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Abstract

Data are rarely collected for their statististical representativity. This is particularly true in
petroleum exploration and production where wells are often drilled in locations to maximize
future production or to delineate the most productive portions of the reservoir. Nevertheless,
geostatistical simulation methods require distributions of facies proportions and petrophysical
properties that are representative of the entire reservoir being modelled. Therefore, there is
a need of declustering procedures, which adjust the histogram and summary statistics to be
representative of the entire volume of interest.

In presence of severely limited well data, conventional declustering algorithms such as
the polygonal and cell-declustering methods are not effective; there are too few data to assign
relative weights. Regions of poorer reservoir quality may be indirectly observed by seismic
data or geological interpretation, but may not be sampled. In this case, there are no hard
data to “weight.” In such cases, we must obtain a representative distribution with the aid
of soft secondary data and a calibration relationship between the soft data and the primary
variable under consideration.

We review the conventional declustering techniques in an appendix, and develop a soft-
data based declustering approach in the main part of the report. A representative distribution
is obtained by merging conditional distributions inferred from calibration with the soft data
variable. A program sddeclus is presented for soft-data declustering. The performance of
the proposed approach is illustrated by an example. The comparative study illustrates the
importance of declustering.

KEY WORDS: unbiased distribution, geostatistics, stochastic simulation, secondary data,
reservoir characterization

Introduction

All geostatistical simulation methods require distributions of rock types and petrophysical
properties that are representative of the entire area of interest. In practice, data are collected
on the basis of economic criteria and not for statistical representativity. Wells are drilled
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in areas with the greatest probability of high production rates and core measurements are
taken preferentially from good reservoir quality rock. Therefore, the greatest number of
data often come from portions of the reservoir that are the most important (or accessible).
These sampling practices should not be changed; however, numerical modellers must take
this into consideration in building geologic models.

Declustering techniques have been devised to account for the fact that data are clus-
tered in important or easily accessible areas. Journel proposed cell declustering [5], Deutsch
presented some refinements and software [1], and Isaaks and Srivastava illustrate the im-
portance with the Walker Lake Data Set [4]. Programs for declustering are available in
GSLIB [2]. The methodology is also explained in the new book by Goovaerts [3].

It is clear that the naive equal-weighted sample distribution / histogram and sample
statistics are biased in presence of preferential sampling. It is critical to go beyond the
sample data and infer a representative histogram and other summary statistics before geo-
statistical simulation. This paper describes procedures for such inference.

Background

Data in densely sampled areas should receive less weight than those in sparsely sampled
areas. The declustering techniques mentioned above [1, 4, 5] assign each data a weight
wj , j = 1, . . . , n, based on the closeness of the data to the surrounding data. The weights are
greater than 0 and sum to 1. A recall of the conventional declustering methods is presented
in an Appendix to this paper. For notation, consider n data z(uj), j = 1, . . . , n, where
the variable z may represent a continuous variable or indicator transform of a categorical
variable and u represents a location coordinate vector. Summary statistics such as the mean
and variance are then calculated with the declustering weights:

z =
n∑

j=1

wjzj and s2 =
n∑

j=1

wj (zj − z)2 (1)

the cumulative histogram, required for stochastic simulation and data transformation, is
also estimated with the declustering weights:

F ∗(z) =
n∑

j=1

wj · i(uj ; z) (2)

where

i(uj ; z) =

{
1, if z(uj) ≤ z
0, otherwise

Conventional declustering techniques, which assign each data a relative weight only
work when there are enough data to assign greater and lesser weights. In many cases,
the limited number of data makes it impossible to use these declustering algorithms for
deriving critical statistics. Figure 1 is a contour map of the Dan Field in Danish North
Sea. A obvious domal structure exists. The physical properties of the constituent chalk is
such that porosity and permeability decrease with increasing depth (at the margins of the
reservoir). Cored wells (circled) are mostly found in crestal area having the best reservoir
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Figure 1: Dan Field, Danish North Sea. Domal structure on slat pillow.

properties, so the porosity and permeability distribution based on sampled core well data
are not representative distributions of the entire reservoir.

There are too few data at the margin of the reservoir to use relative weights to infer a
representative distribution. The result of conventional declustering techniques would also
be biased. There is a need to use the secondary information, in this case depth, to aid in
declustering.

