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Abstract 

Most geologic phenomena show non-linear or high order connectivity, which can be appreciated from 
outcrops, forward geologic modeling, or dense sampling.  The use of multiple-point statistics, 
however, has not advanced to routinely account for such information.  Two-point variogram statistics 
remain in widespread usage because they are straightforward to infer and robust geostatistical 
simulation methods exist.  We show two developments directed toward accounting for realistic high 
order geologic continuity: (1) calibration of the variogram to account for high order continuity, and 
(2) direct accounting for such continuity in an annealing-based simulation approach. 

Variograms may be calibrated so that analytical dispersion variances match experimental dispersion 
variances calculated from a series of different scales.  We show that, in general, the variogram range 
must be extended by up to 50% to account for additional high order continuity.  We also show that 
geostatistical models created with the corrected variograms better reflect the spatial distribution and 
flow properties of the true underlying population.  This first proposal improves the accuracy of 
conventional algorithms. 

Direct use of multiple-points statistics may be desirable.  Different methods exist for this task.  The 
use of annealing is gradually becoming practical with increasing computer power and improved 
understanding of problem formulation.  We show that annealing can be set up to integrate multiple-
point statistics in a practical and efficient manner. 

Our proposals are illustrated with two sedimentary examples.  The theoretical prediction of 
dispersion variance is compared to observation.  The proposed technique for variogram calibration is 
illustrated.  We show more realistic geostatistical simulations and improved integration of data. 

Introduction 
Geologic features rarely exhibit continuity that can be adequately described by two-point statistics.  
Nevertheless, two-point statistics remain in widespread usage for many reasons including (1) many 
software programs and accumulated expertise exist to use covariance/variogram-type statistics and (2) 
the direct use of multiple-point statistics is problematic. 

Many proposals exist for the direct use of multiple-point statistics (direct inference of conditional 
probabilities, 1990, extended normal equations, Guardiano and Srivastava, 1992; annealing-based 
schemes, Deutsch, 1992; and neural network iterative schemes, Caers and Journel, 1998).  The 
inference of multiple-point statistics require a large amount of data.  Historic data from previous 
production or analogous areas, geologic maps, or the result of forward geologic modeling provides the 
needed data.  The relevance or stationarity of the multiple-point statistics depends heavily on the data 
source.  This is exacerbated by the fact that multiple-point statistics contain all lower-order statistics 
including the histogram and variogram.  Adopting a training-image or analogue data set amounts to 
assume the present study area is remarkably similar to the analogue data.  Another challenge with the 
use of multiple-point statistics is the implementation challenge of building geostatistical models that 
replicate the multiple-point statistics.  Developments in iterative schemes have overcome, to a large 
extent, this challenge. 

We present two ideas in this paper (1) a procedure to calibrate the variogram to account for higher-
order connectivity, which would permit remaining in the familiar world of variogram-based 
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geostatistics and yet injecting more geological continuity, and (2) direct use of multiple-point 
statistics in construction of geological models. 

Our first proposal consists of increasing the variogram range to account for presence of high-order 
and non-linear connectivity.  The variogram range is increased so that the variance of larger-volumes 
matches that inferred from analogue data.  This matching procedure amounts to transfer high-order 
connectivity into the variogram without transferring the histogram or other non-transportable features 
of the analogue data.  It is robust and not overly dependent on the analogue data. 

The second proposal is suitable for situations where all aspects of the analogue data are considered 
reliable; the multiple-point statistics are reproduced via an objective function.  We use “histograms of 
different support,” introduced by R. M. Srivastava, as the multiple-point statistics to be reproduced.  
This alternative transports more features from the analogue data than would be possible with any 
variogram-based technique. 

Multiple Point Distributions 
There are many multiple-point statistics that could be considered.  The most general one is the 
multiple-point histogram.  Continuous variables are divided into K classes.  Then, different 
configurations of N points are chosen.  The multiple point histogram is represented by the frequency 
of patterns observed for the N-points simultaneously.  The difficulty with such statistics is that KN 
classes must be informed for just one N-point configuration.  There would be 1 billion classes for 
K=10 and N=9.  This would require a large training image indeed.  Moreover, there are many possible 
configurations of N points; aligned in a square, circle, line, and so on.  Summary measures such as 
multiple-point covariances have been considered to reduce the number of data needed. 

