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Abstract

There are often limited data available for reservoir characterization. This leads to consid-
erable uncertainty in statistical parameters including the variogram. This paper presents
an approach to calculate the uncertainty in the variogram. We discuss the methodology
to transfer this uncertainty through geostatistical simulation and flow modeling in order to
achieve more realistic predictions.

The variogram value 2γ(h) for a separation lag vector h is the mean squared difference
between two data separated by h. The variance of a mean can be calculated with a model
of the correlation between the pairs of data used in the calculation. MultiGaussian theory
is used to calculate this four-point correlation. Multiple plausible variograms may be fit
knowing the uncertainty in each point, 2γ(h). Multiple geostatistical realizations may then
be constructed and subjected to flow simulation to assess the impact of this uncertainty on
reservoir performance predictions.

The theoretical approach is presented together with a number of examples. The the-
oretical results are validated by numerical simulation. The simulation approach permits
generalization to nonGaussian situations.

Introduction

Variogram modeling is a critical step in any geostatistical study; however, a reliable vari-
ogram is difficult to infer in presence of sparse data. This is particularly true in the early
stages of reservoir development. It would be beneficial to have a quantitative model of the
uncertainty in the variogram.

We show how to calculate the pointwise uncertainty in the variogram. This pointwise
uncertainty must be translated to the joint uncertainty, that is, into variogram modeling.
Within the bounds of pointwise uncertainty, we propose to establish different scenarios,
ranging from small continuity to great continuity. These “scenarios” can be used in simula-
tion to generate a number of realizations. These realizations can be used to determine the
sensitivity of the flow response to variogram uncertainty.

Pointwise Variogram Uncertainty

The variogram 2γ(h) is the average of squared differences between data separated by that
distance vector h:

2 · γ(h) = 1
n(h)

·
n(h)∑
i=1

[z(ui)− z(ui) + h)]2 (1)
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where n(h) is the number of data pairs approximately h apart.
Consider xi = [z(ui)− z(ui +h)]2, the squared difference between the value at locations

ui and ui + h. The mean of the xi’s is the variogram:

x̄ = 2 · γ(h) = 1
n(h)

·
n(h)∑
i=1

xi (2)

From classical statistics, we know that the uncertainty in the mean x̄ is defined as:

V ar{x̄} = E{(x̄ − E{x̄})2} = E{x̄2} − (E{x̄})2 (3)

Now, using expression (3) we can calculate the uncertainty in the variogram assuming that
we have a “reference” variogram model fitted to the experimental points. x̄ is replaced by
2 · γ(h) and the variance of squared differences around this value is calculated as follows:

σ2
2·γ(h) = E{2 · γ(h)2} − (E{2 · γ(h)})2

= E{( 1
n(h) ·

∑n(h)
i=1 [z(ui)− z(ui + h)]2)2} − (E{2 · γ(h)})2

= E{( 1
n(h)2

· ∑n(h)
i=1

∑n(h)
j=1 [z(ui)− z(ui + h)]2 · [z(uj)− z(uj + h)]2} − (2 · γ(h))2

(4)

σ2
2·γ(h) =

1
n(h)2

·
n(h)∑
i=1

n(h)∑
j=1

E{[z(ui)− z(ui + h)]2 · [z(uj)− z(uj + h)]2} − (2 · γ(h))2 (5)

This can be simplified by using the definition of the covariance:

Cij = Cov{xi, xj} = E{(xi − E{xi}) · (xj − E{xj})}
= E{xi · xj} − E{xi} · E{xj}
= E{xi · xj} − x̄2

(6)

Now, replacing xi and xj by the squared differences [z(ui)−z(ui+h)]2 and [z(uj)−z(uj+h)]2

respectively, and x̄ by the variogram 2 · γ(h):
Cij = E{[z(ui)− z(ui + h)]2 · [z(uj)− z(uj + h)]2} − (2 · γ(h))2 (7)

A simple formula for the variance of a particular variogram value is obtained replacing the
covariance (7) in expression (5):

σ2
2·γ(h) =

1
n(h)2

·
n(h)∑
i=1

n(h)∑
j=1

Cij (8)

where Cij is calculated as in (7). To avoid confusion, note that Cij is covariance between
pair i [z(ui)− z(ui + h)]2 and j [z(uj)− z(uj + h)]2.

