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Abstract

The assessment of subsurface reservoir exploitation alternatives often relies on fluid flow
prediction using a three dimensional spatial description of the hydrocarbon reservoir. An
accurate prediction of reservoir performance, i.e. the flow of fluids, depends on accurate
representations of the subsurface ”container” (structure), ”plumbing” (flow units and fluid
flow properties), and fluid content. The representation of the ”plumbing” comes from the
knowledge of the geology and rock properties. The rocks are characterized by reservoir facies,
or lithologic facies, that are differentiated based on their porosity, permeability, relative
permeability, compressibility, and saturations. The depositional environment or depositional
process guides the facies connectivity.

The representation of lithofacies should be constrained by all available information about
the reservoir, such as geological, geophysical and engineering data. Geostatistical stochastic
modeling algorithms have been used extensively to model the subsurface distribution of litho-
facies. However, the problem of generating models that are consistent with multiple data
types and support volumes, e.g. well logs with high resolution vertical and low resolution
horizontal combined with seismic with low resolution vertical and high resolution horizontal,
is still a challenge.

We utilize a synthetic, small reservoir facies data model to compare stochastic, cell-based
facies modeling algorithms. The purpose is to assess to what extent the algorithms produce
models that can be constrained by sampled data at wells or seismic and also predict the
spatial distribution of lithofacies as represented by the original exhaustive data. The geo-
statistical algorithms are the sequential indicator, truncated Gaussian, and Bayes-updating
sequential indicator. Each uses facies indicator variograms as the principal source for the
facies spatial distribution. We also generate models from an optimization-based algorithm.
In this approach, the differences in the model and the data are minimized explicitly in a
multi-component objective function.

The methods yield different quality of predictions. We show the dependence of model
predictability on the density of sample locations. The optimization method is flexible and
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extensible in incorporating different types of data, each with a different support volume. This
extensibility is demonstrated with the addition of multiple-point spatial facies correlation.

Introduction

The assessment of subsurface reservoir exploitation alternatives often relies on fluid flow
prediction using a three dimensional spatial description of the hydrocarbon reservoir. An
accurate prediction of reservoir performance depends on accurate representations of the
subsurface ”container” (structure), ”plumbing” (flow units and fluid flow properties), and
fluid content. The representation of the ”plumbing” comes from the knowledge of the
geology and rock properties. The rocks are characterized by reservoir facies, or lithologic
facies, that are differentiated based on their porosity, permeability, relative permeability,
compressibility, and saturations. It is the lithofacies model, with its characteristic spatial
distribution of the fluid porosity, permeability, and saturation, which governs the flow of
fluids in the reservoir. The depositional environment or depositional process guides their
connectivity.

The representation of lithofacies should be constrained by all available information about
the reservoir, such as geological, geophysical and engineering data. Often, however, subsur-
face models of lithofacies are built on sparse well control. These data, as measured from
core and well log, seismic, and well production, are representative of different scales and
have distinct levels of uncertainty.

Geostatistical stochastic modeling algorithms have been used extensively to model the
subsurface distribution of lithofacies. The problem of generating models that are consistent
with multiple data types and support volumes, e.g. well logs with high resolution vertical
and low resolution horizontal combined with seismic with low resolution vertical and high
resolution horizontal, has long been a challenge. In this report we utilize a single reservoir
facies data nodel as a means to compare output from several cell-based lithofacies modeling
algorithms, in order to assess to what extent they can constrain the spatial distribution of
lithofacies to varied sample data.

The geostatistical algorithms are the sequential indicator (Journel and Alabert [13],
Alabert and Massonat [1] and Deutsch and Journel [5]), the truncated Gaussian (Matheron
[19] and Galli [8]) and the Bayes-updating sequential indicator simulations (Doyen [6, 7]).
These algorithms are pixel-based methods which utilize facies variogram models to estimate
the presence or absence of a specific lithofacies in space. We do not present any results from
an ”object-based” (Boolean, Halderson and MacDonald [11], Halderson [12]) procedure as
the data set used does not lend itself to defined geometric objects.

We also present an optimization-based algorithm. In this approach, initiated by Deutsch [4]
and extended by Gouveia [9] , a multi-component objective function is designed in such a
way that its minimization results are models that are consistent with the input data sets
under consideration. The method is flexible and extensible in incorporating different types
of data, each with a different support volume.

