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Summary

* A workflow that is frequently applied to reservoir modeling uses cosimulation to simu-
late select reservoir variables, before using the cloud transformation to simulate addi-
tional variables. Issues with this conventional workflow lead to poor reproduction of the
multivariate properties that exist between reservoir variables. In turn, this reduces the
accuracy of reservoir performance prediction.

e These issues motivate the use of a Projection Pursuit Multivariate Transformation (PPMT)
workflow, where reservoir properties are decorrelated while simultaneously removing
multivariate complexities. Independent Gaussian simulation may then proceed, before
the multivariate back-transformation restores the original distributions and potentially
complex multivariate relationships.

e This provides a simpler workflow than the conventional reservoir modeling workflow.
More importantly, it improves the reproduction of multivariate relationships that are
often critical to reservoir performance prediction.

e Data from an oil sands SAGD project is used for comparing the conventional and PPMT
workflows. The simpler PPMT workflow is demonstrated to substantially improve the
reproduction of multivariate properties and hence, reservoir performance prediction.

1 The Setting

Subsurface modeling is essential to reservoir evaluation and management. It usually follows a hi-
erarchical framework that begins with modeling of surfaces that separate major geologic zones.
Modeling of facies then proceeds within each zone before modeling continuous variables within
each facies. Geostatistical tools are commonly employed for modeling variables that may include
porosity (¢), water saturation (Sw), oil saturation, (So), permeability (K), shale volume (Vsh), and
others that are required for reservoir performance prediction. Geostatistical methods generate re-
alizations of the reservoir, where the set of realization targets the reproduction of representative
statistics such as the distribution and variogram of each variable, as well as the multivariate relation-
ships between the variables (Chiles & Delfiner, 2012). The set of realizations quantify the reservoir
uncertainty that exists due to incomplete data, geologic heterogeneity, and parameter uncertainty.
Transfer functions such as flow simulation or proxy models may then be applied to the realizations
to transfer geological uncertainty to reservoir performance uncertainty. This uncertainty may then
be integrated in decision making to mitigate and manage risk.

The conventional workflow for generating realizations of continuous reservoir variables uses
cosimulation for select reservoir variables, before using the cloud transformation to simulate ad-
ditional variables (Dull, 2004; Ma & Gomez, 2011; Moore, 2011; Pyrcz & Deutsch, 2014). More
formally, let the well data available for reservoir modeling be denoted by the matrix Z : z,,i,a =
1,,n,1=1,, M, where n is the number of observations and M is the number of variables. Steps
in the conventional workflow are as follows:

1. Normal score m variables (m < M) to transform them to Gaussian distributions using the
well established quantile transform (Bliss, 1934; Verly, 1983), Y; = G~ (F;(Z;)), where F; is
the cumulative distribution function (CDF) of the Z; variable and G is the standard Gaussian
CDF. In the case study to follow, the m = 3 variables are ¢, Sw and Vsh;

2. Perform conditional Gaussian cosimulation of the Y7, ..., Y,,, Gaussian variables, where their
covariance matrix, 3(h) : C; ;(h),4,j = 1,,m is assumed to characterize the multivari-
ate distribution according to coregionalization models such as the Markov model (colocated
cokriging)(Almeida & Journel, 1994);

3. Normal score back-transform the Gaussian realizations of the m variables according to Z; =

FH(G ()

K2
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4. Sequentially simulate the o variables (0 = Mm) using the cloud transform (Bashore et al.,
1994). In the case study to follow, the o = 2 variables are Kh and Kv. This step decomposes
into the following sub-steps:

i. Construct a conditional bivariate CDF of the variable to be simulated Z; (e.g., K), condi-
tional to another variable Z; (e.g., ¢), yielding F'(Z;|Z;);

ii. Generate probability field (p-field) (Froidevaux, 1992) realizations. No conditioning or
coregionalization is used for the simulation, as only the regionalization model of Z; (fit-
ted model of ; ;(h)) is required. The output is realizations of probability values at the
N grid locations p(u,),a =1, ..., N;

iii. Given F(Z;|Z;) from Step (i), the simulated or known conditioning value z;(u,,) is used
to determine the univariate conditional CDF F'(Z;|z;(u.)). The associated probability
value from Step (i) p(u, ) is then used to draw a value z;(u,) from F(Z;|z;(u,)). Re-
peating this process over the grid, a realization z;(u,),« = 1,..., N is simulated by
using zj(uy), = 1,..., N and p(u,), @ = 1, ..., N to sample from F'(Z;|Z;).

