
 

 1 

Methodology for Improved Variogram Interpretation 
and Modeling for Petroleum Reservoir 

Characterization 

E. Gringarten1 and C. V. Deutsch2 

Draft: May 12, 2003 

Abstract 

The variogram is a critical input to geostatistical studies: (1) it is a tool to investigate and 
quantify the spatial variability of the phenomenon under study, and (2) the underlying techniques 
behind most geostatistical estimation or simulation algorithms require an analytical variogram 
model, which they will honor. In the construction of 3-D high-resolution numerical models of 
reservoir properties, the variogram reflects some of our understanding of the geometry and 
continuity of facies and petrophysical properties, and can have a very important impact on 
predicted flow behavior and consequent reservoir management decisions.  The importance of the 
variogram for reservoir management is illustrated with a flow simulation study. 

Interpretation and modeling of experimental variograms are essential to improved reservoir 
modeling.  The principles of variogram modeling in presence of sparse data are developed and 
illustrated with a number of practical examples.  A full 3-D interpretation of the variogram is 
necessary to fully describe geologic continuity.  Vertical and horizontal continuity must be 
described simultaneously to be consistent with principles of geological deposition and for a 
legitimate measure of spatial variability for geostatistical modeling algorithms.  Interpretation 
principles are discussed in detail.  An example using data from horizontal wells to assist with the 
determination of a reliable 3-D variogram is presented.   

Variograms are modeled with particular functions for reasons of mathematical consistency.  
Used correctly, such variogram models account for the experimental data, geological 
interpretation, and analogue information.  The steps in this essential data integration exercise 
are described in detail through the introduction of a rigorous methodology.  A number of case 
studies including one from a fractured reservoir with non-orthogonal directions of continuity are 
presented to illustrate the flexibility and importance of variogram models. 

KEYWORDS: kriging, stochastic simulation, covariance, variogram, zonal and geometric 
anisotropy 

Introduction 

The variogram has been widely used to quantify the spatial variability of spatial phenomena for 
many years; however, calculation and interpretation principles have advanced slowly. This is 
particularly true in the petroleum industry due to the limited number of well data and limited 
resources to undertake detailed geostatistical studies. Time and budget constraints force reservoir 
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modelers to proceed directly to facies and petrophysical property modeling almost immediately. 
The preliminary steps of variogram calculation, interpretation, and modeling are often performed 
hastily or even skipped altogether. This practice should be reversed and much more attention 
should be devoted to establish a robust model of spatial variability (variogram) before proceeding 
with building numerical reservoir models. The reservoir modeler can significantly influence the 
appearance and flow behavior of the final model through the variogram model. 

Reservoir modeling proceeds sequentially.  Large-scale bounding surfaces are modeled, then 
facies, and then petrophysical properties such as porosity and permeability.  The variogram is 
needed for stochastic modeling of surfaces and petrophysical properties; facies modeling, 
however, may be performed with object-based techniques, which do not require the use of a 
variogram.  The importance and relevance of object-based methods do not diminish the 
importance of the variogram for a large fraction of reservoir modeling algorithms.  The 
counterpart of the variogram in object-based methods is the size and shape specifications of the 
geological objects.  We limit our consideration to variograms for geologic surfaces, facies 
indicator variables, and continuous petrophysical properties. 

Geostatistical model-building algorithms such as sequential Gaussian simulation, sequential 
indicator simulation, and truncated Gaussian simulation take an input variogram model and create 
a 3-D model constrained to local data and the variogram model.  The variogram has an extremely 
important role to play in the appearance and flow behavior of 3-D models due to the sparse data 
available for petroleum reservoir characterization.  The seemingly large volume of seismic data is 
at a large scale and must be supplemented by the variogram to control smaller scale variations.   

Thorough variogram interpretation and modeling are important prerequisites to 3-D model 
building.  The practice of variogram modeling and the principle of the Linear Model of 
Regionalization have been covered in many text (e.g. Journel and Huijbregts, 1978; Armstrong, 
1984; Olea, 1994; Goovaerts, 1997). However, none as presented a strict and rigorous 
methodology to easily and systematically produce a licit and consistent 3D variogram model. We 
present a methodology of variogram interpretation and modeling whereby the variance is divided 
into a number of components and explained over different length scales in different directions.  
The paper defines the variogram and its idealized behavior, and shows a small flow simulation 
study to illustrate the importance of the variogram in geostatistical operations.  The important 
cases of trends and different directions of anisotropy are developed with examples.  A number of 
real variograms are shown with a consistent interpretation. 

The Variogram 

The variogram has been defined in many books and technical papers.  For completeness, 
however, we recall the definition of the variogram and related statistics.  Consider a stationary 
random function Y with known mean m and variance σ2.  The mean and variance are independent 
of location, that is, m(u) = m and σ2(u) = σ2 for all location vectors u in the reservoir.  Often there 
are areal and vertical trends in the mean m, which are handled by a deterministic modeling of the 
trend and working with a residual from the locally variable mean. The variogram is defined as: 

 
 ( ) ( ) ( )[ ]{ }22 huuh +−= YYEγ  (1) 
 

In words, the variogram is the expected squared difference between two data values separated by 
a distance vector h.  The semivariogram γ(h) is one half of the variogram 2 γ(h).  To avoid 
excessive jargon we simply refer to the variogram, except where mathematical rigor requires a 
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precise definition.  The variogram is a measure of variability; it increases as samples become 
more dissimilar.  The covariance is a statistical measure that is used to measure correlation (it is a 
measure of similarity): 
 ( ) ( ) ( )[ ]{ } 2mYYEC −+⋅= huuh  (2) 

By definition, the covariance at h=0, C(0), is the variance σ2 .  The covariance C(h) is 0.0 when 
the values h-apart are not linearly correlated.   