There are other summary measures that could be used in the context of scale-up and integration of 
data of different volume supports; in particular, histograms of different support introduced by R. M. 
Srivastava.  Consider block average values ∫= dwwzz vv )()( )(uu  for different volumes v and all 
locations u in the domain.  A series of different block sizes vi,i=1,…,nv are considered.  The block 
values )(uvz  for a specific size v are pooled into histograms.  The shape and character of the nv 
histograms provide information on multiple-point connectivity.  Large-v average values from random 
or disconnected phenomena will all be close to the mean; high and low z-values average out quickly.  
In the case of highly correlated fields, the variance of large-v average values reduces slowly. 

At first approximation, we consider only the variance to summarize the information contained in such 
histograms of different support.  We use the entire histogram later.  These variances are experimental 
dispersion variances (see Isaaks and Srivastava, 1987 or Journel and Huijbregts, 1978): 

 ( ) vi niAvD ,...,1,,ˆ 2 =  (1) 

Such dispersion variances may also be calculated analytically from the variogram model, that is, with 
average variogram values: ( ) ),(, 22

iii vvAvD γσ −= , where σ2 is the stationary variance.  In presence 
of non-linear or high order connectivity the experimental dispersion variances ( )AvD i ,ˆ 2  will be 
greater than those predicted by the variogram model ( )AvD i ,

2 .  To account for the additional 
information in the experimental dispersion variances, in fact the multiple-point distributions of v 
average values, we consider two options (1) correcting the variogram to capture the non-linear 
connectivity, and (2) directly using the additional information in an annealing-type simulation 
algorithm. 

Corrected Variograms 
The use of variogram-based techniques is widespread and likely to remain so.  Techniques that 
directly use multiple-point statistics have been adopted slowly due to problems of inference and 
implementation.  For this reason, we would like to “correct” the variogram to account for the 
additional connectivity.  In general, the variogram ranges for each nested structure must be increased 
to correct for greater than expected high order connectivity.  Implicit multiGaussian and maximum 
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entropy assumptions underlying geostatistics entails that the “corrected” variogram ranges will always 
be larger than observed from the data. 

The variogram ranges are iteratively adjusted until the following objective function is minimized: 

 ( ) ( )[ ]
2

1

22 ,(,ˆ∑
=

−−=
vn

i
iii vvAvDO γσ  (2) 

This objective function is a measure of mismatch between the observed dispersion variance and the 
theoretical prediction due to the variogram model.  This problem may be solved in seconds on a PC 
using a simulated annealing algorithm.  There are few parameters in this problem and convergence is 
fast.  The corrected variogram ranges are used in subsequent geostatistical modeling. 

Examples 
Two examples are given.  Figure 1 shows an image first presented in Deutsch, 1992.  A gray scale 
representation of the image is at the upper left corner.  The values have been transformed to a standard 
normal distribution.  The variogram is shown at the lower left: the dots are the experimental 
variogram in both directions, the solid line is the fitted variogram model, and the dashed line is the 
corrected variogram.  The correction was done by calibration with dispersion variances computed 
from 2x2, 5x5, and 10x10 windows.  The chart to the right of Figure 1 shows the experimental 
dispersion variances (light colored – red – dots), the variances from the fitted variogram (x), and from 
the corrected model (black dots).  The dots overlap, which indicates a close match with the corrected 
model.  The variogram model consists of a nugget effect of 0.1, which remains unchanged, a first 
nested structure with variance contribution 0.45, where the range doubles, and a second nested 
structure, where the range increases by 50%. 
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Figure 1: Aeolian sandstone with variogram and dispersion variances.  The gray scale image corresponds to the 
content of fines transformed to a standard normal distribution 

The variogram has changed.  It is difficult to assess the impact of this change without processing the 
reference image and geostatistical simulations through some form of transfer function such as a flow 
simulator.  The normal scores values are transformed to a lognormal permeability distribution and 
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single-phase flow was simulated.  The effective permeability in the X-direction was calculated for 68 
(4 by 17) coarse grid superimposed on the image.  The mean and variance of the resulting 
permeability values may be compared from the reference image, a simulation using the fitted 
variogram, and a simulation using the corrected variogram.  We see that the corrected variogram leads 
to flow characteristics significantly closer to the reference. 