Expression (8) tells us that the uncertainty in the variogram at a distance h is the average
covariance between “pairs of pairs” used to calculate the variogram for that particular lag.

The covariance between “pairs of pairs” can be calculated theoretically under a multi-
Gaussian assumption. The following section presents this approach. The next sections
present the Local and Global Simulation Methods to check the results given by the Theo-
retical Approach. The Global Simulation Method is more general in the sense that it gives
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the whole distribution of uncertainty in the variogram values for each lag. Although the
theory says that the distribution of uncertainty in a variogram point should be Gaussian,
we know that the variogram values must be non-negative and therefore, the distribution is
asymmetric; this is demonstrated by the Global Simulation Method.

The following steps are required for all three methodologies,

1. Transform data to normal space: Any data distribution can be easily transformed to
a Gaussian univariate distribution. In the following examples the program nscore in
GSLIB was used to perform the transformation. This transformation is commonly
done to allow Gaussian simulation.

2. Check multigaussianity: To fulfil the multiGaussian condition, one should assure
that not only the univariate distribution is Gaussian, but also the bivariate and all
multivariate distributions. In practice, some tests can be done to the transformed
distribution in order to prove the bigaussianity, however they are not often applied,
especially in presence of sparse data. The higher order distributions are assumed
Gaussian, without any test.

3. Calculate the experimental variogram: The location of the sampled points and the
values of the variable under study at these locations are used to calculate the experi-
mental variogram.

4. Fit a variogram model. The fitted variogram model defined in this step is critical
for subsequent stages of uncertainty evaluation. The uncertainty assessment depends
on the variogram model. Nevertheless, we requre a model assumption regarding the
variogram.

The difference between the Theoretical Approach and the Numerical methods lies in how
the variance for each lag is calculated.

Theoretical Approach

The variogram uncertainty can be calculated through a theoretical approach, assuming that
the regionalized variable is multigaussian.

Expanding expression (7), the covariance can be written as a sum of fourth order mo-
ments:

Cij = E{[z(ui)− z(ui + h)]2 · [z(uj)− z(uj + h)]2} − (2 · γ(h))2
= E{z(ui)2 · z(uj)2 − 2 · z(ui)2 · z(uj) · z(uj + h) + z(ui)2 · z(uj + h)2

−2 · z(ui) · z(ui + h) · z(uj)2 + 4 · z(ui) · z(ui + h) · z(uj) · z(uj + h)
−2 · z(ui) · z(ui + h) · z(uj + h)2 + z(ui + h)2 · z(uj + h)2} − (2 · γ(h))2

(9)

This covariance is called a quadratic covariance (Matheron, 1965) and it can be calculated
if z(ui), z(ui +h), z(uj), and z(uj +h) have a multivariate Gaussian distribution. In such
case, any fourth order moment can be calculated using the pairwise covariance values as
follows:

E{z1 · z2 · z3 · z4} = C12 · C34 + C13 · C24 + C14 · C23 (10)
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Then, the variogram variance is calculated as a sum of fourth order moments minus two
times the variogram squared.

To perform this calculation, the program gamu2 was prepared. For each lag, the location
of pairs considered in the experimental variogram calculation is used to determine the fourth
order moment as follows:

E{z(ui) · z(ui + h) · z(uj) · z(uj + h)} = C(z(ui), z(ui + h)) · C(z(uj), z(uj + h))
+C(z(ui), z(uj)) · C(z(ui + h), z(uj + h))
+C(z(ui), z(uj + h)) · C(z(ui + h), z(uj))

(11)

Simulation Alternative to Estimate Cij.

Local Simulation Method

This method permits the estimation of all the four order moments presented in expression
(9) by simulation of all “pairs-of-pairs” or four-point locations. Again, the assumption of
multigaussianity will be made to simplify simulation. To calculate the variance for each
lag, multiple simulations are generated at the same locations of pairs used to evaluate the
variogram. All fourth order moments in expression (9) are estimated as averages using the
simulated values, and the variogram variance is calculated with formula (8). The program
gamu calculate the uncertainty in the variogram using LU simulation. This approach is
efficient because only four points are considered at a time and there are no conditioning
data.

