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Abstract

This short note presents an application of a rule induction algorithm to an object-based model ex-
ample. Our purpose is to show how rule induction algorithms extract understandable rules from
geological measurements. The data used in this example was generated by object modeling. Fluvial
sand channels and shale are assigned to the models with distinct permeability values. The effective
permeabilities are evaluated with flow simulation program. We know that the effective permeability
of the models are determined by the geometric parameters used for the generation of the models, such
as width, height, orientation, and sinuosity of the channels. The rule induction algorithm retrieves
rules from the database that match our understanding of flow processes.

The generation of the training data is illustrated in detail, the methodology is breifly reviewed
and the results are intepretated. Programs used for this example are documented.

Introduction

The application of data mining techniques has grown in recent years to deal with large databases.
The main focus of data mining is to derive predictive models, rules and relationships from large
databases, i.e., to extract knowledge from data. There are different types of mathematical modeling
techniques involved in data mining. Most statistical and numerical techniques, including neural
networks, are not rule based and the knowledge extracted from data is expressed as the parameters
of statistical or mathematical models. Rule based techniques present knowledge in natural language
with semantics and syntax understandable by people. Therefore, they provide not only predictive
models, but also insight into the physics of the underlying phenomenon.

Recently, we proposed a new algorithm of rule induction for geological data and the theory
of the proposed algorithm was described in detail in the companion reports [1, 2]. There are
many situations in the petroleum industry where rule induction could be applied. In this report,
a synthetic data set is used to illustrate the methodology and demonstrate the feasibility of the
proposed algorithm.

In fluvial or deepwater depositional settings, the sandy facies occur as sand channels with asso-
ciated levee and crevasse deposits. We only consider sand-filled channels embedded within a matrix
of shale. The corresponding effective permeability depends on the orientation, sinuosity, width,
thickness and geometry of the channels. The relationship between these geometric features and the
effective permeability are rules to be extracted for future use. For this purpose, channel facies mod-
els are created by with a variety of channel parameters such as orientation, thickness, and sinuosity,
which are called condition attributes for the rule induction system. For a given set of parameters,
multiple realizations of channel facies models are generated. Flow simulation is conducted for each
generated model and the effective permeability in the X direction is taken as a measure of quality
(decision class) of the model. Rule induction is carried out in the constructed training set. The
performance of the proposed algorithm is illustrated.
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Method Summary

The method of the rule induction algorithm is described in detail in the companion reports, and will
be only described conceptually here.

In the proposed rule induction algorithm, we are searching for a full set of rules that comply
with all possible configurations of condition attributes. Every observation in the training set leads
to a potential rule; however, there are challenges to establish the relative importance and reliablility
of rules. To identify significance of the rules, we have introduced concepts like coverage, accuracy
and significance. Important rules have high accuracy, that is predictive ability, and high coverage,
that is, they are applicable in many situations. For simplicity, accuracy and coverage are combined
into a single measure of significance. Second, a training data set may not cover the entire set of
configurations; some condition attribute configuration may not have observations. Future observa-
tions, however, may happen to have that configuration. Therefore, blanks in the full rule set must
be filled in. It is reasonable that the blanks in the full rule table would be filled in by rules generated
from subsets of data variable configurations. To proceed in this direction, an information measure
has been defined to evaluate the importance of subsets of condition attributes. Third, for some
rule induction problem, the distinguishablility between decision classes may be questionable. The
similarity among decision classes could be measured by the same information measure.

The rule induction procedure begins by enumerating all possible configurations of condition
attributes and counting the observations of each condition configuration and decision class. The
number of instances of each configuration received is called coverage, which determines the relia-
bility of rules derived from such a configuration. Conditional probability of each decision class for
given condition configuration is then calculated. The original data table is then reduced into a
configuration table. The conditional probabilities are transformed into accuracy measures by scaling
them into a range between -1 and +1. Significance is then calculated based on em accuracy and
coverage. Rules are sorted by significance.

