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Summary

• A workflow that is frequently applied to reservoir modeling uses cosimulaƟon to simu-
late select reservoir variables, before using the cloud transformaƟon to simulate addi-
Ɵonal variables. Issues with this convenƟonal workflow lead to poor reproducƟon of the
mulƟvariate properƟes that exist between reservoir variables. In turn, this reduces the
accuracy of reservoir performance predicƟon.

• These issuesmoƟvate theuse of a ProjecƟonPursuitMulƟvariate TransformaƟon (PPMT)
workflow, where reservoir properƟes are decorrelated while simultaneously removing
mulƟvariate complexiƟes. Independent Gaussian simulaƟon may then proceed, before
the mulƟvariate back-transformaƟon restores the original distribuƟons and potenƟally
complex mulƟvariate relaƟonships.

• This provides a simpler workflow than the convenƟonal reservoir modeling workflow.
More importantly, it improves the reproducƟon of mulƟvariate relaƟonships that are
oŌen criƟcal to reservoir performance predicƟon.

• Data from an oil sands SAGD project is used for comparing the convenƟonal and PPMT
workflows. The simpler PPMT workflow is demonstrated to substanƟally improve the
reproducƟon of mulƟvariate properƟes and hence, reservoir performance predicƟon.

1 The Seƫng

Subsurface modeling is essenƟal to reservoir evaluaƟon and management. It usually follows a hi-
erarchical framework that begins with modeling of surfaces that separate major geologic zones.
Modeling of facies then proceeds within each zone before modeling conƟnuous variables within
each facies. GeostaƟsƟcal tools are commonly employed for modeling variables that may include
porosity (ϕ), water saturaƟon (Sw), oil saturaƟon, (So), permeability (K), shale volume (Vsh), and
others that are required for reservoir performance predicƟon. GeostaƟsƟcal methods generate re-
alizaƟons of the reservoir, where the set of realizaƟon targets the reproducƟon of representaƟve
staƟsƟcs such as the distribuƟon and variogram of each variable, as well as themulƟvariate relaƟon-
ships between the variables (Chiles & Delfiner, 2012). The set of realizaƟons quanƟfy the reservoir
uncertainty that exists due to incomplete data, geologic heterogeneity, and parameter uncertainty.
Transfer funcƟons such as flow simulaƟon or proxy models may then be applied to the realizaƟons
to transfer geological uncertainty to reservoir performance uncertainty. This uncertainty may then
be integrated in decision making to miƟgate and manage risk.

The convenƟonal workflow for generaƟng realizaƟons of conƟnuous reservoir variables uses
cosimulaƟon for select reservoir variables, before using the cloud transformaƟon to simulate ad-
diƟonal variables (Dull, 2004; Ma & Gomez, 2011; Moore, 2011; Pyrcz & Deutsch, 2014). More
formally, let the well data available for reservoir modeling be denoted by the matrix Z : zα, i, α =
1, , n, i = 1, ,M , where n is the number of observaƟons andM is the number of variables. Steps
in the convenƟonal workflow are as follows:

1. Normal score m variables (m < M ) to transform them to Gaussian distribuƟons using the
well established quanƟle transform (Bliss, 1934; Verly, 1983), Yi = G−1 (Fi(Zi)), whereFi is
the cumulaƟve distribuƟon funcƟon (CDF) of the Zi variable andG is the standard Gaussian
CDF. In the case study to follow, them = 3 variables are ϕ, Sw and Vsh;

2. Perform condiƟonal Gaussian cosimulaƟon of the Y1, ..., Ym Gaussian variables, where their
covariance matrix, Σ(h) : Ci,j(h), i, j = 1, ,m is assumed to characterize the mulƟvari-
ate distribuƟon according to coregionalizaƟon models such as the Markov model (colocated
cokriging)(Almeida & Journel, 1994);