The lithofacies modeling algorithms are applied to synthetic reservoir data, which is
considered to be a reprensentation of the “true” subsurface model. By having access to the
“true” model, we can provide insight on the strengths and weaknesses of each one of the
modeling procedures. The synthetic data set is described in the next section. Following that
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Reservoir lithofacies “seismic” facies
Facies 1
Facies 2
Facies 3 Sand
Facies 4
Facies 5
Facies 6 Shale

Table 1: Relationship lithofacies and “seismic” facies.

we present the results obtained with the geostatistical and optimization-based algorithms.
The dependence on the density of sample data is examined for each. We then conclude with
a summary on the results.

Data

The “true” reservoir model (Figure 1.a), is based on a segment extracted from a model of a
producing oil reservoir, which has a shallow-marine depositional origin. The model contains
six facies which are considered to be reservoir lithofacies (represented by different colors in
the figure) spatially distributed on a grid of 100 cells in the East-West direction, 100 cells in
the North-South direction and 10 cells in the depth direction. The areal dimensions of each
cell is 100 meters by 100 meters with a thickness of 6.1 meters. Figure 1.b shows a top view
of the 4th layer of the reservoir model. Twenty-five depth profiles along well trajectories,
whose surface locations are shown in Figure 1.c, were extracted from this model and used as
“well data”. Unless stated otherwise, these 25 depth profiles are considered as “hard” data
in the simulation, i.e., their lithofacies values will not be perturbed during the modeling
process.

In addition to the lithofacies indicators at the wells, we assume for the study that a
seismic volume has provided “seismic” facies, which can be mapped to the reservoir facies
and from which are derived sand proportions. As detailed in Gouveia [9] such “seismic”
facies (Figure 2) were obtained by computing the proportions of shale and non-shale facies
across the depth of the “true” reservoir model. Thus, the seismic data do not have any
vertical resolution. The association of “seismic” facies and facies is listed in Table 1.

The spatial correlation of the six lithofacies is incorporated into the reservoir model
via variograms. We determined a detailed variogram for each of the lithofacies using the
“true” exhaustive reservoir model data. That provides a best case for variogram analysis.
For each lithofacies, three major directions of continuity were selected (see Table 2) and
associated experimental variograms have been calculated. Table 3 lists the analytic model
variograms derived from the experimental variograms. These reproduce the basic features
of the experimental variograms, as can be seen in Figure 3.

3



Figure 1: (a) True reference model, (b) its 4th layer and (c) location of the 25 wells used in
the simulations.
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Figure 2: Proportions of “seismic” shale lithofacies obtained from the model shown in
Figure 1.
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Figure 3: Experimental variograms computed from the “true” model (dots) and correspon-
dent variogram models (dashed).
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Reservoir lithofacies Major directions (Azimuth, dip)
-20◦, 45◦

Facies 1 70◦, 0◦

160◦, 45◦

90◦, 45◦

Facies 2 180◦, 0◦

270◦, 45◦

90◦, 45◦

Facies 3 180◦, 0◦

270◦, 45◦

90◦, 0◦

Facies 4 0◦, 0◦

90◦, 0◦

-20◦, 45◦

Facies 5 70◦, 0◦

160◦, 45◦

900◦, 0◦

Facies 6 0◦, 0◦

0◦, 90◦

Table 2: Major correlation directions for reservoir lithofacies.

Facies Modeling

Sequential indicator simulation

Sequential indicator simulation (Journel and Alabert [15], Alabert and Massonat [1] and
Deutsch and Journel [5]) is a commonly used non-Gaussian technique based on the indi-
cator formalism that maps data into indicator variables. The indicator transformation for
lithofacies, a discrete (categorical) variable, is defined as:

i(uα; fk) =

{
1 if s(uα) = sk, i.e., sk presents at uα, k = 1, . . . , Nf

0 otherwise
(1)

where, s(u) is the categorical random variable at location u ∈ A, A representing the
reservoir spatial domain. The possible outcomes for this random variable are sk, k =
1, . . . , Nf , where sk is the k-th lithofacies and Nf is the number of possible lithofacies,
six in this study.