Data Generation for Channel Systems

The data set consists of the geometric features of channel sands and the associated effective per-
meability. The object modeling program fluvsim was used to generate multiple facies models. For
simplicity, but without loss of generatlity, only channel sand and shale facies were considered. The
simulation domain is a 100 by 100 two-dimensional horizontal section. All parameters of fluvsim
are fixed except orientation (O), sinuosity (S), and width (W) (width/thickness ratio). Three trian-
gular distributions are set for each of these three adjustable parameters representing low, expected,
and high values. There are 27 combinations (sets) of parameters. For each set of parameters, the
actual parameter values were randomly drawn and 50 realizations generated. Thus, a total of 1350
different facies models were created. For each facies model, permeability values of 100 md and 1 md
were assigned to channel sand and shale, respectively. A flow simulation was conducted in the X
direction with no-flow boundaries, using the flowsim. The effective permeability in the X direction
was taken as a measure of the quality or productivity of each facies model.

A C shell script is written to automate the process. Figure 1 illustrates the flow-chart of the
shell script and Figure 2 and Figure 3 show the code of the shell script.

The training data were organized as a data table with 1350 rows, each representing one facies
model, and 4 columns, where the first three denotes the values of three condition attributes, i.e.,
the orientation, sinuosity and width of the channels, and the fourth column was the value of the
decision attribute, i.e., the effective permeability in X direction.

Figure 4, Figure 5 and Figure 6 show one of 50 facies models for each of 27 parameter sets. The
composite histogram of the 1350 realizations and the histograms of effective permeability of the 27
parameter sets are shown in Figures 7, 8, 9, and 10, respectively.
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No Cond. Att. Basic Statistics Effective permeability

O S W mean K Std. K 0 (≤ 4) 1(4-14) 2 (≥ 14)

1 0 0 0 3.90 1.53 32 (64%) 18 (36%) 0 (0%)
2 0 0 1 2.22 0.48 49 (98%) 1 (2%) 0 (0%)
3 0 0 2 1.91 0.31 50(100%) 0 (0%) 0 (0%)
4 0 1 0 8.50 2.57 4 (8%) 46 (92%) 0 (0%)
5 0 1 1 5.14 2.53 23 (46%) 26 (52%) 1 (2%)
6 0 1 2 4.29 2.87 34 (68%) 16 (32%) 0 (0%)
7 0 2 0 9.40 2.30 1 (2%) 49 (98%) 0 (0%)
8 0 2 1 9.69 4.26 3 (6%) 39 (78%) 8 (16%)
9 0 2 2 8.16 4.75 14 (28%) 30 (60%) 6 (12%)
10 1 0 0 8.47 2.75 2 (4%) 47 (94%) 1 (2%)
11 1 0 1 6.94 5.05 23 (46%) 21 (42%) 6 (12%)
12 1 0 2 4.55 4.01 34 (68%) 12 (24%) 4 (8%)
13 1 1 0 8.21 1.95 0 (0%) 50 (100%) 0 (0%)
14 1 1 1 7.88 3.28 6 (12%) 42 (84%) 2 (4%)
15 1 1 2 5.28 3.49 25 (50%) 23 (46%) 2 (4%)
16 1 2 0 5.02 1.00 5 (10%) 45 (90%) 0 (0%)
17 1 2 1 5.66 1.76 6 (12%) 44 (88%) 0 (0%)
18 1 2 2 5.97 2.52 15 (30%) 35 (70%) 0 (0%)
19 2 0 0 17.46 2.17 0 (0%) 2 (4%) 48 (96%)
20 2 0 1 18.74 4.05 0 (0%) 9 (18%) 41 (82%)
21 2 0 2 21.19 5.80 0 (0%) 6 (12%) 44 (88%)
22 2 1 0 8.66 1.44 0 (0%) 50 (100%) 0 (0%)
23 2 1 1 8.54 2.64 3 (6%) 46 (92%) 1 (2%)
24 2 1 2 9.08 4.17 8 (16%) 34 (68%) 8 (16%)
25 2 2 0 3.97 0.77 29 (58%) 21 (42%) 0 (0%)
26 2 2 1 3.66 1.06 35 (70%) 15 (30%) 0 (0%)
27 2 2 2 3.23 0.85 42 (84%) 8 (16%) 0 (0%)