3. Normal score back-transform the Gaussian realizaƟons of them variables according to Zi =
F−1
i (G (Yi)).
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4. SequenƟally simulate the o variables (o = Mm) using the cloud transform (Bashore et al.,
1994). In the case study to follow, the o = 2 variables are Kh and Kv. This step decomposes
into the following sub-steps:

i. Construct a condiƟonal bivariate CDF of the variable to be simulated Zi (e.g., K), condi-
Ɵonal to another variable Zj (e.g., ϕ), yielding F (Zi|Zj);

ii. Generate probability field (p-field) (Froidevaux, 1992) realizaƟons. No condiƟoning or
coregionalizaƟon is used for the simulaƟon, as only the regionalizaƟon model of Zi (fit-
ted model of γi,i(h)) is required. The output is realizaƟons of probability values at the
N grid locaƟons p(uα), α = 1, ..., N ;

iii. GivenF (Zi|Zj) from Step (i), the simulated or known condiƟoning value zj(uα) is used
to determine the univariate condiƟonal CDF F (Zi|zj(uα)). The associated probability
value from Step (ii) p(uα) is then used to draw a value zi(uα) from F (Zi|zj(uα)). Re-
peaƟng this process over the grid, a realizaƟon zi(uα), α = 1, ..., N is simulated by
using zj(uα), α = 1, ..., N and p(uα), α = 1, ..., N to sample from F (Zi|Zj).

2 The Problem

Although this workflow (referred to here as ConvenƟonal) effecƟvely reproduces univariate proper-
Ɵes of the variables, it oŌen fails to reproduce mulƟvariate properƟes that exist between them.
CosimulaƟon assumes the variables follow a mulƟvariate Gaussian (mulƟGaussian) distribuƟon,
which is oŌen not the case due to the mulƟvariate complexiƟes that exist in geological data (see
Figure 1).

Figure 1: SchemaƟc illustraƟons of mulƟvariate complexiƟes and a mulƟGaussian distribuƟon.

When these complexiƟes exist,Σ(h) will not characterize the mulƟvariate distribuƟons of the
normal score transformed variables, meaning that realizaƟons will not reproduce the mulƟvariate
distribuƟons of the reservoir variables following cosimulaƟon and back-transformaƟon.

Although the cloud transform can reproduce complex features, it only targets the bivariate rela-
Ɵonship that exists between the condiƟoning variable, Zi, and simulated variable, Zj , according to
the modeled CDF, F (Zi|Zj). The assumpƟon is made that the full joint distribuƟon, F (Z1,...,M ),
will be reproduced indirectly, which is oŌen not the case. These two issues cumulaƟvely repre-
sent a significant problem since it is criƟcal for geostaƟsƟcal models to reproduce the mulƟvariate
distribuƟons of reservoir variables.

3 The SoluƟon

An alternaƟve to the convenƟonal workflow for modeling conƟnuous reservoir variables will trans-
form the data variables to an uncorrelated mulƟGaussian distribuƟon where the transformed vari-
ables are independent. This facilitates independent simulaƟon of the transformed variables. The
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associatedmulƟGaussian back-transformaƟon returns the original units, distribuƟon, andmulƟvari-
ate relaƟonships to the simulated realizaƟons.

To perform this mulƟGaussian transformaƟon, the CCG has recently developed the ProjecƟon
Pursuit MulƟvariate TransformaƟon (PPMT) for geostaƟsƟcal modeling (BarneƩ et al., 2014). The
PPMT is based on modified components of projecƟon pursuit density esƟmaƟon (Friedman, 1987;
Hwang et al., 1994), which transforms data of virtually anymulƟvariate form,M variables, andn ob-
servaƟons to an uncorrelated mulƟGaussian distribuƟon,X. Consider that projecƟng a mulƟGaus-
sian distribuƟon onto any arbitrary vector, θ, will yield a univariate Gaussian distribuƟon, p = Xθ.
The premise of projecƟon pursuit is to find the vector, θ, that yields the most non-Gaussian pro-
jecƟon, p. The mulƟvariate data is then transformed to make its projecƟon Gaussian. This search
and Gaussianize procedure is iterated unƟl the least Gaussian projecƟon approaches the univariate
Gaussianmodel. Although the PPMT involves several steps and iteraƟons, they are all accomplished
within a single program is very straight forward to execute.