If there is no secondary information provided by soft-data, the bias in the sample data
and resultant statistics may even not be recognized. However, in many cases there are
secondary soft data from geological interpretation (as in the case of the Dan Field) or
seismic data. Soft data alone are of little help; the soft data must be complemented with
a calibration relationship between the primary variable of interest and the soft data. Such
a bivariate realtionship can be revealed based on limited measurements and supplementary
knowledge of geophysics or geology.

In the Dan Field there exists a good relationship between depth of the reservoir and
the reservoir quality. Seismic data provides depth at all locations throughout the reservoir.
Generally, the deeper the reservoir, the smaller the value of porosity. This situation is
illustrated by the sketch in Figure 2. The contour lines in Figure 2 represent a bivariate
distribution of porosity and depth. The dots represent avialable data.

Obviously, the estimated distribution of porosity (black profile along porosity axis in
Figure 3) based only on the well data (black dots in Figure 3) will be a biased estimate
of the underlying true distribution of porosity (dotted blue profile in Figure 3). The lack
of data in the margin of the reservoir makes it difficult to correct the distribution by the
conventional declustering techniques. A more sophisticated method is thus needed.
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Figure 2: Schematic illustration of the bivariate relationship between porosity and depth.

Figure 3: Schematic illustration showing naive distribution of porosity, conditional distributions
of porosity given depth, representative distribution of depth, and the representative distribution of
porosity.
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Methodology

In this report, an approach is proposed to infer the distribution of a primary variable
based on secondary soft data. The methodology has also been presented (within a detailed
example and computer software) in a two page extended abstract [?]. The central idea is
illustrated schematically on Figure 3. The exhaustive secondary data is representative of
the entire domain of interest, see the black profile along depth axis in Figure 3). With the
aid of the bivariate relationship between primary and secondary variables (contoured lines
in Figure 3), distributions of the primary variable, conditional to the secondary variable, can
be estimated (red profiles in Figure 3). Consequently, an estimate of the global distribution
of the primary variable (dotted red profile along porosity axis) can be obtained by merging
the local conditional distributions from the distribution of secondary variable.

Even before details of the proposed methodology are described, we can see that the
bivariate relationship is key. The mechanics of merging conditional distributions into a
representative distribution of the primary variable of interest depends entirely upon the
goodness of the calibration relationship. Notwithstanding our dependence on this relation-
ship, we show that using a poorly known calibration is better than ignoring an important
trend. The following assumes that the calibration relationship is available for all possible
values of the secondary variable. The problem of declustering in presence of soft data is
transferred to inference of this calibration cross plot.

A distribution of the primary variable Z conditional to the secondary variable y(u)
at a particular location can be calculated from the calibration relationship. These local
conditional distributions for all locations in the area of interest A may be combined with
equal weight since the secondary variable is available at all locations in the area, that
is, y(u),u ∈ A. In probabilistic notation, a representative distribution of the primary Z
variable is then written:

f∗
Z(z) =

∑
all u∈A

1
C

fZ|Y (z|Y = y(u)) (3)

where C is a normalization constant to ensure the resulting distribution integrates to 1.0.
Thus, the approach consists of the following steps:

• assemble a map of the secondary variable Y at all locations,

• develop the essential bivariate relationship between Y and the primary variable Z,

• calculate all local conditional distributions of Z given every Y value, and then

• add them to create a global Z distribution.

As already mentioned, the procedure to infer the calibration cross plot is critical. The
program to perform the above steps requires the local conditional distributions expressed
in the form of p-quantiles. The program sddeclus, written in FORTRAN 90, is used for
the implementation of the proposed approach. The parameter file is shown on Figure 4.
The parameters:

• datafl: input data file containing the exhaustive data of the secondary variable.
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Parameters for sddeclus
**********************

START OF PARAMETERS:
..\data\DATAset.out -input exhausted secondary variable
..\data\GloblPDF.out -output file for representative distribution
4000 -number of grid points in soft data
0.00,40.00 -minimum and maximum of primary variable
201 -number of classes for output histogram
10,5 -# soft threshold, # primary cutoffs