Global Simulation Method

The basic idea is to generate several non-conditional realizations of the entire domain using
the variogram model, extract the values at the sampled locations and then calculate the
variogram. The variance between the variogram values at each lag calculated using these
realizations should converge to the same value obtained through any of the other approaches.
Moreover, the entire uncertainty distribution is given through this method.

This approach was implemented using the GSLIB program sgsim. The variogram using
all the simulated nodes must be checked to see if it honors the input variogram model. Er-
godic fluctuations should be expected. For each realization, the closest values to the original
sample locations are kept. Then the variogram is calculated using the same parameters.
With multiple realizations a histogram for each lag of variogram values can be constructed.

Validation of Theoretical Approach by Simulation

The Theoretical Approach has the following advantages over the two simulation-based meth-
ods:

• Implementation is easier since the fourth order moments are calculated analytically
and directly. In the Local Simulation Method, after the calculation of the covariance
matrix, several realizations of a Gaussian variable must be performed. The generation
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of a random number and calculation of the inverse of the normal distribution are
required. The Global Simulation Method requires simulation of several realizations;
then, the locations are extracted and the experimental variograms are calculated for
each realization.

• The program to calculate the variogram variance through the Theoretical Approach,
is faster than the program designed to calculate the variogram variance using the
Local Simulation Method, due to the lower number of calculations involved. It is also
faster than the Global Simulation Method.

• The Theoretical Approach gives the correct result if the variable is multigaussian,
while the numerical methods give an approximation, but should always converge to
this result.

The Global Simulation Method shows the entire distribution of uncertainty, which is an
advantage since, even if the theory says that the uncertainty for each lag is normally dis-
tributed, one should expect that the values are always greater than or equal to zero.

Example 1: Cluster.dat

Consider the database cluster.dat available in GSLIB. The sample locations are in a
pseudo-regular grid, with clusters in the high value zones, see Figure 1. After normal score
transformation, the north-south variogram is calculated for five lags, using a lag separation
distance of 4.0 and a lag tolerance of 2.0.

An isotropic spherical variogram model with range 15 m and 90% of variance contri-
bution is fitted to the experimental variogram. The nugget effect is 0.1 (10% of variance
contribution):

γ(h) = 0.1 + 0.9 · Sph(
h

15
) (12)

The variogram uncertainty is assessed using both gamu and gamu2 and the results are
displayed using gamuplt. The parameters for each program are presented in Appendix. The
variance has been calculated for each lag using the theoretical approach and the local sim-
ulation approach. In the local simulation approach (using LU simulation), 100 realizations
were performed. The results are presented in Table 1.

The results show that with a reasonable number of LU simulations, the Local Simulation
Method gives a variance very close to the theoretical result. Assuming normality in the
uncertainty distribution, the confidence intervals can be calculated. The variogram, its
model and the central confidence intervals at 95%, 75%, 50% and 25% for each lag are
shown in Figure 2.

Example 2: Amoco.dat

This database contains porosity data and the variogram uncertainty is calculated using
the Theoretical Approach and both numerical methods. There are no clusters in the data
locations, see Figure 3. The normal score transformation is performed over the data. A
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Locations of Clustered Data
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Figure 1: Location map of samples - Cluster.dat

Lag Lag Experimental Fitted Theoretical Simulation
Distance Variogram Variogram Variance Variance

2 1.395 0.262 0.225 0.016 0.015
3 4.361 0.431 0.481 0.085 0.077
4 7.906 0.716 0.746 0.182 0.164
5 11.876 1.191 0.946 0.318 0.269
6 15.796 1.198 1.000 0.383 0.333

Table 1: Theoretical approach to calculate the variogram confidence intervals
.
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Figure 2: Experimental variogram, model and confidence intervals.

zonal anisotropy was found using the variogram map presented in Figure 4. The anisotropy
directions are North-South and East-West. The variogram was calculated for the North-
South and East-West directions and the following 2-dimensional model was fitted:

γ(h) = 0.15 + 0.30 · Sph(

√
(

hx

3700
)2 + (

hy

2000
)2) + 0.55 · Sph(

√
(

hx

3700
)2) (13)

where hx is the distance measured toward the East direction and hy is the distance measured
toward the North direction.

The calculation of confidence intervals was performed using gamu and gamuplt, and the
results are shown in Figure 5.

