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Abstract

Seismic impedance provides information on the relative proportion of different facies types.
It is important to integrate such seismic data in the construction of detailed 3-D facies
models, which are used for reservoir management. Two critical challenges faced in the
integration of seismic impedance data: (1) the seismic data is at a larger scale than the
well data / geological modeling cells, and (2) the seismic data provides soft (imprecise)
information on the facies proportions within that large volume.

A novel block cokriging approach was developed and implemented. This method was
adapted for use in sequential indicator simulation to explicitly account for the large scale
soft seismic data. Conventional sequential indicator simulation and a popular alternative,
SIS with Bayesian updating, were considered for comparison purposes.

The key challenge in applying stochastic simulation with block cokriging is the construc-
tion of a licit model of coregionalization between the “hard” well data and the “soft” seismic
data. A hybrid procedure is presented that can be applied in the common case of limited well
data.

The Albacora field offshore Brazil consists of deep water turbidite sands, shales, and
cemented sands. Good quality seismic data and significant variations in facies proportions
make this an excellent example to illustrate the benefit of integrating seismic data in high
resolution 3-D facies modeling.

KEYWORDS: geostatistical simulation, stochastic modeling, reservoir characterization,
Bayesian updating, block cokriging

Introduction

One goal of reservoir modeling teams is to build high resolution predictive reservoir models
of facies, porosity, and permeability that, by construction, honor all available reservoir data.
These numerical models provide reliable predictions of future reservoir performance at all
stages of the reservoir life cycle. The unavoidable uncertainty in reservoir performance
forecasting will be measured and minimized by such reliable numerical reservoir models.
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The available data includes, but is not limited to, conceptual geological models, seismic
data, core data, well log data, DST/RFT data, well test data, and historical production
data. Each source of data carries information, at different scales and with varying levels
of precision, related to the true distribution of petrophysical and fluid properties in the
reservoir. Integrating all available data by construction in numerical geological models will
make it possible for reservoir management teams to quickly consider numerous scenarios to
optimize each reservoir management plan.

Observations and interpretations related to seismic data are particularly difficult to
build into predictive reservoir models. This paper addresses this challenging aspect of
data integration. Seismic data is important because it provides information in the vast
interwell region; most other data provides information only within small localized volumes.
The challenge is to build high resolution models that account for the large scale imprecise
seismic data [3, 6, 8, 10].

Seismic-derived acoustic impedance data provides information on facies types and poros-
ity. The emphasis of this paper is modeling facies types; the facies types are, in general,
more important since they constrain the allowable range of porosity, permeability, and rel-
ative permeability. There are two different approaches to facies modeling (1) cell-based
facies modeling where the spatial distribution of the facies types is statistically constrained
with n-point statistics such as variograms and transition probabilities, and (2) object-based
facies modeling where the spatial distribution of facies types is created with geologically
realistic objects embedded within a matrix facies type. The choice of the most appropriate
method depends on the depositional environment, the relative proportions of the different
facies types, and the presence of diagenetic overprint.

Both approaches have their place; however, a cell-based approach is considered most
appropriate for the Albacora reservoir, which was the focus of the case study. The main
reason for this choice is the diagenetic cements, which defy simple object parameterization.

There are a number of different cell-based facies modeling techniques. Indicator sim-
ulation provides great flexibility, particularly for the integration of seismic data, and was
used in this study. A common alternative cell-based approach is based on truncating con-
tinuous Gaussian fields [14]. This approach was not used because of the implicit nesting of
the variables and the inflexibility or only one varigoram. It is worth noting, however, that
the “variogram downscaling” procedures developed below could be applied for truncated
Gaussian simulation.