0.00, 0.25, 0.50, 0.75, 1.00 -cumulative probability of primary cutoffs
1000 22 26 28 31 34 -Interval, Quantiles at cutoffs
1020 12 18 20 22 29 -Interval, Quantiles at cutoffs
1040 9 15 16 18 25 -Interval, Quantiles at cutoffs
1060 7 13 15 16 22 -Interval, Quantiles at cutoffs
1080 6 11 13 14 19 -Interval, Quantiles at cutoffs
1100 5 9 10 12 16 -Interval, Quantiles at cutoffs
1120 4 7 9 10 14 -Interval, Quantiles at cutoffs
1140 3 6 7 8 12 -Interval, Quantiles at cutoffs
1160 2 4 5 6 9 -Interval, Quantiles at cutoffs
1170 0 2 3 4 7 -Interval, Quantiles at cutoffs

Figure 4: Example parameter file for sddeclus.

• pdffl: output file with the calculated distribution of the primary variable in the format
of a probabilty density function (PDF),

• nsize: size of secondary data grid.

• min, max: minimum and maximum value of the primary variable.

• no class: number of classes (resolution) for the output PDF of the primary variable

• no thresholds, no cutoff: number of control points along secondary variable axis
and the number of cutoffs in the quantile function of the primary variable

• The cumulative probability cutoffs for the quantiles used for calibration.

• control points along secondary variable axis and the quantiles of primary variable at
those control points. They contain information of the well data and the bivariate
relationship between primary and secondary variables.

An Example

A cross section of a reservoir having a domal structure is used for an example, see the top
plot of Figure 5. The reservoir section is gridded into a 200 (horizontal) by 20 (vertical)
cells. The depth is available for every cell in the entire reservoir, which is in the range -1000
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to -1170 meters. The thickness of the straigraphic layer is about 20 meters. Porosity data
has been generated for every grid of the reservoir, which serves as the reference data. In the
generation of data, a negative correlation between porosity and depth is assumed, that is,
the larger the depth, the smaller the porosity. Five vertical wells are available in the center
area of the cross section (vertical red lines in Figure 5). The porosity data and depth at
well locations are taken as the well data.

Porosity is the primary variable of interest and depth is the secondary variable. The goal
is to determine a representative distribution of porosity based on porosity measurements at
the well locations and a bivariate relationship between porosity and depth.

The cross plot of porosity versus depth for the reference data is shown at the bottom
right plot of Figure 5 shows. The reference histogram of porosityis shown at the bottom
left of Figure 5. Of course, this information would be inaccessible in practice and is used
here for comparison purposes only.

Figure 6 is the scatter plot of porosity versus depth of the well data, and Figure 7 is
the histogram of porosity of the well data. Comparing to the histogram in Figure 5, it is
obvious that the well data only contains high porosity values (mean value of 21.02 versus the
reference mean 14.39) and the histogram derived from the well data is not representative.
The reason is the domal structure of the reservoir, the trend of porosity with depth, and
wells located in the center area of the reservoir. Figure 8 and Figure 9 are the histograms
of the depth of the reference data and the well data, respectively.

Since there is no data avialable in the margins of the reservoir, specifically in the areas
with greater depth, the conventional declustering techniques will be unable to get a set
of proper weights. Figure 10 and Figure 11 are the histograms after cell declustering and
polygonal declustering, respectively. As expected, there is little improvement in the esti-
mate of the distribution and summary statistics by using these conventional declustering
techniques.

Based on geological information, the larger the depth the smaller the porosity. A bivari-
ate model describing the bivariate realtionship between porosity and depth must be derived.
Figure 12 shows local distributions of porosity conditional to the depth. Based on the well
data which are shown as black dots in the figure, local conditional distributions of porosity
are calculated in the depth range covered by the well data. A set of control points is chosen
along the entire depth axis including both extreme values. Based on the local conditional
distributions derived from the well data and considering the bivariate structure suggested
in Figure 2, the quantile functions on the control points are estimated by extrapolation
and shown as colorful star signs in Figure 12. Different color represents different quantile.
Then, the whole set of local conditional distributions of porosity on every depth value are
estimated by linear interpolation from those of control points, and they are shown as the
colorful lines in Figure 12.