The sequential indicator simulation algorithm proceeds as follows:

1. Calculate the indicator variograms in the major directions for each lithofacies type
(Figure 3 and Table 3).

2. Apply the indicator transform (Equation 1) to each “hard” datum at location u.

3. Define a random path visiting each node of the grid only once.
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Facies Variogram Model
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Table 3: Variogram models for lithofacies of reservoir model shown in Figure 1.

8



4. At each node u′:

• Estimate Nf conditional probability values p(s(u′) = sk|data) using indicator
kriging algorithms operating on the available conditioning data set data.

• Ensure that each conditional probability value are within the interval [0, 1], and
that their summation adds up to unity.

• The Nf conditional probability values define a probability distribution function
for the lithofacies type at location u′. Sampling this function results in the
simulated lithofacies at this location, which is added to the conditioning data.

• Proceed to the next node along the random path and repeat steps above.

The indicator kriging procedure in step 1 above uses the variogram models listed in
Table 3 to impose a correlation on the lithofacies spatial distribution.

In the simulations resulting from the indicator approach the distribution of hetero-
geneities of the reservoir lithofacies are quantified by the input variogram models. There-
fore, it is essential that variograms associated with the simulated models reproduce the
features of the variogram models. Figure 4.left shows three model realizations obtained
from the indicator kriging simulation when none of the conditioning data, are used for the
4th layer. Figure 4.right shows similar results for three realizations when the 25 wells used
as hard data. Visual comparison indicates that the simulations bear limited resemblance to
the true spatial distribution of lithofacies, although some improvement was achieved when
the conditioning data were used.

The variograms associated with the models shown in Figures 1.a and 1.b are displayed
in Figures 5 and 6, respectively. The matches with the model variograms is poor, with some
improvement when the 25 wells were used as hard data.

To further investigate the effect of conditioning data on the simulation results we system-
atically increased the number of available lithofacies log samples. These additional sample
data were obtained by simply extracting the lithofacies values from the “true” model along
vertical profiles at specific surface sample locations. In addition to the simulation with 25
wells, we performed simulations with a total of 49, 100, 400, 625 and 2500 surface sample
locations, which were placed at regular spacing within the reservoir grid. Example results
for the 4th layer of the resulting models are shown in Figure 7. With an increase in sam-
ples the resemblance of the simulated model to the “true” reservoir model improves. It is
somewhat surprising that it takes 400 samples before the model really reproduces the true
model closely. More than 400 samples provides little additional information.

Note that the stochastic simulations shown in this section and throughout the paper were
post-processed by the MAPS algorithm [3] to remove the short-scale variability commonly
encountered in cell-based simulation procedures. The algorithm reduces the short-scale
variability while preserving a match to the data and maintaining consistency with the
input lithofacies global proportions and variogram models.

Truncated Gaussian Simulation

An alternative to sequential indicator simulation is the truncated Gaussian simulation
(Matheron [19] and Galli [8]). In this approach the spatial distribution of lithofacies are
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Figure 4: The 4th layer of sequential indicator simulation result without (left) and with
(right) 25 conditioning wells.
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Figure 5: Variograms computed from the sequential indicator simulation without condi-
tioning data (dots) and correspondent variogram models (dashed) from one realization.
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Figure 6: Variograms computed from the sequential indicator simulation with 25 condition-
ing wells (dots) and correspondent variogram models (dashed) from one realization.
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Figure 7: 4th layer of sequential indicator simulation results with increasing surface sample
locations. (a) None, (b) 49, (c) 100, (d) 400, (e) 625 and (f) 2500.
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modeled by truncating an underlying Gaussian multidimensional function according to the
proportions of each lithofacies.

A required step to applying the truncated Gaussian method is to ensure that at least
the underlying univariate probability function of the conditioning data is Gaussian. This
is accomplished via the normal score transform [18], a non-linear transformation that maps
any continuous uni-dimensional random variable into a Gaussian one. In addition, the
covariance of the multi-dimensional Gaussian function is determined in such a way that it
will yield the required indicator variogram [16].

A limitation of the truncated Gaussian approach is that it cannot be used to reproduce
more than one indicator variogram, since the unique parameter of the underlying Gaussian
distribution is its covariance model. If multiple categories are to be modeled, the usual
procedure is to truncate the Gaussian realization at a number of thresholds defined by the
global proportions of the lithofacies. Although the correct lithofacies proportions will be
obtained, their spatial structures (with the exception to the one used to define the Gaussian
covariance) will not reflect the indicator variogram models, rather they will be arbitrarily
controlled by the Gaussian function.