At the heart of indicator simulation is the use of kriging (spatial regression) to determine
the conditional probability of each facies type. In presence of seismic data the kriging
equations must be modified to weight the seismic data, a procedure called cokriging. Such
cokriging requires a model for the spatial correlation of the facies types, the seismic data,
and the cross correlation between facies types and seismic data. Inference of these models
of spatial correlation is the critical problem. In addition to the mathematical constraints
on such “models of coregionalization,” a confounding factor is that the seismic data is at a
significantly larger scale that the well-derived indicator data. The requirement is a small
scale model of coregionalization; otherwise, the cross correlation depends not only on the
distance h between the seismic and well data but on the relative position of the well data
within the larger seismic data volume. One procedure for inference of the required model
of coregionalization will be developed below [5].
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The conventional sequential indicator simulation (SIS) procedure is modified to perform
cokriging with large scale seismic data and small scale well data. This modified procedure
explicitly accounts for the scale and precision of the seismic data. An alternative to this
somewhat complex procedure is the “Bayesian updating” approach [8], which requires only
the correlation (variogram) of the well data. This simpler procedure will also be considered
in the case study.

The Albacora reservoir is an offshore Brazilian reservoir consisting of deepwater tur-
bidite sands and shale. The four facies of interest are (1) clean turbidite sandstone with
a minor fraction of concretions, (2) sandstone with a significant proportion of concretions,
(3) sandstone with significant concretions mixed with shale, and (4) clearly non-reservoir
facies consisting of shale and entirely cemented sandstone. The spatial distribution of these
facies types has an overwhelming effect on fluid flow. A reservoir characterization study was
undertaken to model the facies distribution. Good quality 3-D seismic data are available
over the study area; the inverted impedance values are sensitive to the amount of reservoir
/ non-reservoir, thus is importance to include in the reservoir characterization study. The
final facies models will be used for reservoir management decision making. The focus of this
paper is on methods to construct facies models consistent with the well and seismic data.

Methodology

There are k = 1, . . . ,K facies types with overall average proportions of pk, k = 1, . . . ,K
where

∑K
k=1 pk = 1. Local well data at location u are represented as a series of K indicator

data defined as:

i(u; k) =

{

1, if facies k prevails at location u

0, otherwise
k = 1, . . . ,K (1)

The expected values (averages) of the indicator data correspond to the global proportions
pk, k = 1, . . . ,K.

The notation p(uβ ; k), k = 1, . . . ,K will be used for the seismic-derived probability of
facies k at block location uβ. The modeling scale (associated to the hard well data scale)
will be denoted with a v and the seismic scale will be denoted with a V . The notation |v|
or |V | refers to the measure or dimension of the well and seismic data, respectively. This
measure depends on direction. For example, the seismic data V is larger than the well data
v in the vertical direction whereas it may coincide, or even be smaller than, the modeling
cell size v in the horizontal direction.

Sequential Indicator Simulation

The sequential indicator simulation (SIS) approach provides flexibility to integrate soft data
and unique patterns of spatial correlation. An object-based approach would be difficult to
apply given the lack of clear object geometries; the shales and diagenetic cements do not
follow any obvious object parameterization. The SIS methodology:

1. Loop over all cells in the 3-D model in random order.

2. At each cell location:
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(a) Find nearby data: (1) well data, (2) cells that have already been informed earlier
in the path, and (3) seismic data

(b) Estimate the probability of each facies, k = 1, . . . ,K (where K=4 in our case)
by kriging:

i∗(u; k) =
nw
∑

α=1

λα · i(uα; k) +
ns
∑

β=1

λ′

β · p(uβ ; k) (2)

where i∗(u; k), k = 1, . . . ,K are the probabilities of facies k = 1, . . . ,K to be
present at location u, nw is the number of nearby well data and previously
informed cells, λα, α = 1, . . . , nw are the weights they receive, i(uα; k) is the
probability that location uα is in facies k (0 or 1 for these hard data), ns is the
number of nearby seismic data, λ′

β, β = 1, . . . , ns are the weights they receive,
and p(uβ; k) is the probability that location uβ is in facies k (between 0 to 1
depending on the acoustic impedance and the calibration with well data).