In this way, the information embedded in the well data and the bivariate model is rep-
resented by the quantile functions, that is, the lines in Figure 12. They provide the input
cutoffs, quantiles of the parameter file. It should be noted that usually one only has a
conceptual bivaraite model or bivariate relationship with certain variability. The bivariate
model constructed is only an approximate representation of the underlying bivariate distri-
bution between primary and secondary variables. Generally, the more well data the better
our understanding of the bivariate relationship between primary and secondary variables,
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Figure 5: Cross section view of a reservoir (top). The color scale codes shows the underlying true
distribution of porosity. The true histogram of porosity (bottom left) and cross plot of porosity
versus depth (bottom right) are also shown.
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Figure 6: Scatter plot of porosity versus depth of the well data.
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Figure 7: Histogram of porosity derived from the well data.
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Figure 8: Histogram of depth of the entire reservoir.
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Figure 9: Histogram of depth of the well data.
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Figure 10: Histogram of porosity from the well data after cell declustering.
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Figure 11: Histogram of porosity from the well data after polygonal declustering.
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Figure 12: Local conditional distributions of porosity. The black dots are the well data and colorful
star signs are control points. The red line is the minimum 0.0 quantile; green: 0.25 quantile; blue:
0.50 quantile; magenta: 0.75 quantile and cyan: 1.00 quantile.

and the better quantile functions will be constructed.
Simple linear interpolation and extrapolation were used to extend the estimates of local

conditional distributions from range covered by the well data to the entire area of reservoir
followed an imprecise trend.

Figure 13 is the estimated histogram from sddeclus. Comparing to the reference his-
togram in Figure 5 and the histogram derived from the well data in Figure 7, not only the
mean (14.92%) is much closer to the reference mean (14.39%), the shape of the distribution
is closer to the reference distribution. In particular, the distribution now covers the entire
range including the low-valued area which is not covered by the well data.

Simulation with Different Distributions

As mentioned above, the purpose for declustering is to get a representative distribution for
subsequent geostatistical simulations. We use sequential Gaussian simulation to generate
numerical realizations of porosity based on the histogram distribution before and after cor-
rection. Since data should be transferred into normal score values for Gaussian simulation,
the estimate of data distribution has a tremendous influence on the result of sequential
Gaussian simulation.

The sgsim program in GSLIB is used for sequential Gaussian simulation. Four scenarios
are considered: (1) simulation based on the distribution derived from the well data only
(shown in Figure 7), (2) simulation based on the distribution derived from the well data
and considering a trend of porosity with depth, (3) simulation based on the estimated
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Figure 13: The estimated histogram of porosity.

distribution by the proposed approach (shown in Figure 13), and (4) simulation based
on the estimated distribution by the proposed approach and considering the trend. One
hundred realizations are generated for each scenario. Since there was little improvment in
the estimate of the distribution by cell declustering or polygonal declustering, no simulation
was conducted based on those distributions.

Figure 14 shows the histograms of mean porosity resulting from the one hundred real-
izations of each scenario. The red vertical line in the plots represents the mean value of the
reference data and blue vertical line denotes the mean value of the well data. It can be seen
from Figure 14 that the mean values of simulation are far away from the reference mean
(positive biased) when simulations are based on the distribution derived from the well data
only. Simulations based on the estimated distribution by the proposed approach give quite
acceptable mean values.

Figure 15 to Figure 18 show cross section view, histogram of simulated porosity and
scatter plot between simulated porosity and depth for the first realizations of each simulation
scenario, respectively.

The histograms of simulated porosity shown in Figure 15 and Figure 16 have similar
shapes with the histogram derived from well data (Figure 7). They are systematically
biased from the reference distribution (Figure 5). However, the trend structure, i.e., higher
porosity in low depth area and lower porosity in higher depth area, is reproduced when
trend is considered in the simulation (Figure 16).

When the corrected distribution by the proposed approach adapted in the simulation,
the histogram of the simulated porosity (Figure 17) shows similar shape to that of the
reference distribution (Figure 5). However, the porosity image on the top plot of Figure 17
is still far away from the reality (top plot of Figure 5) when the trend has not been considered
in the simulation. A more realistic image is obtained when both corrected distribution and
trend are considered in the simulation (Figure 18).