Expanding the square in equation (1) leads to the following relation between the semi-variogram 
and covariance: 
 ( ) ( ) ( ) ( )hhhh γγ −=−= )0()0( CCorCC  (3) 

This relation depends on the model decision that the mean and variance are constant and 
independent of location.  These relations are the foundation for variogram interpretation.  That is, 
(1) the “sill” of the variogram is the variance, which is the variogram value that corresponds to 
zero correlation, (2) the correlation between Y(u) and Y(u+h) is positive when the variogram 
value is less than the sill, and (3) the correlation between Y(u) and Y(u+h) is negative when the 
variogram exceeds the sill.  This is illustrated by Figure 1, which shows three h-scatterplots 
corresponding to three lags on a typical semivariogram. Geostatistical modeling generally uses 
the variogram instead of the covariance for purely historical reasons. 

A single variogram point γ(h) for a particular distance and direction h is straightforward to 
interpret and understand.  Practical difficulties arise from the fact that we must simultaneously 
consider many lag vectors h, that is, many distances and directions.  The variogram is a measure 
of “geological variability” versus distance.  The “geologic variability” is quite different in the 
vertical and horizontal directions; there is typically much greater spatial correlation in the 
horizontal plane.  However, the well-known principle in geology known as Walther’s law entails 
that the vertical and horizontal variograms are dependent.  There are often common features such 
as short scale variability (nugget effect) and variogram shape.  Although there are similarities 
between the vertical and horizontal variogram, we often face confounding geologic features such 
as areal and vertical trends, cyclicity, and stratigraphic continuity across the areal extent of the 
reservoir. 

Understanding Variogram Behavior 
The link between geological variations in petrophysical properties and observed variogram 
behavior must be understood for reliable variogram interpretation and modeling.  Figure 2(a)-(c) 
show three geologic images and corresponding semivariograms in the vertical and horizontal 
directions for each image.  In practice, we do not have an exhaustive image of the reservoir and 
the variogram behavior must be interpreted and related to geological principals from directional 
variograms.  The primary variogram behaviors are: 

1. Randomness or lack of spatial correlation: certain geological variations appear to have no 
spatial correlation.  These random variations are the result of deterministic depositional 
processes.  At some scales, however, the processes are highly non-linear and chaotic leading 
to variations that have no spatial correlation structure.  Typically, only a small portion of the 
variability is explained by random behavior.  For historical reasons, this type of variogram 
behavior is called the nugget effect. 

2. Decreasing spatial correlation with distance: most depositional processes impart spatial 
correlation to facies, porosity, and other petrophysical properties.  The magnitude of spatial 
correlation decreases with separation distance until a distance at which no spatial correlation 
exists, the range of correlation.  In all real depositional cases the length-scale or range of 
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correlation depends on direction, that is, the vertical range of correlation is much less than the 
horizontal range due to the larger lateral distance of deposition.  Although the correlation 
range depends on distance, the nature of the decrease in correlation is often the same in 
different directions.  The reasons for this similarity are the same reasons that underlie 
Walther’s Law.  This type of variogram behavior is called geometric anisotropy. 

3. Geologic trends: virtually all geological processes impart a trend in the petrophysical 
property distribution, for example, fining or coarsening upward or the systematic decrease in 
reservoir quality from proximal to distal portions of the depositional system.  Such trends can 
cause the variogram to show a negative correlation at large distances.  In a fining upward 
sedimentary package, the high porosity at the base of the unit is negatively correlated with 
low porosity at the top.  The large-scale negative correlation indicative of a geologic trend 
show up as a variogram that increases beyond the sill variance σ2.  As we will see later, it 
may be appropriate to remove systematic trends prior to geostatistical modeling. 

4. Areal trends have an influence on the vertical variogram, that is, the vertical variogram will 
not encounter the full variability of the petrophysical property.  There will be positive 
correlation (variogram γ(h) below the sill variance σ2) for large distances in the vertical 
direction.  This type of behavior is called zonal anisotropy.  A schematic illustration of this is 
given in Figure 3. 

5. Stratigraphic layering: there are often stratigraphic layer-like features or vertical trends that 
persist over the entire areal extent of the reservoir.  These features lead to positive correlation 
(variogram γ(h) below the sill variance σ2) for large horizontal distances.  Although large-
scale geologic layers are handled explicitly in the modeling; there can exist layering and 
features at a smaller scale than cannot be handled conveniently by deterministic 
interpretation.  This type of variogram behavior is also called zonal anisotropy because it is 
manifested in a directional variogram that does not reach the expected sill variance. 

6. Geologic cyclicity: geological phenomenon often occur repetitively over geologic time 
leading to repetitive or cyclic variations in the facies and petrophysical properties.  This 
imparts a cyclic behavior to the variogram, that is, the variogram will show positive 
correlation going to negative correlation at the length scale of the geologic cycles going to 
positive correlation and so on.  These cyclic variations often dampen out over large distances 
as the size or length scale of the geologic cycles is not perfectly regular.  For historical 
reasons, this is sometimes referred to as a hole effect. 

Real variograms almost always reflect a combination of these different variogram behaviors.  
Considering the three images and their associated variograms presented on Figure 4, we see 
evidence of all the behaviors mentioned above: nugget effect most pronounced on the top image, 
geometric anisotropy and zonal anisotropy on all, a trend on the middle one, and cyclicity most 
pronounced on the bottom image.  The top image is an example of migrating ripples in a man-
made eolian sandstone (from the U.S. Wind Tunnel Laboratory), the central image is an example 
of convoluted and deformed laminations from a fluvial environment.  The original core 
photograph was taken from page 131 of Sandstone Depositional Environments, Scholle and 
Spearing, 1982.  The bottom image is a real example of large-scale cross laminations from a 
deltaic environment.  The original photograph was copied from page 162 of Sandstone 
Depositional Environments, Scholle and Spearing, 1982 