 Reference Fitted Model Mismatch Corrected Model Mismatch 

Mean (md) 45.3 40.9 -10% 44.0 -3% 

Variance (md2) 2387 728 -70% 1936 -19% 

Figure 2 shows a realization with the fitted model and the corrected model.  The longer range of 
correlation is revealed visually on the right hand side: the corrected variogram model. 

 
Figure 2: Gaussian simulation with fitted variogram model (left side) and corrected variogram (right side). 
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Figure 3: Sandstone cross bedding with variogram and dispersion variances.  The gray scale image corresponds 
to the content of fines transformed to a standard normal distribution 

Figure 3 shows the image corresponding to the second example.  A gray scale representation of the 
image is at the upper left corner.  The variogram is shown at the lower left: the dots are the 
experimental variogram in both directions, the solid line is the fitted variogram model, and the dashed 
line is the corrected variogram.  The correction was done by calibration with dispersion variances, see 
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chart to the right.  Once again, the dots overlap, which indicates a close match with the corrected 
model.  The variogram model consists of three nested structures explaining 45, 25, and 30% of the 
variability; the range of the first structure increases by 40%, the second 35%, and no change is made 
to the third structure.  Simulated realizations created with the fitted and corrected variogram models 
differ in flow character and visual appearance. 

 
Figure 4: Gaussian simulation with fitted variogram model (left side) and corrected model (right side). 

Closer Look at Histograms of Different Support 
Correcting the variogram to match experimental dispersion variances captures only one aspect of the 
histograms of different support: the variance.  Figure 5 shows the actual histograms of different 
support, the theoretical prediction using the fitted variogram (Gaussian model with the lesser variance 
– higher valued at median), and the theoretical prediction using the corrected model (higher variance 
Gaussian model).  The histograms on the left side correspond to the Aeolian sandstone (Figure 1) and 
the histograms on the right correspond to the ripples (Figure 3).  The histograms at the top are for 2x2 
averaging, the middle are for 5x5, and the bottom are 10x10.  We see many interesting features on the 
histograms including skewness and modes that are not captured by the Gaussian distributions. 

Direct Reproduction of Multiple Point Histograms 

As mentioned above, there are many ways to directly reproduce multiple-point statistics in 
geostatistical simulation.  The use of simulated annealing is powerful, but has been hampered by 
excessive CPU requirements the expertise required to make it work quickly and artifact-free.  Recent 
understanding of the critical temperature (see paper by Norrena in this conference) and developments 
of the annealing schedule are making the method more practical.  In the context of histograms of 
different support, a component objective function is added: 

 ( ) ( )[ ]∑∑
= =

−=
v z

ii

n

i

n

j
jvjvhh zFzFO

1 1

2*ˆω  (3) 

where ωh is the weight of this component (see Deutsch 1992), nv is the number of histograms, nz is the 
number of quantiles, ( )jv zF

i
ˆ  is the experimental cdf, and ( )jv zF

i

*  is that of the realization. 

The sasim program of GSLIB was modified to include a component objective function of this form.  
As with most spatial statistics, inclusion in an annealing-type program is straightforward.  The 
histograms of different support are calculated globally at the start and locally updated through the 
annealing process.  Some implementation details: (1) the number of quantiles nz is chosen to capture 
all relevant features on the histograms of different support, for example, 50 would be adequate for the 
features observed on Figure 5, (2) the quantiles are chosen at equal probability intervals, that is, the 
first at ( )1

ˆ zF
iv  = 1/(2 nz), then incremented by 1/nz, thus, the probability values ( ) zjv njzF

i
,,1,ˆ K=  are 

equally spaced by 1/nz (3) the threshold values zj are chosen to be the correct quantiles, (4) the 
realization cdf ( )jv zF

i

*  is computed by the proportion of block average values less than zj, the block 
average values are calculated from the realization, (5) the block average values are arithmetic 
averages (although they could be any non-linear average), and (6) the block average values and the 
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realization cdf values ( )jv zF
i