Basically, the truncated Gaussian simulation proceeds as follows:

1. Conditioning data are mapped to normal scores (y(u) ∈ (−∞,+∞)) via the normal
score transform.

2. Estimate a normal score variogram based on a representative indicator lithofacies
variogram. Such a representative variogram can be the one associated with the largest
lithofacies proportions or an “average” indicator variogram.

3. Build a Gaussian random field by sequential Gaussian simulation:

4. Define a random path visiting each node of the grid only once.

5. At each node u′:

• Estimate the mean and variance of the conditional Gaussian PDF p(y(u′)|data)
by kriging the normal score conditioning data.

• Sample the Gaussian PDF at node u′ to generated the simulated value at this
node. Add the simulated value to the conditioning data set.

• Proceed to the next node along the random path and repeat steps above.

6. From the global lithofacies proportions establish Nf+1 thresholds t1 = −∞, t2, . . . , tNf +1 =
+∞.

7. Assign lithofacies fk wherever the Gaussian simulated field is within the interval
[tk, tk+1].

Here, we use the variogram of lithofacies two, the one with the largest global proportion,
to construct the variogram associated with the Gaussian function.

γ(h) = γ(h1, h2, h3) = 0.0 + 0.5Gau

⎛
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√

(
h1

35
)2 + (
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⎞
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Figure 8: The 4th layer of three truncated Gaussian simulation realizations with 25 condi-
tioning wells.

+ 0.5 Sph

⎛
⎝(

√
h1

60
)2 + (

h2

30
)2 + (

h3

22
)2

⎞
⎠ . (2)

Figure 8 shows three example truncated Gaussian realizations when the 25 wells are used
as “hard” data. Clearly, the realizations fail to reproduce the basic spatial structure of the
“true” model (Figure 1). This result, much inferior to these of the sequential indicator pro-
cedure (Figure 7), is not unexpected due to the fact that the truncated Gaussian approach
cannot account for all lithofacies variograms. By increasing the number of conditioning
surface sample locations to 49, 100, 400, 625 and 2500, we obtained the results shown in
Figure 9. Again, conditioning data denser than 400 provides little additional improvement
on the lithofacies spatial distribution.
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Figure 9: 4th layer of truncated Gaussian simulation results with increasing number of
surface sample locations. (a) None, (b) 49, (c) 100, (d) 400, (e) 625 and (f) 2500.

Bayes-updated indicator simulation

The facies simulation can be imposed with the addition of the seismic data as secondary
data (Figure 2). A Bayes updating procedure [6, 7] provides for the addition of the “seismic”
facies proportion. A block co-kriging (Deutsch [17] and Behrens [2]) or sequential indicator
simulation with local mean also provide for incorporating secondary data and should yield
equivalent results to the Bayes approach. The Bayes approach biases the indicator-derived
probability p(s(u)|data) with the seismic-derived probability p(s(u)|seismic data) in order
to produce the aposteriori probability p(s(u)|data, seismic data), given by:

p(s(u)|data, seismic data) =
p(s(u)|data)p(seismic data|s(u))

p(seismic data)

=
p(s(u)|data)p(s(u)|seismic data)

p(s(u))
, (3)

where p(s(u)) is a probability on the facies values for location s(u), and can be regarded as
the well-data derived global proportions of lithofacies. The probability p(s(u)|data, seismic data)
reduces to p(s(u)|data) when the seismic-derived probability p(s(u)|seismic data) equals
p(s(u)), meaning that the seismic data do not bring any additional information on the
lithofacies than the one contained in the well data.