The intent of this paper is to present a systematic procedure for variogram interpretation and 
modeling of real geological features. 
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Requirement for a 3-D Variogram Model 
All directional variograms must be considered simultaneously to understanding the variogram 
behavior.  The experimental variogram points are not used directly in subsequent geostatistical 
steps; a parametric variogram model is fitted to the experimental points.  A detailed methodology 
for this fitting is a central theme of this paper.  There are a number of reasons why experimental 
variograms must be modeled: 

1. The variogram function γ(h) is required for all distance and direction vectors h within the 
search neighborhood of subsequent geostatistical calculations; however, we only calculate the 
variogram for specific distance lags and directions (often, only in the principle directions of 
continuity).  There is a need to interpolate the variogram function for h values where too few 
experimental data pairs are available.  In particular, the variogram is often calculated in the 
horizontal and vertical directions, but geostatistical simulation programs require the 
variogram in off diagonal directions where the distance vector simultaneously contains 
contributions from the horizontal and vertical directions. 

2. There is also a need to introduce geological information regarding anisotropy, trends, 
sampling errors and so on in the model of spatial correlation.  As much as possible, we need 
to filter artifacts of data spacing and data collection practices and make the variogram 
represent the true geological variability. 

3. Finally, we must have a variogram measure γ(h) for all distance and direction vectors h that 
has the mathematical property of positive definiteness, that is, we must be able to use the 
variogram, or its covariance counterpart, in kriging and stochastic simulation.  A positive 
definite model ensures that the kriging equations can be solved and that the kriging variance 
is positive, in other words, a positive definite variogram is a legitimate measure of distance. 

For these reasons, geostatisticians have fit variograms with specific known positive definite 
functions like the spherical, exponential, Gaussian, and hole effect variogram models.  It should 
be mentioned that any positive definite variogram function can be used, including tabulated 
variogram or covariance values, Yao, 1998.  The use of any arbitrary function or non-parametric 
table of variogram values would require a check to ensure positive definiteness, D. E. Myers, 
1991.  In general, the result will not be positive definite and some iterative procedure would be 
required to adjust the values until the requirement for positive definiteness is met. 

With a “correct” variogram interpretation, the use of traditional parametric models is not limiting.  
In fact, the traditional parametric models permit all geological information to be accounted for 
and realistic variogram behavior to be fit.  Moreover, the use of traditional variogram models 
allows straightforward transfer to existing geostatistical simulation codes. 

Importance of the Variogram in Geostatistics 

The variogram is used by most geostatistical mapping and modeling algorithms.  Object-based 
facies models and certain iterative algorithms, such as simulated annealing, do not use variogram.  
Conservatively, 80% of all geostatistical reservoir-modeling studies involve the use of the 
variogram for building one or all of the facies, porosity, and permeability models.  All Gaussian 
simulation algorithms including sequential Gaussian simulation and p-field simulation, indicator 
simulation methods such as sequential indicator simulation and the Markov-Bayes algorithm, and 
most implementations of simulated annealing-based algorithms rely on the variogram. 

Technical papers presented at the SPE annual meetings present a glimpse at current practice in 
the petroleum industry. In 1997, there were 76 papers related to the reservoir, one third concerned 
geostatistical techniques, and 90% of these involved modeling procedures that required a 
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variogram model, yet very little emphasis was made on the importance and impact of variogram 
modeling. The 1998 report contains 73 papers related to formation evaluation of which 18% 
considered geostatistical techniques. 70% of those required the use of a variogram, the rest dealt 
with fracture/fault modeling and one with channel modeling, but note that for completeness, a 
reservoir model very often requires porosity and permeability simulations which would entail the 
use of a variogram. 

Not only is the variogram used extensively, it has a great effect on predictions of flow behavior.  
The flow character of a model with a very short range of correlation is quite different from a 
model with a long range of correlation.  Occasionally there are enough well data to control the 
appearance and flow behavior of the numerical models; however, these cases are infrequent and 
of lesser importance that the common case of sparse well control.  The available well data are too 
widely spaced to provide effective control on the numerical model.  Seismic and historical 
production data provide large scale spatial constraints.  The variogram provides the only effective 
control on the resulting numerical models. 

The lack of data, which makes the variogram important, also makes it difficult to calculate, 
interpret, and model a reliable variogram.  Practitioners have been aware of this problem for some 
time with no satisfactory solution.  Analogue data available from better-drilled fields, outcrop 
studies, or geological process modeling provide valuable input; however, this data must be 
merged with field-specific calculations to be useful.  A 3-D variogram model is often assembled 
with a combination of field data and analogue information for horizontal correlation ranges. 

Variogram modeling is important and the “details” often have a crucial impact on prediction of 
future reservoir performance.  In particular, the treatment of zonal anisotropy is important.  Recall 
that zonal anisotropy is where the variogram “sill” appears different in different directions. 
Consider a 2D cross-section through an oil reservoir with a gas cap.  We will consider a 
horizontal well in the oil leg and perform flow simulation to assess gas breakthrough.  
Furthermore, we will consider that there are significant areal variations in average porosity and, 
hence, permeability.  These areal variations translate to a zonal anisotropy where the vertical 
variogram reaches a lower sill than the horizontal direction.  Case A will be the correctly modeled 
zonal anisotropy and Case B will consist of mistakenly treating the zonal anisotropy as a 
geometric anisotropy where only the range is different in the vertical and horizontal directions. 
Examples of the resulting permeability fields are shown in Figure 5(a) and (b) for Cases A and B 
respectively, note the stronger areal trends visible on Figure 5(a). The VIP flow simulator was 
used to model the performance of the horizontal well in terms of oil production and timing of gas 
breakthrough.  Figure 5(c) and (d) show oil saturation distributions after 100 time steps for the 
permeability fields of Figure 5(a) and (b) respectively. To avoid interpreting an artifact of one 
realization, multiple (100) stochastic simulations are considered. The distributions of the time 
needed to reach a GOR of 0.6 (just after breakthrough) are shown in Figure 5(e) and (f) for Cases 
A and B respectively. The spread in responses for Case A is much greater than for Case B, the 
variance is 4 times greater. The mean of the responses is different by 10 days. Even through this 
simple illustrative example, one can see the impact the variogram model may have on consequent 
reservoir management decisions. 