Table 1: Parameters (codes) for fluvsim and effective permeability values

Discretization of Continuous Attributes

The rule induction method requires that the data be “binned” into categorical variables. It is
reasonable and straightforward to classify the three geometrical parameters into three categories:
columns 2 to 4 of Table 1 list the codes of the parameters used in fluvsim. The three categorical
values of orientation are 2 (good: azimuth angle of 0± 10, which is aligned with the X direction), 1
(medium: azimuth angle of 45± 10) and 0 (bad: Y azimuth angle of 90± 10, which is perpendicular
to the X direction). The three categorical values for sinuosity are 0 (low: low deviation 10± 5 and
long length of 50 ± 5 units), 1 (medium: medium deviation 20 ± 5 and medium length of 35 ± 5
units), 2 (high: high deviation 30± 5 and short length of 20± 5 units). The three categorical values
for width are 2 (large: 25± 5), 1 (medium: 15± 5) and 0 (small: 5-10).

The method of “binning” the permeability data affects the final rule induction results. For sim-
plicity, three categories were determined for the effective permeability by inspecting the permeability
histograms. Summary statistics of the effective permeability for the 50 realizations of each config-
uration are listed in columns 5 and 6 of Table 1. The three categories determined are: 2 (high:
k ≥ 14), 1 (medium: 4 < k < 14) and 0 (low: k ≤ 4). The number of instances and proportions of
the observations of each of the three decision categories for each configuration are tabulated in the
last three columns of Table 1.

By inspecting Table 1, we can expect certain rules like those listed in Table 2.
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Good O (2) and low S (0) and No matter W leads to high K (2)

Bad O (0) and low S (0) and No matter W leads to low K (0)

Good O (2) and high S (2) and No matter W leads to low K (0)

Medium O (1) mostly leads to medium K (1)

Table 2: The expected rules

Note that the “No matter W” in Table 2 indicates that the width can have any of the categorical
values; thus, width is found not to be that important in determining outcomes.

Result of Rule Induction

The algorithm ruleind was applied to the 1350 by 4 synthesized data table. Figure 11 shows
the parameter file used for the rule induction. The coverage, relative coverage, and conditional
probabilities for each decision category, accuracy and significance were calculated. Table 3 lists
the configurations of condition attributes, the occurrence frequency Co

j , and the significance so|j of
decision category o when given configuration j. By construction, all 27 possible configurations of
condition attributes in this example have equal, non-zero sample coverage. This will not be the case
for most data systems.

The full set of rules is sorted by significance for each decision category, which is listed in Table 4.
The positive rules shown in Table 5 are taken from the top portion of Table 4, which have the highest
significance values.

The negative rules as tabulated in Table 6 results are taken from the bottom portion of Table 4,
which have the lowest significance values.

The rule set is used to estimate the permeability class of training objects and table 7 lists the
accuracy rate of the classification. Even though this accuracy rate is not a good measure to evaluate
the modeling, it still can provide some indication of the prediction model.

For this synthetic data set, the training data covers all configurations by construction. Therefore,
the rule set is complete from the set with all condition attributes and there are no blanks in the
rule sets. Figure 12 shows the information value of all 7 subsets of this synthesized data set and
the full set with all three condition attributes has the highest information value. In the situation of
the full set does not cover all configurations of condition attributes, such information values will be
used to rank the subsets for retrieving corresponding rules from the subsets. Figure 13 shows the
information value change when decision classes are lumped pair-wise for the full condition attribute
set. The yellow color in diagonal elements set the basis for comparison which correspond to a
situation without decision-class lumping. Off-diagonal elements show the change in the information
values when the attributes are lumped. Colors warmer than yellow indicate an increase in the value
of information and those cooler colors denote a decrease in the information value.

Discussion and Future Work

The proposed algorithm and significance measure work well for this simple example. The most
important positive and negative rules are retrieved successfully. The proposed significance definition
combines both measures of accuracy and coverage and serves as a quality measure of the rules. Also,
the significance identifies positive and negative rules, similar to the positive region and negative
region in rough sets.