A common assumption is to take the single collocated seismic value and build
a model of coregionalization that depends solely on the collocated correlation
coefficient [2, 3, 15]. A number of studies have considered the impact ot this
assumption [6].

(c) Assemble the estimated probabilities into a cumulative distribution. The order-
ing does not matter as long as the random number (next step) is not correlated
with the ordering.

(d) Draw a random number between 0 and 1 and read the corresponding facies code
k′ from cumulative distribution.

(e) Assign the facies code k′ to the location u.

3. Return to 2 until every cell in the model has been assigned a facies code

4. Repeat with different random number seeds for multiple equally probably realizations.

This procedure is classical [1]. The key step for our purposes is how to establish the “correct”
weights to give to the well data and the seismic data. There are three variants of SIS that we
will consider (1) well data alone, (2) the Bayesian updating approach for simply integrating
seismic data, and (3) a block cokriging approach for rigorous integration. The following
steps are required to implement SIS.

Seismic-Derived Probabilities

The seismic attribute(s) or acoustic impedance (AI) must be calibrated with the facies
proportions. We should note that cokriging does not require this calibration; the original
AI units could be retained and the calibration could enter through the cross variogram
between the hard “i” data and soft “AI” data. Notwithstanding the flexibility of cokriging
to handle untransformed AI units, we prefer the calibrated p(u;k) values for a number of
reasons (1) the cross variogram may be poorly informed with limited well data, and (2)
the proportion / probability data are easier to interpret; they are in units we understand.
There are alternative approaches to seismic calibration including [11].
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ai-class p(uβ; k = 1, ai) p(uβ; k = 2, ai) p(uβ ; k = 3, ai) p(uβ; k = 4, ai)

−∞ - ai1
ai1 - ai2
ai2 - ai3

. . .
ai9 - ∞

Table 1: An illustration of the values needed to calibrate acoustic impedance (ai), or any other
seismic attribute, with the probability (or proportion) of each facies type p(uβ; k, ai), k = 1, . . .K.

The calibration procedure consists of determining the seismic-derived prior probabilities
p(uβ; k, ai), k = 1, . . . ,K for each ai acoustic impedance value. The calibration is accom-
plished by dividing the range of AI-variability into a series of classes, say 10 classes based
on the deciles of the AI histogram. For each ai datum, at a well location, there are cor-
responding actual proportions of each facies. Combining the facies proportions for all ai
values within the same class removes the variability that will be encountered from sample
to sample. The result of this calibration exercise is a table of prior probabilities. Table 1
shows an empty calibration table for K = 4 facies types and 10 ai classes.

Of particular concern in constructing such a calibration table is the vertical resolution
of the seismic data. The seismic data (ai-values) may be recorded at a small sample rate
(2 ms or less); however, the “real” vertical resolution may be much coarser. It is nec-
essary to consider a vertical window of realistic size to calculate the prior probabilities:
p(uβ; k, ai), k = 1, . . . K. Otherwise, the calibration will not be representative of the true
seismic resolution and short scale noise may mask the value of the seismic data.

Indicator Variogram Inference

Regardless of which variant of indicator simulation is used, we must infer a set of K indicator
variograms that descibe the spatial correlation structure of each facies type. The main
challenge in variogram inference is the horizontal direction; there are often too few wells to
calculate a reliable horizontal variogram. The vertical resolution, however, usually permits
a reliable vertical variogram to be calculated. It is difficult to use geological expertise or
analogue data for this problem because of the lack of a reliable database. Our approach
is to use the seismic data to guide the selection of horizontal parameters for the indicator
variograms.