There are other bad practices in variogram interpretation and usage.  For example, a systematic 
vertical or horizontal trend in sometimes included in the variogram as a long range structure; 
however, it should be handled explicitly by working with data residuals or considering a form of 
kriging that explicitly accounts for the trend.  In such case, we require the variogram of the data 
residuals in place of the original Z variogram, see later section on Removing the Trend. 
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Variogram modeling is more than just picking vertical and horizontal ranges.  Care must be taken 
to account for zonal anisotropy, trends, and cyclic geologic variations.  We develop a systematic 
procedure that promotes easy interpretation and modeling. 

Variogram Interpretation and Modeling 

Establishing the Correct Variable 
Variogram calculation is preceded by selection of the variable of interest.  It is rare in modern 
geostatistics to consider untransformed data.  The use of Gaussian techniques requires a prior 
Gaussian transform of the data and the variogram model of these transformed data.  Indicator 
techniques require an indicator coding of the facies or of the continuous variable at a series of 
thresholds.  Also, systematic areal or vertical trends should be removed from the variable prior to 
transformation and variogram calculation, see next section.   

When data is skewed or has extreme high or low values; computed variograms often exhibit 
erratic behaviors. Various robust alternatives to the traditional variogram have been proposed in 
the literature. These include madograms, rodograms, general and pairwise relative variograms. 
They are generally used to determine ranges and anisotropy, which cannot be detected with the 
traditional variogram. However, these measures of spatial variability should not be modeled, as 
they cannot serve as input for subsequent estimation or simulation algorithms. Instead, it is 
recommended to transform the data to the Normal or Gaussian space before performing 
variogram calculations. This has some important advantages: (1) the difference between extreme 
values is dampened and (2) the theoretical sill is known to be 1. Also, some algorithms (e.g. p-
fields) may require that variogram calculations be performed on a Uniform score transformation 
of the data. However, the Uniform score and Normal score variograms are generally so similar 
that the latter can be used most of the time.  

Removing the Trend 
As mentioned above, the first important step in all geostatistical modeling exercises is to establish 
the correct property to model and to make sure (inasmuch as it is possible) that this property is 
stationary over the domain of the study. Indeed, if the data shows a systematic trend, this trend 
must be modeled and removed before variogram modeling and geostatistical simulation. 
Variogram analysis and all subsequent estimations or simulations are performed on the residuals. 
The trend is added back to estimated or simulated values at the end of the study. 

 There are problems associated with defining a reasonable trend model and removing the 
deterministic portion of the trend; however, it is essential to consider deterministic features such 
as trends deterministically. The presence of a significant trend makes the variable non-stationary, 
that is, it is unreasonable to expect the mean value to be independent of location.  Residuals from 
some simple trend model are easier to consider stationary. 

Trends in the data can be identified from the experimental variogram, which keeps increasing 
above the theoretical sill, see earlier discussion. In simple terms, this means that as distances 
between data pairs increase the differences between data values also systematically increase.  

To illustrate the above, consider the porosity data shown in Figure 6. Figure 6 clearly exhibits a 
trend in the porosity profile along a well. Porosity increases with depth due to a fining-upwards of 
the sand sequence. The (normal-score) variogram corresponding to this porosity data is shown in 
Figure 7. It shows a systematic increase well above the theoretical sill of 1. One could fit a 
“power” or “fractal” variogram model to the experimental variogram of Figure 7, however, since 
these models do not have a sill value (it is infinite), they cannot be used in simulation algorithms 
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such as sequential Gaussian simulation. But above all, they are not representative of the property 
of interest. 

A linear trend was fitted to the porosity profile (see Figure 6) and then removed from the data. 
The resulting residuals constitute the new property of interest and their profile is shown in Figure 
8. The (normal-score) variogram of the residuals is shown in Figure 9, which now exhibits a 
clearer structure reaching the theoretical sill of 1 at about 7 distance units. 

Variance for Variogram Interpretation 
There is often confusion about the correct variance to use for variogram interpretation.  It is 
important to have the variance σ2, or C(0) value, to correctly interpret positive and negative 
correlation.  Recall that a semivariogram value γ(h) above the sill variance implies negative 
correlation between Y(u) and Y(u+h) whereas a semivariogram value γ(h) below the sill implies 
positive correlation.  There has been some discussion in the literature about the correct variance 
to use for the sill variance and for variogram interpretation.  This discussion was summarized by 
Goovaerts (1997, page 103), who references Journel and Huijbregts (1978, page 67) and the 
article by Barnes (1991).  There are three issues that must be discussed before making a 
recommendation regarding the correct variance to use for variogram interpretation and modeling: 
(1) the dispersion variance, which accounts for the difference between our finite domain and the 
infinite stationary variance, (2) declustering weights, which account for the fact that our data, and 
all summary statistics, such as the sample variance 2σ̂ , are not representative of the entire 
domain, and (3) outlier values, which can cause eratic and  unstable estimates of the variance. 

The main point being made by Journel and Barnes is that the sample variance 2σ̂  is not an 
estimator of the stationary variance σ2, it is an estimator of the dispersion variance of samples of 
point support •  within the area of interest A; denoted D2(• ,A) in conventional geostatistical 
notation.  Only when the sample area A approaches an infinite domain does the sample variance 

2σ̂  approach the stationary variance σ2.  We should note that the dispersion variance D2(• ,A) is 
the average variogram value ( )AA,γ , which can only be calculated knowing the variogram.  A 
recursive approach could be considered to identify the correct stationary variance σ2 and the 
variogram γ(h); however, this is unnecessary.  The data used to estimate the variogram represent 
the area of interest A and not an infinite domain.  Thus, the point where Y(u) and Y(u+h) are 
uncorrelated is the dispersion variance D2(• ,A).  In other words, we should use the sample 
variance as the sill of the sample semivariogram and acknowledge that, in all rigor, it is a 
particular dispersion variance. 