2 The Problem

Although this workflow (referred to here as Conventional) effectively reproduces univariate proper-
ties of the variables, it often fails to reproduce multivariate properties that exist between them.
Cosimulation assumes the variables follow a multivariate Gaussian (multiGaussian) distribution,
which is often not the case due to the multivariate complexities that exist in geological data (see
Figure 1).

Heteroscedastic A Non-linear A Constraint 4 MultiGaussian

Figure 1: Schematic illustrations of multivariate complexities and a multiGaussian distribution.

When these complexities exist, 3(h) will not characterize the multivariate distributions of the
normal score transformed variables, meaning that realizations will not reproduce the multivariate
distributions of the reservoir variables following cosimulation and back-transformation.

Although the cloud transform can reproduce complex features, it only targets the bivariate rela-
tionship that exists between the conditioning variable, Z;, and simulated variable, Z;, according to
the modeled CDF, F'(Z;|Z;). The assumption is made that the full joint distribution, F'(Z1,.. ),
will be reproduced indirectly, which is often not the case. These two issues cumulatively repre-
sent a significant problem since it is critical for geostatistical models to reproduce the multivariate
distributions of reservoir variables.

3 The Solution
An alternative to the conventional workflow for modeling continuous reservoir variables will trans-

form the data variables to an uncorrelated multiGaussian distribution where the transformed vari-
ables are independent. This facilitates independent simulation of the transformed variables. The
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associated multiGaussian back-transformation returns the original units, distribution, and multivari-
ate relationships to the simulated realizations.

To perform this multiGaussian transformation, the CCG has recently developed the Projection
Pursuit Multivariate Transformation (PPMT) for geostatistical modeling (Barnett et al., 2014). The
PPMT is based on modified components of projection pursuit density estimation (Friedman, 1987;
Hwang et al., 1994), which transforms data of virtually any multivariate form, M variables, and n ob-
servations to an uncorrelated multiGaussian distribution, X. Consider that projecting a multiGaus-
sian distribution onto any arbitrary vector, 8, will yield a univariate Gaussian distribution, p = X86.
The premise of projection pursuit is to find the vector, 8, that yields the most non-Gaussian pro-
jection, p. The multivariate data is then transformed to make its projection Gaussian. This search
and Gaussianize procedure is iterated until the least Gaussian projection approaches the univariate
Gaussian model. Although the PPMT involves several steps and iterations, they are all accomplished
within a single program is very straight forward to execute.

4 Case Study

The described Conventional and PPMT workflows are demonstrated using data from a heavy oil
reservoir that is produced using steam assisted gravity drainage (SAGD). The workflows are evalu-
ated based on their reproduction of properties that are representative of the reservoir and critical
to SAGD performance prediction.

Data Background and Inventory

The bituminous (extra-heavy) oil of the Athabasca oil sands has a high viscosity that does not permit
it to flow under normal reservoir conditions. To counter this viscosity, SAGD uses a horizontal well
to inject steam into the reservoir, which forms a steam chamber that heats the bitumen (Denbina,
1998; Edmunds & Sugget, 1994). Figure 2 presents a schematic illustration of the SAGD process.

Injector Well

Production Well

Qil flow 1o
producer well

‘ Injector well

. Producer well

Steam

Oil Sand

Limestone

Figure 2: Schematic of the SAGD process ((Hadavand & Deutsch, 2015)).

Within the steam chamber, the heated bitumen has its viscosity lowered to the point where
gravity causes it to flow down to the horizontal producer well (which lies below the horizontal in-
jector well). Geostatistical modeling of a SAGD reservoir should include several variables. As with
conventional petroleum reservoirs, modeled ¢, K and Sw are required for determining the resource
and forecasting reservoir production. Beyond those applications, Sw is also essential for identifying
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thief zones that increase steam requirements. Both horizontal (Kh) and vertical permeability (Kv)
are also modeled, as Kv is the dominant property in determining whether steam can flow vertically
up to heat oil above the injector well, and in turn, whether heated oil can flow vertically down to
the producer well.