4 Case Study

The described ConvenƟonal and PPMT workflows are demonstrated using data from a heavy oil
reservoir that is produced using steam assisted gravity drainage (SAGD). The workflows are evalu-
ated based on their reproducƟon of properƟes that are representaƟve of the reservoir and criƟcal
to SAGD performance predicƟon.

Data Background and Inventory

The bituminous (extra-heavy) oil of the Athabasca oil sands has a high viscosity that does not permit
it to flow under normal reservoir condiƟons. To counter this viscosity, SAGD uses a horizontal well
to inject steam into the reservoir, which forms a steam chamber that heats the bitumen (Denbina,
1998; Edmunds & Sugget, 1994). Figure 2 presents a schemaƟc illustraƟon of the SAGD process.

Figure 2: SchemaƟc of the SAGD process ((Hadavand & Deutsch, 2015)).

Within the steam chamber, the heated bitumen has its viscosity lowered to the point where
gravity causes it to flow down to the horizontal producer well (which lies below the horizontal in-
jector well). GeostaƟsƟcal modeling of a SAGD reservoir should include several variables. As with
convenƟonal petroleum reservoirs, modeled ϕ, K and Sw are required for determining the resource
and forecasƟng reservoir producƟon. Beyond those applicaƟons, Sw is also essenƟal for idenƟfying
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thief zones that increase steam requirements. Both horizontal (Kh) and verƟcal permeability (Kv)
are also modeled, as Kv is the dominant property in determining whether steam can flow verƟcally
up to heat oil above the injector well, and in turn, whether heated oil can flow verƟcally down to
the producer well.

The public data for this case study is from an acƟve SAGD operaƟon. It consists of 4,998 ob-
servaƟons that sample ϕ, Vsh, Sw, Kh, and Kv. The observaƟons have been sampled using verƟcal
wells that are drilled from surface to the basement of the reservoir formaƟon. Figure 3 presents
the relaƟve spaƟal configuraƟon of the observaƟons.

Figure 3: RelaƟve locaƟons of well observaƟons that are colored by ϕ (20:1 verƟcal exaggeraƟon).

As described, this study is concerned with themodeling of conƟnuous properƟes, which follows
the hierarchical modeling of major geologic domains or strata, and facies or lithofacies. To simplify
the evaluaƟon of results, the presented data is drawn from a straƟgraphically flaƩened subset of a
larger dataset. It is almost enƟrely composed of inclined heterolithic straƟficaƟon (IHS), which is a
verƟcal succession of sand andmuddrapes that are deposited by fluvioestuarine point bars (Thomas
et al., 1998). The assumpƟon ismade that all of the samples lie within a staƟonary domain that does
not require further facies subdivision.

Bivariate properƟes are displayed in Figure ?? using scaƩerplots and the correlaƟon coefficient,
ρ. The scaƩerplots are colored according to the bivariate Gaussian kernel density esƟmate (KDE)
that is calculated at each observaƟon. This is referred to as KDE scaƩerplots, which may aid in
observing the bivariate density of the data, and later, in judging whether simulated realizaƟons
reproduce those densiƟes. All of the mulƟvariate complexiƟes that were previously schemaƟcally
represented are present in the oil sands scaƩerplots, including non-linearity, heteroscedasƟcity and
constraints. Consequently, this mulƟvariate distribuƟon is not expected to be reproduced by geo-
staƟsƟcal workflows that fail to remove these complexiƟes prior to the applicaƟon of Gaussian sim-
ulaƟon algorithms.

PPMT Workflow Results

The applied PPMT workflow is summarized as:

1. Apply the PPMT to transform the five variables to be uncorrelated and mulƟGaussian;
2. Independently simulate the five variables;
3. Apply the PPMT back-transform to return the simulated realizaƟons to original space.

Figure 5 presents KDE scaƩerplots of the PPMT data (following Step 1), where zero correlaƟon
and typical mulƟGaussian density contours are observed.
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Figure 4: KDE scaƩerplots and correlaƟon of the original data.