Each facies indicator variogram will be calculated in turn. The first step is to calculate
the vertical indicator variogram γk(h) from the well data and standardize it to unit sill by
the variance pk(1−pk). Secondly, calculate the horizontal variogram from the corresponding
seismic proportions, i.e., the p(uβ ; k, ai) values. The seismic proportion variograms depend
on facies type k = 1, . . . ,K; however, there is unavoidable overlap since the proportions
come from the same underlying acoustic rock properties. The seismic pk variogram is also
standardized to unit sill. Finally, the vertical and horizontal variograms are fit with the
shape of the vertical indicator variogram - only the length scales or ranges and any zonal
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anisotropy is taken from the seismic proportion variogram.
There are a number of assumptions in this hybrid approach to determine indicator

variograms. The most important assumption is that the pk variogram provides a reasonable
approximation to the horizontal indicator i range. This is reasonable if the seismic is
well correlated to the facies proportions and if the vertical averaging of the seismic is not
too pronounced. A second constraint is that we cannot identify zonal anisotropy because
we have no consistent 3-D dataset for variogram calculation. This is probably incorrect;
however, no other data is available to assist us with inference. Notwithstanding these
limiting assumptions, there is little alternative in presence of limited “hard” well data. Of
course, experience from other better-drilled reservoirs in the same basin could be used.

An example of the steps in this procedure is presented later with the case study.

The Bayesian Updating Approach

No further inference is required to apply the Bayesian Updating Approach to integrate the
seismic data in SIS; the indicator variograms and calibration are sufficient. This method is
gaining in popularity because of its simplicity and ease with which seismic is accounted for
[7, 8, 9].

At each location along the random path (recall procedure described above), indicator
kriging is used to estimate the i∗(u; k), k = 1, . . . ,K values from hard i data alone, then
the probabilities are modified (updated) as follows:

i∗∗(u; k) = i∗(u; k) ·
p(uβ ; k, ai)

pk

· C k = 1, . . . ,K (3)

where i∗∗(u; k) are the updated probabilities for simulation, p(uβ ; k, ai) is the seismic-
derived probability of facies k at location u being considered, pk is the overall proportion of
facies k, and C is a normalization constant to ensure that the sum of the final probabilities
is 1.0. The factor p(uβ; k, ai)/pk operates to increase or decrease the probability depending
on the difference of the calibrated facies proportion from the global proportion.

The simplicity and utility of this approach is appealing. There are two implicit assump-
tions behind Bayesian updating that may be important (1) the collocated seismic data
perfectly screens nearby seismic data - a Markov type model of coregionalization or cross
variability between seismic and facies indicator, and (2) the scale of the seismic is implicitly
assumed to be the same as the geological cell size. The block cokriging approach is theo-
retically more rigorous and can be consdered for comparison purposes. The first step in the
cokriging process is to infer a licit model of coregionalization.

Cross/Seismic Variogram Inference

The premise of this paper is that rigorous accounting of the scale and precision of seismic
data leads to better reservoir models. As stated above, this calls for a seismic variogram
and a cross well-seismic variogram at a small scale. The inference of such variogram models
is critical to the proposed method.

Cokriging requires i, i − p, and p variograms at a small scale for all facies types, k =
1, . . . ,K. At this point we only have the i variograms that have been defined from both well
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data and seismic data. Cokriging requires a positive definite model of coregionalization.
In particular, the linear model of coregionalization (LMC) is used almost exclusively in
geostatistics [12]. For each facies k = 1, . . . ,K the LMC model would take the form:

γi,i(h) = C1

i,i + C2

i,i · Γ
2(h) + C3

i,i · Γ
3(h) . . .

γi,p(h) = C1

i,p + C2

i,p · Γ
2(h) + C3

i,p · Γ
3(h) . . . (4)

γp,p(h) = C1

p,p + C2

p,p · Γ
2(h) + C3

p,p · Γ
3(h) . . .

where Γj , j = 1, . . . , ns are common variogram models of specified type (spherical, expo-
nential, Gaussian, . . . ), range, and anisotropy. Only the sill C parameters are allowed to
vary between the three variogram models. Moreover the C values must satisfy the following
constraints:

Ci
i,i > 0 ∀ i

Ci
p,p > 0 ∀ i (5)

Ci
i,i · C

i
p,p > Ci

i,p · C
i
i,p ∀ i

the underlying hypothesis is that the i and p variables are linear combinations of a common
pool of random variables.