The public data for this case study is from an active SAGD operation. It consists of 4,998 ob-
servations that sample ¢, Vsh, Sw, Kh, and Kv. The observations have been sampled using vertical
wells that are drilled from surface to the basement of the reservoir formation. Figure 3 presents
the relative spatial configuration of the observations.

0.36
0.33
0.30
0.27

Figure 3: Relative locations of well observations that are colored by ¢ (20:1 vertical exaggeration).

As described, this study is concerned with the modeling of continuous properties, which follows
the hierarchical modeling of major geologic domains or strata, and facies or lithofacies. To simplify
the evaluation of results, the presented data is drawn from a stratigraphically flattened subset of a
larger dataset. It is almost entirely composed of inclined heterolithic stratification (IHS), which is a
vertical succession of sand and mud drapes that are deposited by fluvioestuarine point bars (Thomas
etal., 1998). The assumption is made that all of the samples lie within a stationary domain that does
not require further facies subdivision.

Bivariate properties are displayed in Figure ?? using scatterplots and the correlation coefficient,
p. The scatterplots are colored according to the bivariate Gaussian kernel density estimate (KDE)
that is calculated at each observation. This is referred to as KDE scatterplots, which may aid in
observing the bivariate density of the data, and later, in judging whether simulated realizations
reproduce those densities. All of the multivariate complexities that were previously schematically
represented are present in the oil sands scatterplots, including non-linearity, heteroscedasticity and
constraints. Consequently, this multivariate distribution is not expected to be reproduced by geo-
statistical workflows that fail to remove these complexities prior to the application of Gaussian sim-
ulation algorithms.

PPMT Workflow Results

The applied PPMT workflow is summarized as:

1. Apply the PPMT to transform the five variables to be uncorrelated and multiGaussian;
2. Independently simulate the five variables;
3. Apply the PPMT back-transform to return the simulated realizations to original space.

Figure 5 presents KDE scatterplots of the PPMT data (following Step 1), where zero correlation
and typical multiGaussian density contours are observed.
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Figure 4: KDE scatterplots and correlation of the original data.

Sequential Gaussian simulation (SGSIM) (Deutsch & Journel, 1998) is used for generating 100
realizations of the reservoir in Step 2. The simulation grid is composed of 135 x 125 x 40 grid
nodes in the x, y and z directions respectively. Each node is separated by 100 metres in the hor-
izontal direction and 1 metre in the vertical direction. Following simulation, the realizations are
back-transformed in Step 3 to original units. Slices of one back-transformed realization appear in
Figure 6, where they are colored by select variables for visual reference.

Reproduction of bivariate properties is inspected in Figure 7 where KDE scatterplots of the data
are compared with that of a realization. Excellent reproduction is seen based on visual comparison
of the densities and the correlation statistic. The displayed root mean squared error (RMSE) in each
bivariate plot is calculated as the square root of the average difference between the data KDE and
realization KDE. This KDE RMSE quantifies the reproduction of each bivariate density, which is used
to compare the PPMT and Conventional workflow in the next section.
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Figure 5: KDE scatterplots and correlation of the PPMT variables.

Conventional Workflow

The Conventional workflow is used to provide a relative benchmark for the PPMT workflow results.
Aside from described differences of the two workflows, other modeling parameters are held con-
stant to allow for a fair comparison. This includes the use of the same variogram modeling approach,
grid definition and number of realizations. The Conventional workflow is summarized as:

1. Normal score transform ¢, Sw and Vsh;

2. Perform conditional colocated cosimulation of ¢, Sw and Vsh;

3. Return the ¢, Sw and Vsh realizations to their original units using the normal score back-
transformation;

4. Generate p-fields of Kh and Kv using independent and unconditional simulation;

Model the conditional bivariate CDFs F(Kh | ¢) and F(Kv | Kh) using the discretized approach;

6. Perform the cloud transformation to generate realizations of Kh. The Kh p-fields from Step 4
are used to sample the F(Kh | ¢) CDF from Step 5 conditional to the simulated ¢ from Step 3;

v
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Figure 6: Slices of select variables for a realization that is generated by the PPMT workflow (20:1
vertical exaggeration).

7. Perform the cloud transformation to generate realizations of Kv. The Kv p-fields from Step 4
are used to sample the F(Kv | Kh) CDF from Step 5 conditional to the simulated Kh from Step
6.