13



Figure 14: Histograms of means from 100 realizations; a, b refer to the simulations based on the
well data without and with the consideration of the trend; c, d refer to the simulations based on the
estimated distribution without and with the consideration of trend, respectively; red vertical line:
mean of the reference data; blue vertical line: mean of the well data.
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Figure 15: Results of one realization from simulation based on the well data without considering the
trend; top: Cross section view; bottom left: histogram of simulated porosity; bottom right: Scatter
plot of simulated porosity versus depth.
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Figure 16: Results of one realization from simulation based on the well data with the consideration
of the trend;top: Cross section view; bottom left: histogram of simulated porosity; bottom right:
Scatter plot of simulated porosity versus depth.
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Figure 17: Results of one realization from simulation based on the estimated distribution without
considering the trend; top: Cross section view; bottom left: Histogram of simulated porosity; bottom
right: Scatter plot of simulated porosity versus depth.
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Figure 18: Results of one realization from simulation based on the estimated distribution with the
consideration of the trend; top: Cross section view; bottom left: Histogram of simulated porosity;
bottom right: Scatter plot of simulated porosity versus depth
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To further compare the distributions of porosity generated from different simulations,
the Q-Q plots between the simulated porosity of the first realization from each scenario
and the reference data are shown in Figure 19. Q-Q plot a and b of Figure 19 suggest that
simulated porosity based on the distribution derived from the well data is a distribution
different from the reference distribution in terms of mean (higher mean), variance (not a
45o slope) and shape (non-linear character).

When the distribution is corrected by the proposed appraoch, the Q-Q plots between
simulated porosity and the reference data are very close to the 45o line, which means the
two distributions become similar.

In summary, simulation based on the distribution estimated by the proposed approach
and considering the trend provides the best results, whereas, simulation based on the well
data only and without considering the trend gives the worst results.

The bivariate model is critical to the success of the proposed approach. The more
well data and the more supplementary knowledge about the bivariate relationship between
primary and secondary variables, the better the bivariate model that will be built, subse-
quently, the better estimate of the distribution one will get. It is unlikely that considering
the information provided by a secondary variable will provide worse results than the naive
histogram.

Figure 20 shows a bivariate model which is obviously unreasonable. The bivariate model
suggests that there will be zero porosity after a certain depth in the reservoir. Figure 21 is
the estimated distribution of the global porosity. As the distribution derived from the well
data (Figure 7) this estimate of the distribution does not represent the reference distribution
(Figure 5) either, but it is still a better estimate than the one in Figure 7.

One hundred realizations are generated by using this estimated distribution and con-
sidering the trend. The means of the hundred realizations are close to the reference mean.
Looking at section views, scatter plots between the simulated porosity and depth and the
histogram of the simulated porosity, the result is still better than that only considering the
well data.

The example is two-dimensional for the purpose of easy demonstration, but there is
no problem to extend the approach to three dimension. The essence of the method is to
construct decent local conditional distributions of primary variable on secondary variable,
which depneds only on the pairwise relationship between primary and secondary variables
and has nothing to do with the actual coordinate of the grid. So there will be no difference
due to the dimensionality.

Conclusions

Geostatistical simulation algorithms reproduce the input target histogram. It is essential to
have a representative histogram for the entire volume being simulated. A general-purpose
algorithm for declustering in presence of soft data has been presented in this report. Con-
ventional algorithms are recalled in an Appendix.

Another conclusion of this report is that it is essential to directly account for systematic
trends, for example, a decrease in porosity with depth. It is insufficient to merely correct
the histogram to be representative of the entire domain; the histogram must be corrected
and the geostatistical simulation algorithm must directly account for the trend.
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Figure 19: Q-Q plots between the simulated and the reference porosity
a, b, c, d refer to simulation based on the well data without and with the consideration of the trend
and based on the estimated distribution without and with the consideration of trend, respectively.
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Figure 20: Local conditional distributions of porosity. The black dots are the well data and colorful
star signs are control points, the red line: 0.00 quantile; green: 0.25 quantile; blue: 0.50 quantile;
magenta: 0.75 quantile and cyan: 1.00 quantile.
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Figure 21: The estimated histogram of porosity corresponding to the bad calibration.
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Many commercial software packages strive for the 80% solution, which does not include
declustering. Declustering is not needed when the wells are equally spaced or when there
is no evidence of trends. Preferential well locations and systematic geologic trends may be
more common than 20% of the time!
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APPENDIX: Polygonal and Cell Declustering