*  are updated as small scale values are perturbed.  Figure 6 shows the 
results for the image of Figure 1and an initial random realization. 
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Figure 5: block histograms (histograms of different support) for the Aeolian sandstone (left) and the ripples 
(right) for 2 by 2, 5 by 5, and 10 by 10 averaging.  The point-histogram in both cases is standard normal.  
Classical geostatistics would predict that block histograms would also be normal with reduced variance.  Two 
normal distributions are shown on each histogram: one corresponds to the fitted variogram model – the lesser 
variance one; the second corresponds to the corrected variogram – the greater variance.  The variance reduce as 
the volume of averaging increases, but the shapes deviate from normality.  We see skewness and multiple modes 
(particularly on the right hand “ripple” case) that could only be reproduced in geostatistical simulation be direct 
means (for example simulated annealing). 
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.Figure 6: block histograms for simulation.  Upper left: small scale normal distribution and reference 2x2, 5x5, 
and 10x10 block histograms; Upper right: reference 2x2 block histogram and the result of an initial random 
realization.  Note that the initial block histogram has significantly less variance that the reference image even 
though the small scale histogram is honored.  Lower left and right: reference and initial histograms for 5x5 and 
10x10 averaging. 

The revised sasim program was used to generate realizations with and without the multiple-point 
histograms.  These realizations are shown on Figure 10.  The image on the right reproduces the point 
histogram, variogram, and multiple point histograms on Figure 7.  The CPU time required to generate 
the two realizations were 2.03 and 2.45 minutes on an older SGI O2 workstation.  The annealing was 
stopped when the overall objective function dropped to less than 0.001, that is, 1/10th of 1% of the 
initial objective function.  All components of the objective function were able to go to “zero” 
simultaneously because there is no inconsistency between them. 

 
Figure 10: annealing based simulation without (left) and with (right) the three histograms of different support.  
Both realizations reproduce the target histogram and the fitted variogram model. 

The realizations on Figure 10 could be made more similar to the reference image of Figure 1 by 
transporting more spatial statistics from the reference image.  In fact, the reference image could be 
reproduced exactly by reproduction of sufficient statistics (all two-point statistics are enough); 
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however, that is not our goal.  We desire to transport only those features deemed reliable.  In this case, 
we transport the averaging or scale-up characteristics through histograms of different support.  Were 
the curvilinear features considered transportable, a surface-based approach would have been 
considered to directly replicate those features and the internal heterogeneities (see paper by Xie, 
Deutsch, and Cullick in these proceedings). 

 
Figure 11: two different surface-based realizations using parameters taken from the reference image shown on 
Figure 1.  This approach would be appropriate if the important heterogeneity is considered to be the high values 
associated to surfaces. 

Conclusions 

Geostatistical simulation is being increasingly used to construct realistic heterogeneity models and to 
assess uncertainty.  To provide reliable predictions, simulated realizations must share all known 
spatial features of the underlying true spatial distribution.  Variogram-based techniques are in 
widespread use, but are limited to two-point linear connectivity; implicitly, all high-order connectivity 
is maximally uncorrelated.  The variogram range of correlation, however, may be increased to account 
for such high-order connectivity.  A procedure and two examples were presented.  The results of this 
study are corroborated by flow studies where the realizations with the corrected variogram range 
provide flow predictions closer to reality. 

Direct integration of multiple-point statistics is possible with a number of techniques.  We show how 
simulated annealing could be used to directly reproduce histograms of different support in simulated 
realizations.  The direct use of multiple-points statistics significantly reduces the variability between 
simulated realizations, which is desirable if the source of multiple-point statistics is reliable, but 
dangerous if the source is not directly relevant. 

Future work consists of (1) gaining experience and validating variogram calibration, (2) devising 
means to filter univariate statistics from multiple-point statistics, that is, extract multiple-point 
continuity without transporting the histogram.  This is straightforward with continuous variables but 
problematic for categorical variables, (3) selecting the appropriate multiple-point statistics, that is, the 
number and configuration of the n-point statistic, and (4) practical artifact-free simulation algorithms. 
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