Note that the Conventional workflow requires more steps than the PPMT workflow from the
previous section. Even if the two workflows yielded similar results, the PPMT workflow would lend
value to this modeling scenario since it requires fewer steps and associated effort. Observe from the
original data scatterplots that the variables chosen for cosimulation, ¢, Sw, and Vsh have relatively
non-complex multivariate relationships between each other according to their KDE scatterplots.

Although these scatterplots do not follow ideal multiGaussian model contours, they are far less
complex than the non-linear relationships that are observed in scatterplots that include Kh and Kv.
This is the primary motivation for using sequential cloud transformations for the simulation of Kh
and Kv. Despite the relative multiGaussian nature of the cosimulation variables, however, Figure 8
illustrates that any deviations from the multiGaussian model in original space will generally manifest
themselves in normal score space. In this figure, KDE scatterplots of the normal score variables
(output from Step 1) are compared to that of the simulated Gaussian realizations (output from Step
2). Observe that multivariate complexity remains between the normal score transform data that
is not captured by the displayed correlation statistic. The colocated cosimulation only considers
the correlation, leading to the displayed scatterplots that follow the typical multiGaussian contours.
This creates obvious discrepancies between the density of the data and that of the realizations in
Gaussian units, which will lead to similar issues in original space.

Skipping ahead to Step (5), the conditional CDFs F(Kh | ¢) and F(Kv | Kh) that are input to cloud
simulation are displayed in Figure 9. The large number of data permits the generation of smooth
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Figure 7: KDE scatterplots and correlation of one PPMT workflow realization (lower triangle), which
are compared to that of the original data (upper triangle). The KDE coloring of the realization plots
are scaled according to the presented color scale in the associated data plot.
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Figure 8: KDE scatterplots and correlation of one cosimulation realization (upper triangle), which
are compared to that of the original data (lower triangle). The KDE coloring of the data plots are
scaled according to the presented color scale in the associated realization plot.

and well informed conditional CDFs, which should allow for an effective application of the cloud
transformation.

KDE scatterplots of the realizations (following completion of the Conventional workflow) are
compared with that of the data in Figure 10. Based on visual inspection, KDE RMSE, and correlation
error, it is readily apparent that the Conventional workflow has yielded inferior results, relative
to the PPMT workflow. Observe that obvious discrepancies exist between the bivariate densities
of the data and the equivalent densities of the Conventional workflow realization, whereas the
PPMT realization KDE scatterplots are barely distinguishable from that of the data. The simple PPMT
workflow implicitly targets the reproduction of the full multivariate relationship. By comparison,
the Conventional workflow uses many sequential steps to target the covariance between select
variables (¢, Vsh and Sw), and the complex relationships between select bivariate pairs (Kh-¢ and
Kv-Kh). As a result, the PPMT approach is demonstrated to generate realizations of the reservoir
that more effectively reproduce multivariate properties that are important to SAGD performance
prediction.
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Figure 9: Scatter plot between Kh and ¢ (top left), with the associated conditional CDF F(Kh | ¢) that
is used for simulating Kh (bottom left). Similarly, scatter plot between Kv and Kh (top right), with
the associated conditional CDF F(Kv | Kh) that is used for simulating Kv (bottom right).
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Figure 10: KDE scatterplots and correlation of one Conventional workflow realization (lower tri-
angle), which are compared to that of the original data (upper triangle). The KDE coloring of the
realization plots are scaled according to the presented color scale in the associated data plot.
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Who We Are

The CCG was launched by Professor Clayton V. Deutsch with the vision of becoming a leader in
the education of geostatisticians and the delivery of geostatistical tools for modeling heterogeneity
and uncertainty. The main objective of the CCG is to support the mutual needs of industry and
academia in research and education. The benefits to industry include the opportunity to influence
geostatistical research and education, interaction with students as potential employees, early access
to publications and access to faculty members for discussions and presentations. The CCG provides
a mechanism for industry to contribute to and sustain geostatistical research and teaching, which
is of long term interest to many companies.
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Contact Us
For more information regarding the demonstrated Solution or to discuss another problem that your
project presents, please contact Professor Clayton V. Deutsch at: <cdeutsch@ualberta.ca>
Or drop by our offices at:
Centre for Computational Geostatistics
6-247 Donadeo Innovation Centre For Engineering

9211-116 Street, University of Alberta
Edmonton, Alberta, Canada T6G 1H9
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