The seismic-derived probabilities are needed for each reservoir cell and for each litho-
facies. For the “true” model, those were obtained in the following way. The seismic shale
(Figure 2) and sand facies proportions were directly assigned to probabilities. The connec-
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Figure 10: Variograms computed from the truncated Gaussian simulation with 25 condi-
tioning wells (dots) and correspondent variogram models (dashed) from one realization.
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Figure 11: The 4th layer of three Bayes-updating simulation realizations with 25 condition-
ing wells.

tion between “seismic” facies and reservoir facies was obtained with the facies association
in Table 1, i.e.:

p(s(u) = facies 6|seismic data) ∝ p(s(u) = shale)
p(s(u) = facies 1|seismic data) ∝ p(s(u) = sand)p(facies 1)
p(s(u) = facies 2|seismic data) ∝ p(s(u) = sand)p(facies 2)
p(s(u) = facies 3|seismic data) ∝ p(s(u) = sand)p(facies 3)
p(s(u) = facies 4|seismic data) ∝ p(s(u) = sand)p(facies 4)
p(s(u) = facies 5|seismic data) ∝ p(s(u) = sand)p(facies 5), (4)

where p(s(u) = sf1) is the seismic-derived probability of presence of seismic lithofacies sf1

at location u, p(s(u) = rf1) is the probability of presence of reservoir lithofacies rf1 at
location u, and p(facies) represents the global proportion of this reservoir lithofacies. The
probabilities on the left hand side of Equation 4 were then used to modify the indicator-
derived probabilities as described in Equation 3.

Figure 11 shows three realizationss of the 4th layer when the 25 wells were used as
conditioning data in addition to the seismic data. The variograms associated with this
simulation are shown in Figure 12. Comparison of the indicator kriging simulation results
without seismic data (Figure 4) with Bayes-updated simulations show that incorporation
of the seismic data brought some improvement to the spatial distribution of the reservoir
lithofacies. As before, we progressively increased the number of surface sample location
conditioning data to 49, 100, 400, 625 and 2500. Surface sample locations numbering
greater than 100 (sample spacing of 1000 m) contribute little to further improvement.

Optimization

Gouveia [9] presented a formulation in which different input data types are used as compo-
nents of an objective function for which the final model is consistent within a tolerance of
the data. The attraction of this technique is the flexibility and extensibility available to add
different data types, each at its appropriate support volume. This comes at some additional
computational cost. In this section we show reservoir lithofacies models obtained from this
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Figure 12: Variograms computed from the Bayes-updated simulation with 25 conditioning
wells (dots) and corresponding variogram models (dashed) from one realization.

19



optimization technique for the following two cases. In Case 1, the input data are the global
lithofacies proportions, indicator variograms, and “seismic” -facies proportions. Case 1 can
be compared directly with the Bayes-updating approach. In Case 2, additional data on the
lithofacies spatial arrangement in the form of transition probabilities [9] is added. Case
2 demonstrates the extensibility of the optimization approach and improved model with
added data.

Case 1

The lithofacies objective function consists of a weighted sum of three components, global
lithofacies proportions (Table 1), indicator variograms (Table 3) and “seismic” -facies pro-
portions (Figure 2). The expression for the objective function is given by

O [floc] = wgp

Nf∑
f=1

‖P strata
f − P �

f ‖

+ wvar

Nf∑
f=1

Nlags∑
lag=1

‖Istrata
f (lag) − I�

f (lag)‖

+ wseis

Nq∑
i=1

‖H�
shale(i) −

1
Nq

‖, (5)

where Pf is the global proportions of lithofacies f and If is the indicator variogram (defined
for Nlags lags) for this lithofacies. The superscripts strata and � indicate that these quanti-
ties are computed from the “true” reservoir model (Figure 1) and the reservoir model at a
given iteration in the optimization procedure, respectively. Hshale is the quantile histogram
(defined for Nq bins) associated with the reservoir shale proportions at seismic scale [9].
Recall that the seismic data do not provide any resolution vertically. In the optimization
approach this difference in resolution is handled by the definition of multiple grids [9]. Each
seismic grid cell is associated with a probability density on shale proportions obtained from
the seismic inversion procedure which quantifies the uncertainty of the seismic estimates.
At any given iteration it is possible to compute the shale proportions of the reservoir model
at any given cell of the seismic grid which, in turn, represents a quantile of the proba-
bility density function associated with this cell. As explained in Gouveia [9] and [9], the
extent that the histogram of such quantiles (Hshale) is uniform indicates that the reservoir
lithofacies model is consistent with the seismic data information and associated uncertainty.

Optimization of the objective function 5 using the initial model shown in Figure 13
results in the model realization shown in Figure 14. The initial model is not fully random,
rather it is constructed in such a way that its shale proportions at seismic scale are consistent
with the ones obtained from the seismic data. The convergence of the objective function
and its components is shown in Figure 15 for 400000 iterations. The behaviour of each
one of the components is illustrative of the non-linearity of this optimization problem. The
variograms are shown in Figure 16.

