflow are held constant, such as the variogram modeling
approach, simulation grid, and simulation engine. Figure 12 displays the multivariate reproduction
of each conventional workflow; the PPMT/MAF workflow result is also displayed for comparison.
Observe that that the PPMT workflow leads to better reproduction of the multivariate features
in terms of visual validation, correlation error, and root mean squared error (RMSE) of the kernel
density estimation. As a result, the PPMT workflow would lead to superior process performance
evaluation with transfer functions that are dependent on the joint distribution of Z; and Z5.
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Figure 12: KDE scatterplots of the various transformation and simulation workflows.

5 Geometallurgical Case Study

The PPMT workflow will now be demonstrated with data from an operating Ni laterite mine. At least
four variables have to be modeled for properly informing the blend planning of this mine. As already
discussed, Si02 and MgO are modeled because their ratio impacts the operating temperature of the
electro-arc furnace. Fe is also modeled because high values can impact the resource recovery rate,
as increasing Fe makes it difficult to seperate Ni from the slag. Finally, the Ni resource must be
modeled for predicting recovery. Reproducing the multivariate relationships of all four variables
is important because blend planning will segregate the material in stockpiles based on their joint
values.

As with almost any hierarchical modeling workflow, the first step for modeling this Ni laterite
datais to subdivide the data into stationary populations. Figure 13 displays the spatial configuration
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of geologic rocktypes that will be used for stationary subsetting; Figure 14 displays the univariate
and multivariate properties of the rocktypes. The described PPMT workflow will be applied to each
of these rocktypes in parallel.
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Figure 13: Various perspectives of the data locations, colored by rock type.

Note from the rocktype scatterplots that some multivariate complexitiy will be removed through
rocktype subsetting. Nevertheless, Figure 15 (scatterplot of Rocktype 1) shows that multivariate
complexity clearly remains within the rocktypes, motivating the use of the PPMT workflow.

The first step of the workflow applies the PPMT to the data, transforming the four variables
to be multiGaussian and uncorrelated. Figure 16 displays the transformed data of Rocktype 1. As
the variables are now independent, it is appropriate to simulate them independently before back-
transforming to restore the original complexity.
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Figure 14: CDFs and scatterplots of the data, colored by rock type.
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Figure 15: CDFs and scatterplots of Rocktype 1.

After recombining the simulated variables within each rocktype, Figure 17 compares scatter-
plots of a simulated realization with the original data (termed True). Observe that the multivariate
complexities are well reproduced. As a result, the simple PPMT workflow has yielded simulated
realizations that will be effective for blend planning and other technical decision making of this Ni

laterite mine.
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Figure 17: KDE scatterplots of a realization, with the true values shown for comparison.
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Who We Are

The CCG was launched by Professor Clayton V. Deutsch with the vision of becoming a leader in
the education of geostatisticians and the delivery of geostatistical tools for modeling heterogeneity
and uncertainty. The main objective of the CCG is to support the mutual needs of industry and
academia in research and education. The benefits to industry include the opportunity to influence
geostatistical research and education, interaction with students as potential employees, early access
to publications and access to faculty members for discussions and presentations. The CCG provides
a mechanism for industry to contribute to and sustain geostatistical research and teaching, which
is of long term interest to many companies.

Contact Us

For more information regarding the demonstrated Solution or to discuss another problem that your
project presents, please contact Professor Clayton V. Deutsch at: <cdeutsch@ualberta.ca>
Or drop by our offices at:

Centre for Computational Geostatistics
6-247 Donadeo Innovation Centre For Engineering

9211-116 Street, University of Alberta
Edmonton, Alberta, Canada T6G 1H9
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