The second issue relates to the use of the naïve sample variance or the sample variance 
accounting for declustering weights.  The use of declustering weights is very important to 
ascertain a reliable histogram, mean, variance, and other summary statistics.  Although the use of 
declustering weights is important, they are not used in the calculation of the variogram, that is, 
there are more experimental pairs in areas of greater sampling density.  Therefore, the sill (or 
semivariogram value corresponding to zero correlation) is reached at the naïve sample variance.  
Efforts have been made (Omre, 1984) to incorporate declustering weights into the variogram 
calculation; however, they provide no better variogram and are difficult to implement in practice.  
As a result, declustering weights should not be used in data transformation or variance calculation 
for variogram calculation, interpretation, and modeling. 

The last issue that must be addressed is the influence of outlier sample values.  It is well known in 
statistics that the variance, being a squared statistic, is sensitive to outlier values.  For this reason, 
the sample variance may be unreliable. With highly skewed data distributions, it is essential to 
deal with outlier values before calculating the variance or the variogram.  We should note, 



 

 9 

however, that this is not a problem with transformed data; the Gaussian and indicator transform 
remove the sensitivity to outlier data values.  The resulting Gaussian distribution has no outliers 
by construction and there are only 0’s and 1’s after indicator transformation. 

The correct variance for variogram interpretation is the naïve equal-weighted variance calculated 
after removal of outliers. 

Methodology for Variogram Interpretation and Modeling 
The methodology advocated in this paper is classical in that it assumes the regionalized variable 
is made up of a sum of independent random variables.  Each constituent random variable has its 
own variogram structure.  The component variogram structures may be added arithmetically to 
create a complete 3-D variogram model to be used for geostatistical algorithms. Since each 
variogram structure corresponds to a specific underlying geological phenomenon, the actual 
modeling phase (traditional curve fitting exercise) is preceded by a necessary interpretation stage.  

In an approach similar to the well-established model identification part of well test interpretation 
(Gringarten, 1986), where the pressure response is partitioned into different time regions, the total 
variance of the phenomenon under study is divided into variance regions. The behavior of the 
variogram in each region is then identified as being of a specific structure type. This is analogous 
to the model recognition step of well test analysis where the pressure-derivative signature of each 
time region is associated to a specific flow regime. Well test analysis defines three time regions: 
(1) early time corresponding to near-wellbore effects (e.g. wellbore storage, hydraulic fractures); 
(2) middle time characterized by the basic reservoir behavior (e.g. single or double porosity, 
composite); and (3) late time accounting for reservoir boundaries (e.g. faults, no-flow or constant 
pressure boundaries). Similarly, three major variance regions can be defined for variogram 
analysis: (1) short-scale variance (nugget effect), (2) intermediate-scale variance (geometric 
anisotropy – there may exist more than one such structure), and (3) large-scale variance (zonal 
anisotropy, hole-effect). The methodology proceeds sequentially, identifying first the short-scale 
variance, then intermediate-scale structures, and finally large-scale features. For the variogram 
interpretation to be consistent in 3-D, all structures contributing to the total variance must exist in 
all directions and their variance contributions must be equal. 

The steps of the methodology are as follows: 

1. Compute and plot experimental variograms in what are believed to be the principal directions 
of continuity based on a-priori geological knowledge (variogram calculation is not covered in 
this paper). If geological information is ambiguous, one can use 2D variogram maps to 
determine major horizontal directions of continuity (A variogram map is a plot of 
experimental variogram values in a coordinate system (hx, hy) with the center of the map 
corresponding to the variogram at lag 0.0, Goovaerts, 1997). Consider the horizontal and 
vertical experimental variograms shown in Figure 10(a). 

2. Place a horizontal line representing the theoretical sill. Use the value of the experimental 
(stationary) variance for continuous variables (1 if the data has been transformed to normal 
score) and p(1-p) for categorical variables where p is the global proportion of the category of 
interest. A feature of our proposed methodology is that the variograms are systematically 
fitted to the theoretical sill and the whole variance below the sill must be explained in the 
following steps. 

3. If the experimental variogram clearly rises above the theoretical sill, then it is very likely that 
there exists a trend in the data. The trend should be removed as detailed in the above section 
Removing the Trend, before proceeding to interpretation of the experimental variogram.  
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4. Interpretation: 

•  Short-scale variance: the nugget effect is a discontinuity in the variogram at the origin 
corresponding to short scale variability. On the experimental variogram, it can be due to 
measurement errors or geological structures with correlation ranges shorter than the 
sampling resolution. It must be chosen as to be equal in all directions. It is picked from 
the directional experimental variogram exhibiting the smallest nugget. It is the 
interpreter’s decision to possibly lower it or even set it to 0.0. Structure one of the 
example in Figure 10(b) corresponds to the nugget effect. 

•  Intermediate-scale variance: geometric anisotropy corresponds to a phenomenon with 
different correlation ranges in different directions. Each direction encounters the total 
variability of the structure. There may exist more than one such variance structure. 
Structure two in Figure 10(c) represents geometric anisotropy with longest correlation 
range in the horizontal direction. 

•  Large-scale variance: (1) zonal anisotropy is characterized by directional variograms 
reaching a plateau at a variance lower than the theoretical sill, i.e. the whole variability of 
the phenomenon is not visible in those directions. Structure three in Figure 10(d) 
corresponds to zonal anisotropy, only the vertical direction contributes to the total 
variability of the phenomenon at that scale; (2) hole-effect is representative of a 
“periodic” phenomenon (cyclicity) and characterized by undulations on the variogram. 
The hole-effect does not actually contribute to the total variance of the phenomena, 
however, its amplitude and frequency must be identified during the interpretation 
procedure, also, it can only exist in one direction. 