In the present context we have the basic nested structures from our i variogram models.
The essential step now is to link the large V scale seismic p, p variogram and the large V
scale cross i, p variogram to small v scale models that can be fit with the linear model of
coregionalization described above. For illustration, the basic relations to “downscale” a p, p
variogram will be described below, see also [13, 5]. The same procedure may be applied to
the cross variogram.

1. The nugget effect decreases as a variable is averaged to larger scale; the nugget is
higher for small scale data. Since the nugget variance is, by definition, random, the
scaling relation is as follows:

[

C0

p

]

v
= C0

p ·
|V |

|v|
(6)

where the v subscript denotes the geological modeling scale, |V | is the size of seismic
volume, and |v| is the size of the geological modeling cells.

2. The ranges of the basic structures are reduced by the size of the averaging volume

av = aV − (|V | − |v|) (7)

where the notation |V | and |v| are used here to denote the dimension of the averaging
volume in different directions. For example, if V and v are the same size in one
particular direction (say, horizontally) then the range does not change. Of course,
the vertical range would almost certainly be different since the V -scale is 10-50 times
larger than the geological modeling scale.
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3. The sill of each basic structure is increased for smaller scales. In this case (as compared
to the nugget effect discussed above) we need to account for the specific nature of the
variogram. The scaling relationship:

[

Cj
p

]

v
= Cj

p ·
1 − Γ

j
(v, v)

1 − Γ
j
(V, V )

(8)

where the average variogram Γ
j
(v, v) and Γ

j
(V, V ) values are the classical “gamma-

bar” values calculated using the point range.

The variance of the small scale p values is the sum of the downscaled C values, that is,
[

σ2

p

]

v
=

∑

j

[

Cj
p

]

v
(9)

Where the small scale variance is always greater than the large scale variance; the variance
always decreases when a variable is averaged to a larger scale. Note that we can apply
these same relations with the cross variogram. The variance in equation 9 would be a cross
covariance. These relations can be applied directly to “downscale” the sill parameters of
the seismic pk variograms. The difficulty is inference of the cross i − p variogram, since
there are too few well data to reliably inform an experimental cross variogram (even in the
vertical direction after averaging to the V -scale). We will make two key assumptions to
establish the cross variogram parameters: (1) the sill of the cross variogram is the small
scale cross covariance, and (2) the shape of the cross variogram is the same as the shape
of the direct i, i variogram. These are justifiable since the sill of the cross variogram is the
cross covariance unless there is zonal anisotropy and the shape of the direct i, i variogram
is certainly related to the cross variogram. Moreover, the LMC requires the same nested
variogram structures. Therefore, the cross variogram parameters are given by:

Cj
i,p = Cj

i · [ρi,p]v , j = 0, 1, . . . (10)

where [ρi,p]v is the correlation between the small scale indicator data and seismic data. A
correlation coefficient has been used rather than a covariance because it is more intuitive to
most people (which makes it easier to check the model parameters before using them). As
a consequence, the sill parameters for the small scale indicator variogram γi,i(h) and the
small scale seismic variogram γp,p(h) must be normalized to sum to 1.

The small scale correlation coefficient [ρi,p]v can be determined from the large scale
correlation coefficient [ρi,p]V , which can be calculated from the calibration data. That is,
[ρi,p]V is calculated by cross plotting the actual proportion of facies at the well locations
against the seismic predictions. The downscaling equations given above are used to calculate
the small scale correlation coefficient. The procedure can be automated and requires no
interpretation, hence it can be left to computer code. The small scale correlation coefficient
[ρi,p]v is calculated from the small scale sill / variance values:

[ρi,p]v =

[

σ2

i,p

]

v
√

[

σ2

i

]

v

[

σ2
p

]

v

(11)
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where the variance values are given by:

[

σ2

i

]

v
=

∑j
i

[

Cj
i

]

v
· fj

∑

j

[

Cj
i

]

v

and
[

σ2

p

]

v
=

∑j
p

[

Cj
p

]

v
· fj

∑

j

[

Cj
p

]

v

(12)

note that the fj values are the scaling factors in downscaling equations 6 and 8.
Application of this procedure leads to a complete LMC model of coregionalization that

can be used for block cokriging with the seismic data and well data. Of course, the model
must be checked to ensure positive definiteness (see 5) and adjusted if necessary.