SequenƟal Gaussian simulaƟon (SGSIM) (Deutsch & Journel, 1998) is used for generaƟng 100
realizaƟons of the reservoir in Step 2. The simulaƟon grid is composed of 135 x 125 x 40 grid
nodes in the x, y and z direcƟons respecƟvely. Each node is separated by 100 metres in the hor-
izontal direcƟon and 1 metre in the verƟcal direcƟon. Following simulaƟon, the realizaƟons are
back-transformed in Step 3 to original units. Slices of one back-transformed realizaƟon appear in
Figure 6, where they are colored by select variables for visual reference.

ReproducƟon of bivariate properƟes is inspected in Figure 7 where KDE scaƩerplots of the data
are compared with that of a realizaƟon. Excellent reproducƟon is seen based on visual comparison
of the densiƟes and the correlaƟon staƟsƟc. The displayed root mean squared error (RMSE) in each
bivariate plot is calculated as the square root of the average difference between the data KDE and
realizaƟon KDE. This KDE RMSE quanƟfies the reproducƟon of each bivariate density, which is used
to compare the PPMT and ConvenƟonal workflow in the next secƟon.
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Figure 5: KDE scaƩerplots and correlaƟon of the PPMT variables.

ConvenƟonal Workflow

The ConvenƟonal workflow is used to provide a relaƟve benchmark for the PPMT workflow results.
Aside from described differences of the two workflows, other modeling parameters are held con-
stant to allow for a fair comparison. This includes the use of the same variogrammodeling approach,
grid definiƟon and number of realizaƟons. The ConvenƟonal workflow is summarized as:

1. Normal score transform ϕ, Sw and Vsh;
2. Perform condiƟonal colocated cosimulaƟon of ϕ, Sw and Vsh;
3. Return the ϕ, Sw and Vsh realizaƟons to their original units using the normal score back-

transformaƟon;
4. Generate p-fields of Kh and Kv using independent and uncondiƟonal simulaƟon;
5. Model the condiƟonal bivariate CDFs F(Kh | ϕ) and F(Kv | Kh) using the discreƟzed approach;
6. Perform the cloud transformaƟon to generate realizaƟons of Kh. The Kh p-fields from Step 4

are used to sample the F(Kh | ϕ) CDF from Step 5 condiƟonal to the simulated ϕ from Step 3;
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Figure 6: Slices of select variables for a realizaƟon that is generated by the PPMT workflow (20:1
verƟcal exaggeraƟon).

7. Perform the cloud transformaƟon to generate realizaƟons of Kv. The Kv p-fields from Step 4
are used to sample the F(Kv | Kh) CDF from Step 5 condiƟonal to the simulated Kh from Step
6.

Note that the ConvenƟonal workflow requires more steps than the PPMT workflow from the
previous secƟon. Even if the two workflows yielded similar results, the PPMT workflow would lend
value to thismodeling scenario since it requires fewer steps and associated effort. Observe from the
original data scaƩerplots that the variables chosen for cosimulaƟon, ϕ, Sw, and Vsh have relaƟvely
non-complex mulƟvariate relaƟonships between each other according to their KDE scaƩerplots.

Although these scaƩerplots do not follow ideal mulƟGaussian model contours, they are far less
complex than the non-linear relaƟonships that are observed in scaƩerplots that include Kh and Kv.
This is the primary moƟvaƟon for using sequenƟal cloud transformaƟons for the simulaƟon of Kh
and Kv. Despite the relaƟve mulƟGaussian nature of the cosimulaƟon variables, however, Figure 8
illustrates that any deviaƟons from themulƟGaussianmodel in original spacewill generallymanifest
themselves in normal score space. In this figure, KDE scaƩerplots of the normal score variables
(output from Step 1) are compared to that of the simulated Gaussian realizaƟons (output from Step
2). Observe that mulƟvariate complexity remains between the normal score transform data that
is not captured by the displayed correlaƟon staƟsƟc. The colocated cosimulaƟon only considers
the correlaƟon, leading to the displayed scaƩerplots that follow the typical mulƟGaussian contours.
This creates obvious discrepancies between the density of the data and that of the realizaƟons in
Gaussian units, which will lead to similar issues in original space.