The proposed rule induction technique is suited to geological data where it is assumed that most
attributes are significant. The proposed significance measure can be used in combination with other
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No Cond. Att. Occurrence Cj,o Significance So|j
O S W Low K (0) Med. K (1) High K (2) Low K (0) Med. K (1) High K (2)

1 0 0 0 32 18 0 .640 .000 -1.000
2 0 0 1 49 1 0 .980 -.980 -1.000
3 0 0 2 50 0 0 1.000 -1.000 -1.000
4 0 1 0 4 46 0 .000 .920 -1.000
5 0 1 1 23 26 1 .000 .000 -.980
6 0 1 2 34 16 0 .680 .000 -1.000
7 0 2 0 1 49 0 -.980 .980 -1.000
8 0 2 1 3 39 8 .000 .780 .000
9 0 2 2 14 30 6 .000 .600 .000
10 1 0 0 2 47 1 .000 .940 -.980
11 1 0 1 23 21 6 .000 .000 .000
12 1 0 2 34 12 4 .680 .000 .000
13 1 1 0 0 50 0 -1.000 1.000 -1.000
14 1 1 1 6 42 2 .000 .840 .000
15 1 1 2 25 23 2 .500 .000 .000
16 1 2 0 5 45 0 .000 .900 -1.000
17 1 2 1 6 44 0 .000 .880 -1.000
18 1 2 2 15 35 0 .000 .700 -1.000
19 2 0 0 0 2 48 -1.000 .000 .960
20 2 0 1 0 9 41 -1.000 .000 .820
21 2 0 2 0 6 44 -1.000 .000 .880
22 2 1 0 0 50 0 -1.000 1.000 -1.000
23 2 1 1 3 46 1 .000 .920 -.980
24 2 1 2 8 34 8 .000 .680 .000
25 2 2 0 29 21 0 .580 .000 -1.000
26 2 2 1 35 15 0 .700 .000 -1.000
27 2 2 2 42 8 0 .840 .000 -1.000

Table 3: Potential rules for fluvsim data set
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No Cond. Att. Dec. Value So|j No Cond. Att. Dec. Value So|j
O S W O S W

19 2 0 0 2 .2623 27 2 2 2 1 -.5200
21 2 0 2 2 .2098 11 1 0 1 2 -.6400
20 2 0 1 2 .1740 14 1 1 1 0 -.6400
3 0 0 2 0 .1129 9 0 2 2 2 -.6400
2 0 0 1 0 .1073 17 1 2 1 0 -.6400
27 2 2 2 0 .0721 21 2 0 2 1 -.6400
22 2 1 0 1 .0680 16 1 2 0 0 -.7000
13 1 1 0 1 .0680 4 0 1 0 0 -.7600
7 0 2 0 1 .0647 12 1 0 2 2 -.7600
10 1 0 0 1 .0582 23 2 1 1 0 -.8200
23 2 1 1 1 .0551 8 0 2 1 0 -.8200
4 0 1 0 1 .0551 15 1 1 2 2 -.8800
16 1 2 0 1 .0520 19 2 0 0 1 -.8800
17 1 2 1 1 .0491 10 1 0 0 0 -.8800
26 2 2 1 0 .0435 14 1 1 1 2 -.8800
14 1 1 1 1 .0434 7 0 2 0 0 -.9400
12 1 0 2 0 .0399 5 0 1 1 2 -.9400
6 0 1 2 0 .0399 10 1 0 0 2 -.9400
8 0 2 1 1 .0356 2 0 0 1 1 -.9400
1 0 0 0 0 .0332 23 2 1 1 2 -.9400
18 1 2 2 1 .0262 25 2 2 0 2 -1.000
25 2 2 0 0 .0242 3 0 0 2 2 -1.000
24 2 1 2 1 .0241 26 2 2 1 2 -1.000
9 0 2 2 1 .0163 21 2 0 2 0 -1.000
15 1 1 2 0 .0141 7 0 2 0 2 -1.000
5 0 1 1 1 .0099 16 1 2 0 2 -1.000
11 1 0 1 0 .0099 13 1 1 0 2 -1.000
5 0 1 1 0 .0099 13 1 1 0 0 -1.000
15 1 1 2 1 .0059 17 1 2 1 2 -1.000
25 2 2 0 1 .0037 19 2 0 0 0 -1.000
11 1 0 1 1 .0037 4 0 1 0 2 -1.000
1 0 0 0 1 .0010 2 0 0 1 2 -1.000
6 0 1 2 1 -.0400 1 0 0 0 2 -1.000
18 1 2 2 0 -.1000 22 2 1 0 2 -1.000
26 2 2 1 1 -.1000 20 2 0 1 0 -1.000
9 0 2 2 0 -.1600 18 1 2 2 2 -1.000
12 1 0 2 1 -.2800 6 0 1 2 2 -1.000
20 2 0 1 1 -.4600 27 2 2 2 2 -1.000
24 2 1 2 2 -.5200 3 0 0 2 1 -1.000
8 0 2 1 2 -.5200 22 2 1 0 0 -1.000
24 2 1 2 0 -.5200