5. Modeling: 
Once all the variance regions have been explained and each structure has been related to a known 
geological process, one may proceed to variogram modeling by selecting a licit model type 
(spherical, exponential, Gaussian…) and correlation ranges for each structure. This step can be 
referred to as the parameter estimation part of variogram analysis. Constraining the variogram 
model by a prior interpretation step with identification of structure types can lead to a reliable 
automatic fit of the experimental variograms.   

In the presence of sparse horizontal data, variance structures visible on the vertical variogram 
must be forced onto often non-existent experimental horizontal variograms. Horizontal ranges 
corresponding to these structures are then “borrowed” from ancillary data (analogue outcrops, 
densely drilled fields, depositional models, seismic), as shown in section Incorporating Analogue 
Data. 

Practitioners have refrained from rigorous variogram interpretation and modeling due to sparse 
data and inadequate software.  Increasingly, data from horizontal wells and analogue fields or 
outcrops is becoming available.  Software can also be designed to aid in 3-D variogram 
interpretation and modeling rather than promote bad practice, which includes misinterpretation of 
trends, zonal anisotropy, and not linking vertical and horizontal variograms. 

Modeling Multiple Anisotropy Directions 

When computing and modeling variograms, one generally looks for the direction of maximum 
continuity. However, there are cases where more than one principal direction of continuity may 
exist. The underlying geological phenomena may exhibit dominant structures with different 
anisotropy such as those resulting from diagenesis, or simply due to the existence of conjugate 
open fracture sets. In such cases, the chosen variogram model must reflect the multiple anisotropy 
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of the property studied. This can be achieved by considering multiple variogram structures, each 
with a different direction of maximum continuity. The ranges in each direction are chosen as to 
appropriately capture the extent of the underlying geological features. It is more difficult to infer 
the individual variance contributions, however, they can be chosen as to represent the overall 
proportion of each anisotropic feature. Resulting stochastic simulations will reproduce the 
multiple anisotropy effect of the true underlying geological phenomena. 

The difficulty, however, lies in inferring multiple directional anisotropy structures from sparse 
well data. It is generally not possible to reliably compute enough experimental directional 
variograms to spot this phenomenon, nor would it appear on a variogram map. The information 
must come from prior knowledge of the geology of the reservoir under study and forced onto the 
model. 

To illustrate this concept, we consider a synthetic example of two conjugate fracture sets, see 
Figure 11(a). The fracture sets have orientation -15° and 30° from the North. For the sake of 
illustration, the fractures in both directions were assigned a permeability of 1000 mD and the 
surrounding matrix is assumed to have a constant permeability of 20 mD. The fractures are shown 
on a grid of 400 x 400 pixels. The latter was upscaled to a grid of 50 x 50 cells using simple 
geometric averaging, see Figure 11(b). The anisotropy effect created by the underlying fracture 
sets is visible on the coarse average permeability grid. The exhaustive variogram map, shown in 
Figure 11(c), clearly shows two principal directions of maximum continuity: one has direction -
15°, the other one has direction 30° from the North. Directional variograms, along with the fitted 
variogram model are shown on Figures 12 and 13. This model is summarized on the rose diagram 
of Figure 14, clearly exhibiting the two directions of major continuity. 

The variogram model considered here has two spherical structures. The direction of the first 
structure is -15° and the one of the second structure is 30°. The first one has a range of 25 units in 
the direction of maximum continuity and the second one has a maximum range of 22 units. In the 
direction of minimum continuity, the ranges are 2 and 4 units respectively. Both structures 
contribute equally to the total variance. The results of a sequential Gaussian simulation using the 
above described variogram model are shown on Figure 15(c). The variogram map shown on 
Figure 15(d) exhibits the double anisotropy sought. For comparison, a simulation run was 
performed using a variogram model with a single anisotropy structure. This model does not 
reflect the underlying fracture sets, but it is one that may have been inferred using only well data 
and no a-priori geological knowledge. The resulting realization and its variogram map are shown 
on Figure 15(e) and 15(f) respectively. Clearly, it is not possible to capture multiple anisotropy 
directions using a single variogram structure.  

Reservoir Examples 

Figure 16 shows horizontal and vertical variograms from a Canadian reservoir.  The variogram 
was fitted with two exponential models (short scale structure and long range structure) and a 
dampened hole-effect model in the vertical direction.  Note that the good horizontal variogram is 
due to the availability of horizontal wells.   

Five variance regions were for the horizontal and vertical variogram of Figure 16, see Table on 
the top of the next page.  The first small component is an isotropic nugget effect.  The next three 
are exponential variogram structures with different range parameters.  Three exponential 
structures are required to capture the inflection point at a variance value of about 0.3 on the 
vertical variogram, and the long range structure in the vertical variogram in the variance region 
0.8 to 1.0.  The fifth dampened hole effect variogram structure only applies in the vertical 
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direction and adds no net contribution to the variance.  Note that the dampening factor is five 
times the range. 

 

 

Variance 
Contribution 

Type of  
Variogram 

Horizontal 
Range, m 

Vertical 
Range, m 

0.05 Nugget   
0.29 Exponential 100.0 0.015 
0.46 Exponential 175.0 0.450 
0.20 Exponential 100.0 0.500 
0.20 Dampened Hole 

Effect 
 0.060 

Figure 17 shows horizontal and vertical variograms for the Amoco data, which was made 
available to the Stanford Center for Reservoir Forecasting for testing geostatistical algorithms 
(Journel, 1991).  Note the zonal anisotropy in the vertical directions due to systematic areal 
variations in the average porosity. 

Three variance regions were for the horizontal and vertical variogram of Figure 17, see Table 
below.  The first two components are anisotropic spherical variogram structures.  The last 
variogram captures the zonal anisotropy in the vertical direction. 