Skipping ahead to Step (5), the condiƟonal CDFs F(Kh | ϕ) and F(Kv | Kh) that are input to cloud
simulaƟon are displayed in Figure 9. The large number of data permits the generaƟon of smooth
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Figure 7: KDE scaƩerplots and correlaƟon of one PPMT workflow realizaƟon (lower triangle), which
are compared to that of the original data (upper triangle). The KDE coloring of the realizaƟon plots
are scaled according to the presented color scale in the associated data plot.
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Figure 8: KDE scaƩerplots and correlaƟon of one cosimulaƟon realizaƟon (upper triangle), which
are compared to that of the original data (lower triangle). The KDE coloring of the data plots are
scaled according to the presented color scale in the associated realizaƟon plot.

and well informed condiƟonal CDFs, which should allow for an effecƟve applicaƟon of the cloud
transformaƟon.

KDE scaƩerplots of the realizaƟons (following compleƟon of the ConvenƟonal workflow) are
compared with that of the data in Figure 10. Based on visual inspecƟon, KDE RMSE, and correlaƟon
error, it is readily apparent that the ConvenƟonal workflow has yielded inferior results, relaƟve
to the PPMT workflow. Observe that obvious discrepancies exist between the bivariate densiƟes
of the data and the equivalent densiƟes of the ConvenƟonal workflow realizaƟon, whereas the
PPMT realizaƟon KDE scaƩerplots are barely disƟnguishable from that of the data. The simple PPMT
workflow implicitly targets the reproducƟon of the full mulƟvariate relaƟonship. By comparison,
the ConvenƟonal workflow uses many sequenƟal steps to target the covariance between select
variables (ϕ, Vsh and Sw), and the complex relaƟonships between select bivariate pairs (Kh-ϕ and
Kv-Kh). As a result, the PPMT approach is demonstrated to generate realizaƟons of the reservoir
that more effecƟvely reproduce mulƟvariate properƟes that are important to SAGD performance
predicƟon.
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Figure 9: ScaƩer plot between Kh and ϕ (top leŌ), with the associated condiƟonal CDF F(Kh | ϕ) that
is used for simulaƟng Kh (boƩom leŌ). Similarly, scaƩer plot between Kv and Kh (top right), with
the associated condiƟonal CDF F(Kv | Kh) that is used for simulaƟng Kv (boƩom right).
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Figure 10: KDE scaƩerplots and correlaƟon of one ConvenƟonal workflow realizaƟon (lower tri-
angle), which are compared to that of the original data (upper triangle). The KDE coloring of the
realizaƟon plots are scaled according to the presented color scale in the associated data plot.
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WhoWe Are

The CCG was launched by Professor Clayton V. Deutsch with the vision of becoming a leader in
the educaƟon of geostaƟsƟcians and the delivery of geostaƟsƟcal tools for modeling heterogeneity
and uncertainty. The main objecƟve of the CCG is to support the mutual needs of industry and
academia in research and educaƟon. The benefits to industry include the opportunity to influence
geostaƟsƟcal research and educaƟon, interacƟonwith students as potenƟal employees, early access
to publicaƟons and access to faculty members for discussions and presentaƟons. The CCG provides
a mechanism for industry to contribute to and sustain geostaƟsƟcal research and teaching, which
is of long term interest to many companies.
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Contact Us

For more informaƟon regarding the demonstrated SoluƟon or to discuss another problem that your
project presents, please contact Professor Clayton V. Deutsch at: <cdeutsch@ualberta.ca>
Or drop by our offices at:

Centre for ComputaƟonal GeostaƟsƟcs
6-247 Donadeo InnovaƟon Centre For Engineering

9211-116 Street, University of Alberta
Edmonton, Alberta, Canada T6G 1H9
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