Table 4: Full set of rules sorted according to significance value
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Good O (2) and low S (0) and No matter W leads to high K (2)

Bad O (0) and low S (0) and large W (2) leads to low K (0)

Good O (2) and high S (2) and medium W (1) leads to low K (0)

Good O (2) and high S (2) and large W (2) leads to low K (0)

Good O (2) and medium S (1) and no matter W leads to medium K (1)

Medium O (1) and no matter S and small W (0) leads to medium K (1)

Bad O (0) and high S (2) and small W (0) leads to medium K (1)

Table 5: The derived positive rules

Good O (2) and medium S (1) and small W (0) Never leads to low K (0)

Bad O (0) and small S (0) and large W (2) Never leads to low K (1)

Good O (2) and high S (2) and large W (2) Never leads to high K (2)

Bad O (0) and medium S (1) and large W (2) Never leads to high K (2)

Medium O (1) and high S (2) and large W (2) Never leads to high K (2)

Good O (2) and small S (0) and medium W (1) Never leads to low K (0)

Table 6: The derived negative rules

1 2 3 Accuracy

1 353 90 0 79.68%
2 135 583 17 79.32%
3 12 27 133 77.33%

Table 7: Results of classification
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rule induction techniques and serves as a ranking measure to single out the most important rules.
In general, however, the algorithm will need to be extended to include attribute reduction.

The significance lies between -1 to + 1. In principle, the potential rules with largest absolute sig-
nificance values will be chosen as important rules, but there exists ambiguity of chosing a significance
threshold.
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Figure 1: Flow chart of data generation process
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Figure 2: Shell code for data generation process
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Figure 3: Shell code for data generation process(Continuation)
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Figure 4: Facies model of realization 1 for parameter distribution sets 1 to 9. The value on the left top
of each plot is the mean effective permeability of 50 realizations; the number on the right top denotes the
index of parameter distribution set
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Figure 5: Facies model of realization 1 for parameter distribution sets 10 to 18. The value on the left top
of each plot is the mean effective permeability of 50 realizations; the number on the right top denotes the
index of parameter distribution set
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Figure 6: Facies model of realization 1 for parameter distribution sets 19 to 27. The value on the left top
of each plot is the mean effective permeability of 50 realizations; the number on the right top denotes the
index of parameter distribution set
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Figure 7: Composite histogram of effective permeability of overall 1350 facies models
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Figure 8: Histograms of effective permeability of 50 realizations for parameter distribution sets 1 to 9
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Figure 9: Histograms of effective permeability of 50 realizations for parameter distribution sets 10 to 18
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Figure 10: Histograms of effective permeability of 50 realizations for parameter distribution sets 19 to 27
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Parameters for ruleind
**********************

START OF PARAMETERS:
fluvsim.sys - input data file for rule induction
3 - no. of cond. attr.
1,2,3 - cols. of cond. attr.
3,3,3 - no. of levels of cond. attrs.
0,1,2 - levels of cond. attr. 1
0,1,2 - levels of cond. attr. 2
0,1,2 - levels of cond. attr. 3
1 - no. of decision attr.
4 - col of decision attr.
3 - no. of levels of decision attr.
0,1,2 - levels of decision attr.
fluv - name of project

Figure 11: Parameter file of ruleind
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Figure 12: Information values for all subsets of condition attributes
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Figure 13: Changes in the information values when decision classes lumped pairwisely
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