Variance 
Contribution 

Type of  
Variogram 

Horizontal 
Range, ft 

Vertical 
Range, ft 

0.50 Spherical 750.0 6.0 
0.40 Spherical 2000.0 50.0 
0.10 Spherical 7000.0 ∞ 

Figure 18 and 19 show facies (presence of limestone coded as 1, dolomite and anhydrite coded as 
zero) and porosity variograms calculated from a major Saudi Arabian reservoir, see Benkendorfer 
et al for the original variograms.  Note the interpretable horizontal variograms and the consistent 
vertical and horizontal variograms.  We also note the presence of a zonal anisotropy in the case of 
porosity, but not for the facies indicator variogram. 

Two variance regions were identified for the facies variogram on Figure 18, see Table below.  
Note that the sill in this case is 0.24 (related to the relative proportion of limestone / dolomite).  
Both are anisotropic exponential variograms. 

Variance 
Contribution 

Type of  
Variogram 

Horz. Range, 
NW-SE, ft 

Horz. Range 
NE-SW, ft 

Vertical 
Range, ft 

0.10 Exponential 150.0 400.0 0.8 
0.14 Exponential 2500.0 4000.0 1.2 

Three variance regions were identified for the porosity variogram on Figure 19, see Table below.  
The third region defines the zonal anisotropy in the vertical direction. 

Variance 
Contribution 

Type of  
Variogram 

Horizontal 

Range, ft 

Horizontal 
Range, ft 

Vertical 
Range, ft 

0.35 Exponential 400.0 500.0 0.6 
0.40 Exponential 2000.0 4000.0 0.6 
0.25 Exponential 12000.0 40000.0 ∞ 
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Incorporating Analogue Data 

The use of analogue data is essential in petroleum reservoir characterization.  Rarely are there 
sufficient data to permit reliable calculation of all needed statistics, including the variogram.  This 
is particularly true for the horizontal variogram in presence of a limited number of vertical wells.  
Figure 20 shows the vertical and horizontal normal score semivariogram for porosity from a 
fluvial-deltaic reservoir with two wells.  Note that only one variogram point can be calculated in 
the horizontal direction – at the interdistance between the two wells (600m).  Analogue data (as 
published, for example, in Kupfersberger and Deutsch, 1999) must be used to construct a 
horizontal variogram model. 

There is no supplementary information that would indicate the presence of a zonal anisotropy, 
that is, looking at the two well profiles there is no strong indication of pervasive horizontal 
correlation.  Published analogue data indicates that a 50:1 horizontal to vertical anisotropy ratio is 
reasonable.  Plotting the vertical variogram with this anisotropy ratio (right of Figure 20) agrees 
with the sole point at 600m.  Sensitivity studies should be performed since there is great 
uncertainty in this 50:1 anisotropy ratio. 

Software Implications 

The methodology and examples presented above have a number of implications on software 
design for variogram calculation, interpretation, and modeling.  Firstly, it is evident that multiple 
directions must be considered simultaneously.  It is poor practice to consider each direction 
independently and attempt to merge 1-D variograms after modeling. Variance contributions 
identified in one direction must automatically persist in all directions 

One can imagine a semi-automatic fitting procedure whereby once the total variance has been 
divided into different nested structures, the parameters of the nested structures (i.e. model type 
and ranges) are estimated with some type of constrained optimization procedure.  Provided the 
contribution of all structures is consistent in all three major directions, this is all that is required to 
construct a licit 3D-variogram model. A completely automatic variogram-fitting algorithm, even 
if it generates consistent 3D models, can potentially lead to non-geological models. In addition, it 
would not allow the incorporation of external information in the presence of sparse data.  

Kriging-based softwares that make use of the variogram models proposed here should be able to 
isolate or filter any particular nested structure.  This could be of some advantage when 
considering, for example, seismic data, which is a low-pass filter; high frequency or short scale 
components can be filtered out in the measurement. A systematic interpretation procedure can put 
some rigor in the often arbitrary partitioning of the variogram for the purpose of Factorial 
Kriging.  

The evident consequence on stochastic simulation is that a licit variogram model can be used in a 
variety of stochastic simulation methods.  Another implication is that the variable of interest can 
be constructed as a sum of different random variables, each corresponding to one of the nested 
structures. An advantage is that there are methods that permit fast simulation of one particular 
nested structure, e.g., moving window methods for the spherical, exponential, or Gaussian 
variogram structures (note that moving window type methods are especially attractive with 
parallel processing computers.  The CPU speed advantage on conventional single processor 
computers is questionable.). 

Most importantly, the implementation of a systematic variogram interpretation and modeling 
procedure removes the mystery and art that have generally surrounded variogram analysis. It 
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allows users to infer, in a straightforward and reliable way, licit variogram models while at the 
same time acquiring an understanding of the spatial continuity/variability of the phenomenon 
under study. Furthermore, a rigorous methodology would imply that different users would arrive 
at similar variogram models.  

Conclusion 

The variogram is used throughout geostatistical reservoir modeling as a measure of spatial 
variability.  Subsequent 3-D reservoir models (including facies, porosity and permeability) honor 
by construction the variogram, in a statistical sense.  For this reason, it is essential that the 
variogram be representative of the true heterogeneity present in the reservoir. It represents the 
modeler’s quantitative understanding of the spatial variability of the property of interest given the 
data, and any related additional geological and geophysical information that may be available.  