Block Cokriging

Block cokriging accounts for the scale of the seismic data and the calibration from acoustic
impedance to facies proportions. The cokriging formalism is classical; however, most geo-
statistical modeling applications consider the different data types to be at the same spatial
scale. Once a small scale LMC model of coregionalization has been established, spatial
averages of the variogram (γ or gamma-bar values) are used in the cokriging equations.

Solution of the cokriging system of equations leads to the weights needed by equation
(2), that is, the λα and λ′

β weights applied to the hard and soft data. We should comment
that implementation of block cokriging in a conventional SIS program (such as sisim in
GSLIB [4]) is straightforward.

Application to Albacora

The offshore Albacora field consists of deep water turbidite sands, shales, and cemented
sands. The important upper portion of the reservoir was modeled with seven vertical
wells and two horizontal wells. The model was constructed with constant thickness (2.5
m) cells conforming to the reservoir top. Based on prior geological work, four facies were
considered in the sequential indicator simulation: (1) types 1 & 2.1 (clean sandstone with up
to about 15% concretions), (2) type 2.2 (up to 30% concretions), (3) type 3 (about one half a
combination of concretions and shale), and (4) types 4 & 5 (non-reservoir). The distinction
between facies types 2 and 3 is that 3 has a slightly greater amount of non-reservoir rock and
it contains shales that have greater lateral continuity than the concretions. The laterally
continuous shales of facies type 3 may lead to a reduced vertical permeability.

Figure 1 shows a base map with the seven well locations. A cross section through four
wells showing interpreted geologic correlation is shown on Figure 2. The model described
here goes from the top of the reservoir to the “B” horizon. The “C” horizon marked on the
Figure 2 is largely cemented and is added deterministically after modeling the other facies
stochastically.

Acoustic impedance from the wells and seismic has a strong negative correlation with
the porosity. The porosity distributions within each of the four facies types described above
are quite different; therefore, it will be possible to use the seismic data to constrain the
3-D distribution of facies. The facies were assigned to 2.5 m thick cells. Although the
well log data provide greater resolution, 2.5 m cells are suitable because (1) the original
facies are defined by observing the concretions, shale, and sand over 1-3 m of core, and
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(2) the 0.2 m sampling resolution of the well logs is due to the frequent sampling of the
tool responses and is not representative of the true volume measured by the well logs. The
acoustic impedance AI is available at an interval of 2 ms. Of course, the resolution is not
that good (2 ms is approximately 4 meters). Each AI datum represents a vertical average
of 4- 8 ms (considered to be about 15 m for this study). This averaging will be considered
in modeling facies through the “block cokriging” approach.

An initial assessment of the value of seismic data is shown on Figure 3, which shows
a cross plot of seismic impedance (Y axis) versus the proportion of facies 1 (X axis). The
correlation of impedance with the proportions of facies 2, 3, and 4 is not as good (see later).

A horizontal slice through impedance cube is shown on Figure 4. A cross section through
impedance cube is shown on Figure 5. These slices show significant areal and vertical vari-
ations in impedance that, in turn, constrain proportons of facies. Note the low impedance
to the northwest and the high impedance to the south. The vertical variations are quite
smooth.

The seismic impedance was calibrated to facies proportions and four arrays of propor-
tions were generated. Figure 6 shows a cross plot of the seismic derived proportion of facies
1 (X axis) versus the actual proportion of facies 1 (Y axis). The correlation coefficient here
is 0.61, which is used to establish the linear model of coregionalization described above. The
correlation coefficients for the other facies are 0.30, 0.64, and 0.39, respectively for facies 2,
3, and 4.