A close look at the variograms shows that the ones from the optimization generally have
a better match with the input variogram models than the ones from Bayes-updating. An

20



Figure 13: Initial reservoir lithofacies model used in the optimization.

Figure 14: The 4th layer of three optimization simulation realizations with 25 conditioning
wells.
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Figure 15: Convergence of the composite objective function and each one of its components.
Recall that the initial model used in the optimization was already consistent with the seismic
data.

exception to this happens at the smaller lags for the shale lithofacies, where the Bayes-
updated variograms present a closer fit. In terms of assessing the consistency with the
seismic data information (local PDFs for shale proportions defined at seismic scale) the
optimization algorithm provides a quantitative measure, namely the quantile histogram.
The extent that this quantile histogram is uniform is indicative of the degree to which
the reservoir model reproduces the seismic-derived input data proportions. The quantile
histogram for the seismic proportions will be less than uniform to the degree to which
other data types (i.e., global proportions and variograms) with different proportions must
be accomodated simultaneously by the optimization algorithm. Nonetheless, the quantile
histogram associated with the optimum model does indicate that most of the seismic-scale
shale proportions lie within the limits of the seismic-derived PDFs.

Case 2

We incorporate the additional data on lithofacies transition probabilities as information
on the spatial arrangement between different lithofacies (Gouveia [9]). These are computed
along three directions in the reservoir model: East-West, North-South and along the general
dip of the reservoir layers. Transition probabilities are one possible way to incorporate
more detailed geologic depositional information, as might be available from such sources as
outcrop analogs, sequence stratigraphic interpretation, or log motifs. The added objective
function component is:

wtp

NTP∑
i=1

Ncomp∑
j=1

‖TP strata
i (j) − TP �

i (j)‖, (6)

where wtp is the weight associated with the transition probability objective function com-
ponent and TP strata

i (j) is the j-th component of the transition probability computed along
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Figure 16: Indicator variograms associated with the optimum model in Figure 14 (dotted
lines) and model variograms defined in Table 3 (dashed lines).
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Figure 17: Convergence of the composite objective function and each one of its compo-
nents. The initial model used in the optimization was consistent with the “seismic” facies
proportions.

Figure 18: The 4th layer of three optimization realizations. The same initial model shown
in Figure 13 was used in the optimization of Equation 6
.

the i-th direction. A fourth-order transition probability component is defined by any com-
bination of lithofacies present in four succesive grid cells along one of the specific directions.
In this case, since six lithofacies are being modeled, there are a total of Ncomp = 64 compo-
nents. A low or high probability value associated with a specific lithofacies pair indicates
that that association is unlikely or highly likely, respectively, and would be present only to
that probability.

Three realizations are shown in Figure 18 anf the variograms in Figure 19. The transition
probability match is shown in Figure 20.

Again, large-scale features presented in the Bayes-updated model (Figure 11) and in
the previous optimization result (Figure 14) are generally similar to the ones present in the
model shown in Figure 18. The variograms in Figure 19 show an improved fitting to the
input model(Figure 16). This is specially true for the smaller variogram lags, which may be a
consequence of the fact that the transition probabilities, basically a constraint on the small-

24



Figure 19: Indicator variograms associated with one optimum model (dotted lines) and
model variograms defined in Table 3 (dashed lines).
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Figure 20: Transition probabilities associated with the optimum model in Figure 18 and
the transition probabilities calculated from the lithofacies model in Figure 2. Most of the
features in the input transition probabilities have been reproduced by the optimum model.
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scale facies variability, are being used. In terms of consistency with the seismic data both the
models obtained by the optimization approach are equivalent, since their respective quantile
histograms similarly approximate an uniform histogram. Finally, the transition probabilities
of the final model are in quite good agreement with the input transition probabilities.
It is not clear how a procedure such as the Bayes-updated would incorporate transition
probabilities.

Summary

We have investigated with a synthetic data set the performance of cell-based stochastic
simulation algorithms for modeling the spatial distribution of the categorical variable litho-
facies, given data for well log reservoir lithofacies, ”seismic” facies, variograms and facies
associations. Table 4 summarized the global facies proportions and their relative standard
deviations for each of the methods computed from 100 realizations. The optimization ap-
proach is clearly superior. The internal consistency of the model can be compared through
entropy calculation (Gouveia [9]). Figure 21 compares the entropies for each of the methods
computed from 100 realizations.