The polygonal method first determines polygons of influence for each data location [4].
The declustering weight is taken as inversely proportional to the area of the polygons of
influence, Aj , centered at the data location:

w
(p)
j =

Aj∑n
j=1 Aj

A synthetic example will be shown for illustration. Figure 22 shows location map of 122
wells. The gray scale code shows the underlying true distribution of porosity (inaccessible
in practice). Figure 23 is the equally weighted histogram of 122 well data together with the
true reference histogram shown as the black line (inaccessible in practice). Since samples
are not sampled regularly but more densely taken from the high value area (25 to 30%)
than low value area (0 to 20%), the equally weighted histogram from the data should only
be a biased estimate of the true distribution.

Figure 24 shows the polygons of influence for 122 well locations. Clustered data with
small polygons of influence receive less weight than isolated locations with large polygons
of influence. The weights then are used as frequencies of occurence to generate a weighted
histogram, which is shown on Figure 25. Now, the histogram is much closer to the underlying
true distribution. The weight of data with a value between 25 to 30 % has been decreased
and the weight of data with a value in the 0 to 20% porosity range has been increased. The
declustered mean is 19.44% which is close to the reference mean, 18.72%.

It has been observed that polygonal declustering technique works well when the limits
(boundaries) of the volume of interest are well defined and the polygons do not change in
size by more than a factor of, say, 10 (largest area/smallest area).

Another widely used technique is called cell declustering [1, 2]. The Cell declustering
algorithm first divides the volume of interest into a grid of cells, l = 1, . . . , L, then count
the number of occupied cells Lo, (Lo ≤ L), and the number of data in each occupied cell
nlo , lo = 1, . . . , Lo where

∑Lo
lo=1 nloequals the number of data n.

Each occupied cell and each datum in a occupied cell will be equally weighted, then the
cell declustering weight for a datum i falling in cell l′, l′ ∈ Lo is:

w
(c)
i =

1
nl′ · Lo

Figure 26 shows the data locations of the same example and the area is gridded into 36
cells. Totally there are 33 cells containing data. For a cell containing two data, each of the
two clustered data values receives a weight 1/(2× 33) = 0.0152.

Two key parameters of the cell-declustering technique are the location (origin and ori-
entation) of the grid and the cell size [1].

The shape of the cells depends on the geometric configuration of the data, which may
be adjusted to conform to major directions of preferential sampling. The origin of the cell
declustering grid and the number of cells L should be chosen such that all data are included
within the grid network. The cell size also influence the weights. For the two extreme cell
size, i.e., all data falling into one cell and each datum in its own cell, the data will receive
equal weight. When there are many data and it is known that the high- or low-valued
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Figure 22: Location map of 122 wells. The gray scale code shows the underlying true distribution
of porosity.

areas have been oversampled, then several cell sizes should be tried and the cell size that
yields the smallest or largest declustered mean is retained according to whether the high-
or low-valued areas were preferentially sampled.

Figure 27 is a plot of the declustered mean versus the cell size. Since the high-values areas
have been oversampled, the cell size given the minimum declustered mean is chosen to gen-
erate weights for the data. Figure 28 shows the weighted histogram from cell-declustering.
The declustered mean is 20.02%, which is much closer to the global mean of 18.72% than the
equally weighted mean 22.26%. The proportion of data between 25 to 30 % has largely been
corrected and the weight given to data in the 0 to 20% porosity range has been increased.

Besides the polygonal declustering and the cell declustering techniques, there are some
other declustering techniques. For example, global kriging weights provided by a global
kriging estimate can be used for declustering. However, as the polygonal declustering, one
has to decide the range of influence for the data when using global kriging for decluster-
ing. Furthermore, using kriging as a declustering procedure requires a variogram, but the
calculation of a representative variogram may require declustering weights [6].
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Figure 23: Histogram of porosity from 122 well data and the true reference histogram shown as the
black line.

Figure 24: Location map of 122 wells with polygonal areas of influence.
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Figure 25: Histogram of porosity after polygonal declustering.

weights = 1/(2 x 33) = 0.0152
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Figure 26: 122 well data locations and 33 declustering cells.
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Figure 27: The declustered mean versus the cell size.
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Figure 28: Histogram of porosity after cell declustering.
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