The vertical indicator variogram for facies 1 is shown on Figure 7. Corresponding
horizontal varigorams through cube of seismic derived proportions of facies 1 is shown on
Figure 8. A 3-D variogram model can be put together from these 3 directional variograms.
A short FORTRAN program was written to take the indicator variograms (the variogram
was different for each of the facies) and perform the downscaling operations presented above.
This program also ensures that the result is positive definite.

The indicator variograms could be used directly (before downscaling) to perform se-
quential indicator simulation without regard for the seismic data. A horizontal slice and
cross section of the sequential indicator simulation model (without using the seismic data)
are shown on Figures 9 and reffasimxz. Close examination of the model reveals that the
well data and variograms are honored; of course, the trends revealed in the seismic data are
not honored.

Adding the seismic data with the Bayesian updating approach leads to models that honor
the seismic data (once again the indicator variograms are used directly). A horizontal slice
and cross section of the sequential indicator simulation model with the Bayesian updating
option are shown on Figures 11 and reffasimbaxz.

The full indicator variogram models can be used to build an indicator simulation model
with block cokriging. A horizontal slice and cross section of the sequential indicator simu-
lation model with block cokriging are shown on Figures 13 and reffasimbcxz.

The Bayesian updating and the block cokriging models both honor the seismic and
appear similar. There is no question that application of Bayesian updating is similar. It is
left to future work to perform a rigorous cross validation study to determine the value of
the more complete block cokriging approach.
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Conclusions

Reservoir modeling proceeds sequentially. One reservoir model is built at a time to create
a family of multiple equiprobable stochastic reservoir models. Each major reservoir layer
bounded by chronostratigraphic surfaces is modeled independently and then combined in
a final reservoir model. Within a layer, the distribution of facies types is constructed to
honor all available well and seismic data. Finally, within each facies type, porosity and
permeability can be modeled.

The rigorous approach of block cokriging has been developed for estimation of the re-
quired probabilities for sequential indicator simulation. A case study with the Albacora
field illustrates the practical applicability of the method. The key to application of block
cokriging is the inference of a licit model of coregionalization between the well-based “hard”
indicator data and the seismic-derived “soft” indicator data.

Variogram Inference is difficult in practice because of (1) sparse well data, which makes
horizontal variogram inference difficult, and (2) the vertical averaging of the seismic data,
which makes it difficult to fit the required model of coregionalization at a small scale.
These problems were addressed by a hybrid approach to variogram inference and the use of
classical equations for variogram averaging.

A number of assumptions have been documented throughout this paper. One aspect of
future work is to consider if these assumptions can be relaxed and to document situations
where they are inappropriate. A second aspect of future work is to consider further case
studies.
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Figure 1: Base map showing the well locations and areal extent of reservoir being modeled.
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Figure 2: Cross section through three wells showing interpreted geologic correlation.
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Figure 3: Cross plot of seismic impedance (Y axis) versus the proportion of facies 1 (X axis). Note
the good correlation.
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Figure 4: Horizontal slice through impedance cube.
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Figure 5: Cross section through impedance cube.

Figure 6: Cross plot of seismic derived proportion (X axis) versus the actual proportion of facies 1
(Y axis).
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Figure 7: Vertical indicator variogram for facies 1.

Figure 8: Directional horizontal variograms through cube of seismic derived proportions of facies
1.
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Figure 10: Cross section through facies model generated by sequential indicator simulation (no
seismic data).
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Figure 11: Horizontal slice through facies model generated by sequential indicator simulation with
Bayesian updating.
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Figure 12: Cross section through facies model generated by sequential indicator simulation with
Bayesian updating.
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Figure 13: Horizontal slice through facies model generated by sequential indicator simulation with
Block cokriging.
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Figure 14: Cross section through facies model generated by sequential indicator simulation with
Block cokriging.
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