In a relative sense, low entropy at a location means less variability over the realizations
for that location. The entropy is expected to be low near well and increase away from well
control.

1. Simulations constrained by well data only Even with use of exhaustive anisotropic
variogram models the simulations generally did a poor job of reproducing the complex
spatial distributions. The level of conditioning required by the sequential indicator
simulation is less than the one required by truncated Gaussian simulation. Such a
result should be expected in view of the fact that the indicator simulation accounts
for each lithofacies variogram, whereas in the truncated Gaussian approach a single
“average” or representative variogram is employed in the simulation. One drawback
of the Gaussian approach is the assumption that the spatial distribution of lithofacies
can be fully characterized by a Gaussian process. The truncated Gaussian, however,
by construct, honors the global lithofacies proportions.

2. Simulations constrained by well and seismic data Secondary data improve the repro-
duction of the true model considerably. When 25 depth profiles were employed as
“hard”data, results were generally equivalent for the Bayes-updating and optimiza-
tion (Figures 11 and 14), with a slightly better variogram reproduction obtained by
the optimization approach ((Figures 12 and 16). The internal consistency, as indi-
cated by the entropy plots (Fig. 21) is clearly better for these methods that utilize
the interwell seismic facies than for the simulations without the seismic facies. And
the Bayes method has somewhat lower entropy than the Optimization method. How-
ever, the Bayes method assumed that the seismic facies proportions are known at the
resolution of the geologic model grid. This is strictly not the case; the Optimization
method incorporates the true resolution of the seismic facies through the multigrid
scheme and thus is a better reflection of the true uncertainty. This issue is being
investigated further. The computational cost of the optimization method is higher

27



Figure 21: Entropy cube from 100 reservoir models computed (a) sequential indicator simu-
lation, (b) truncated Gaussian simulation, (c) Bayes-updating, (d) optimization constrained
by seismic data and (e) optimization constrained by seismic data and four-point transition
probabilities
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Facies Reference SISIM GTSIM Bayes Opt Opt w/transition
mean/rstd mean/rstd mean/rstd mean/rstd mean/rstd

1 0.0178 0.0162/44.4 0.0131/20.6 0.0130/48.5 0.0153/11.8 0.0140/ 7.9
2 0.4282 0.4457/10.6 0.4329/ 3.6 0.3535/10.4 0.4357/ 2.1 0.4319/ 1.3
3 0.1782 0.2575/11.7 0.1832/ 2.5 0.2015/15.9 0.1774/ 1.9 0.1782/ 0.0
4 0.1240 0.0652/41.1 0.1271/ 3.5 0.0515/45.0 0.1204/ 6.0 0.1044/ 9.0
5 0.0165 0.0143/55.9 0.0168/ 5.4 0.0104/61.5 0.0134/11.9 0.0102/ 5.9
6 0.2352 0.2010/19.7 0.2271/ 5.9 0.3701/ 4.8 0.2378/ 4.5 0.2613/ 3.0

Table 4: Mean and relative standard deviation of facies proportion from 100 realizations

than that of the indicator algorithm. For example, a single realization required about
7.5 minutes CPU for the Bayes updated indicator method and 12 minutes CPU for
the optimization method.

3. Simulations constrained by well, seismic data and 4th-order facies associations The tran-
sition probabilities further improve the model reproduction. These higher- order sta-
tistics could in principle be incorporated in geostatistical simulations via the so- called
extended normal equations (Journel and Alabert [14], Guardiano and Srivastava [10]
and Srivastava [20]) but it has not been so far applied to reservoir modeling problems.

A strength of the optimization approach is its flexibility to account for a larger number
of input data sets than do the common geostatistical algorithms and to preserve the data
volume support and uncertainty. The work presented here will continue to be developed
along the lines of incorporating additional dynamic multiple-well production data and more
information on geological relationships such as facies stacking patterns, nested cyclicities,
and complex geometries and secondary data from numerical stratigraphic sections. An
ultimate comparison of different techniques should be flow simulation cdfs from multiple
realizations compared with flow simulation on the “true” model.
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