The interpretation methods presented in this paper are reminiscent of the revolution in well 
testing that came about with the pressure-derivative and the development of a rigorous analysis 
methodology based on the principles of model identification and model verification. Model 
identification consists of partitioning the pressure response into time regions. Each time region is 
associated to a specific flow regime based on the pressure response signature (model recognition) 
and the parameters required to model each regime are evaluated (parameter estimation). In the 
case of variograms, the variance is divided into different regions that correspond to different 
scales of geologic variability. Each variance region (structure) is characterized by a specific 
geological variability behavior (nugget effect, geometric and zonal anisotropy, and hole-effect). 
Each behavior is modeled analytically and requires a licit model type (spherical, exponential, 
Gaussian…) and a correlation range. In well test analysis, model verification is partly achieved by 
comparing the resulting models to various graphical representation of the pressure response other 
than the pressure-derivative (or log-log) plot. In variogram analysis, this step is built-in by 
insuring a consistent interpretation in all principle directions. 

Even though the importance and potential impact of the variogram model is generally 
acknowledged, the practice of variogram analysis is often done half-heartedly if at all. This paper 
presents nothing new to the expert and experienced practitioner who understands and generally 
applies all the principles discussed here. However, geostatistics is being increasingly used by 
practicing geologists, geophysicists, and engineers who often find themselves at lost when having 
to infer a representative variogram model. The methodology presented here provides a framework 
for understanding experimental variograms and complementing them with ancillary information 
in the presence of sparse data, yielding a consistent and licit 3D-variogram model.  
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Figure 1: Semivariogram with the h-scatterplots corresponding to three different lag distances.  Note that 
the correlation on the h-scatterplot is positive when the semivariogram value is below the sill, zero when 
the semivariogram is at the sill, and negative when the semivariogram is above the sill. 
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Figure 2(a): Image showing geometric anisotropy with corresponding vertical (red) and horizontal (black) 
variograms.  The image is 100 pixels by 50 pixels and the variograms were calculated to a total distance of 
35 pixels in the both directions. 
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Figure 2(b): Image showing cyclicity in the vertical direction (red variogram) and zonal anisotropy in the 
horizontal direction (black variogram).  The image is 100 pixels by 50 pixels and the variograms were 
calculated to a total distance of 35 pixels in both directions. 
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Figure 2(c): Image showing a trend in the vertical direction (red variogram) and zonal anisotropy in the 
horizontal direction (black variogram).  The image is 100 pixels by 50 pixels and the variograms were 
calculated to a total distance of 35 pixels in both directions. 
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Figure 3: In presence of areal trends (illustrated at the left) each well will not “see” the full range of 
variability, that is, wells in the higher valued areas (e.g., well A) encounter mostly high values whereas 
wells in the lower valued areas (e.g., well B) encounter mostly low values.  The vertical variogram in this 
case does not reach the total variability, that is, it shows a zonal anisotropy. 
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Figure 4: Three different geologic images with the corresponding directional variograms.  Note the 
cyclicity, trends, geometric anisotropy, and zonal anisotropy. 
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Figure 5: Flow simulation results for Case A where the variogram model explicitly accounts for zonal 
anisotropy and Case B where the variogram model ignores zonal anisotropy and considers only a geometric 
anisotropy structure. (a) and (b) Permeability fields for Cases A and B respectively. (c) and (d) Oil 
saturation profile during production for Cases A and B respectively. (e) and (f) Distributions of times to 
reach a GOR of 0.6 (right after breakthrough) based on 100 realizations for both Cases A and B. 
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Figure 6: porosity profile along a vertical well with a clear vertical trend.  A linear trend model is fitted to 
the data (solid line) 

 

 

 

γ

Distance

Semivariogram - Normal Score Porosity

0.0 5.0 10.0 15.0 20.0 25.0 30.0

0.00

0.50

1.00

1.50

2.00

2.50

3.00

 

Figure 7: Variogram of the normal score transform of the porosity values shown in Figure 6.  The vertical 
trend in porosity reveals itself as a continuous increase in the variogram above the sill value of 1.0. 
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Figure 8: Vertical profile of the residual porosity values (after removal of the linear trend). 
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Figure 9: Variogram of the normal score transform of the residual of porosity values shown above.  The 
variogram reaches the expected sill value of 1.0. 
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Figure 10: (a) Experimental horizontal and vertical variograms; (b) Structure one represents a nugget 
effect; (c) Structure two represents geometric anisotropy; (d) Structure three represents zonal anisotropy. 
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Figure 11: 2-D illustration of a fracture network, upscaled permeability realization, and variogram map of 
the permeability field.  Note the two directions of continuity. 
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Figure 12: 2-D Experimental and model variograms for directions 0 (North), 15, 30, 45, 60, 75 degrees. 
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Figure 13: Experimental and model variograms for directions 90, 105, 120, 135, 150, 165 degrees.  
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Figure 14: Rose diagram of fitted ranges.  
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(a) Upscaled realization
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(b) Variogram map
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(c) SGS with multiple anisotropic structures
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(d) Variogram map
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(e) SGS with single variogram structure
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(f) Variogram map
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Figure 15: (a) and (b) Reference upscaled permeability field and associated variogram map; (c) and (d) 
SGS using multiple directional anisotropy variogram model and variogram map; (e) and (f) SGS using 
single structure variogram model and variogram map. Rose diagram of fitted ranges  
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Figure 16: Horizontal and vertical variogram fitted with a combination of exponential and dampened hole 
effect variograms.  Calculated from a Canadian reservoir. 
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Figure 17: Horizontal and vertical variogram fitted with a combination three spherical variograms.  These 
variograms were calculated from the “Amoco” data, made available for testing geostatistical algorithms.  
Note the zonal anisotropy evident in the vertical direction and the trend in the horizontal variogram. 
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Figure 18: Horizontal and vertical facies variogram for a major Arabian carbonate reservoir (SPE 29869). 
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Figure 19: Horizontal and vertical porosity variogram for a major Arabian carbonate reservoir (SPE 
29869). 
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Figure 20: Vertical and horizontal semivariogram from two vertical wells in a fluvial-deltaic reservoir.  The 
bullets are the experimentally calculated points and the solid line is the fitted model.  The model in the 
horizontal direction is based on a combination of analogue data and the sole point calculated at the distance 
between the wells. 
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