The Global Simulation Method was used to obtain the entire uncertainty distribution
for each lag. 100 non-conditional realizations of a Gaussian random variable were generated
using sgsim. The simulated values at the sampled locations (obtained from the database
amoco.dat) were extracted for each realization. The experimental variogram was calculated
using the simulated values at the sampled locations and the same parameters were used to
find the experimental points shown in Figure 5.

The experimental variogram using only the simulated data at the sample locations is
calculated for each realization (now considering the effect of the ergodic fluctuations and
the “sampling fluctuations”). The results are shown in Figure 6.

Table 2 shows the variogram variance for each direction and lag, calculated using gamu2
(Theoretical Approach), gamu (Local Simulation Method) and sgsim (Global Simulation
Method). 100 realizations were generated for the numerical methods.

The results obtained from the Theoretical Approach and the Local Simulation Method
are similar. However, the Global Simulation Method gives lower variances for all the lags.
The main difficulty of this approach is to generate realizations that honor the variogram
model used as input. Ergodic fluctuations should be accepted. The variogram calculated for
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Amoco - Location of samples

-40. 1960. 3960. 5960. 7960. 9960.

0.

2000.

4000.

6000.

8000.

10000.

4.000

5.000

6.000

7.000

8.000

9.000

10.000

11.000

12.000

Figure 3: Location map of samples - Amoco database.
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Figure 4: Variogram map - Amoco database.
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Figure 5: Confidence intervals for each lag. Left: North-South direction; Right: East-West
direction.

γ

Distance

N-S Semivariogram Uncertainty

0. 1000. 2000. 3000. 4000. 5000. 6000.

.00

1.00

2.00

3.00

γ

Distance

E-W Semivariogram Uncertainty

0. 1000. 2000. 3000. 4000. 5000. 6000.

.00

1.00

2.00

3.00

Figure 6: Experimental variograms calculated using the simulated data at sampling loca-
tions.
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Direction 1: North-South
Lag Lag Experimental Fitted Variance Var. Local Var. Global

Distance Variogram Variogram Theo. App. Sim. Meth. Sim. Meth.
2 1256.382 0.392 0.397 0.100 0.105 0.015
3 2497.855 0.381 0.452 0.165 0.159 0.018
4 3750.738 0.501 0.453 0.188 0.184 0.024
5 5013.975 0.426 0.454 0.230 0.236 0.045
6 6308.414 0.585 0.455 0.255 0.277 0.086

Direction 2: East-West
Lag Lag Experimental Fitted Variance Var. Local Var. Global

Distance Variogram Variogram Theo. App. Sim. Meth. Sim. Meth.
2 1382.653 0.631 0.604 0.178 0.177 0.023
3 2715.147 0.937 0.918 0.678 0.703 0.092
4 3840.735 1.195 1.000 1.157 1.177 0.210
5 4459.274 1.323 1.000 1.505 1.278 0.258
6 5624.451 1.193 1.000 1.255 1.257 0.213

Table 2: Theoretical approach to calculate the variogram confidence intervals.

each realization (using all the simulated nodes) is presented in Figure 7. The variability
in the variograms calculated using all the nodes in the grid is lower than the expected
variability at the experimental lags (calculated using only the samples, not the entire grid).
This can be due to the “sampling fluctuations”, i.e. the variability in the variogram due to
the scarce data available to do the calculation. However, this missed variability should be
recovered when the locations values are extracted and the variogram is calculated only with
these data, but that dos not occur. The variable may not be multigaussian and therefore,
the Theoretical Approach and the Local Simulation Method, based on the same assumptions
would fail.

Histograms showing the entire uncertainty distribution for the corresponding lags are
presented in Figure 8. All the histograms generated through the Global Simulation Method
are asymmetric with a tail to the right. This asymmetry was expected since the variogram
must be a non-negative function.

Comments

In all approaches, a variogram model is required. Ideally, one could determine the uncer-
tainty using the experimental points, before fitting the model. The assessment of uncer-
tainty, however, requires a positive definite covariance model (i.e. a non-negative variogram
model), therefore an variogram must be fitted before evaluating the uncertainty. This seems
circular, however, it is the only way to solve the problem: the authorized model is assumed
as the expected value of the variogram at each lag and then the variance is calculated.

The variogram uncertainty assessment allows uncertainty in the variogram to be trans-
ferred to subsequent stages of a geostatistical study. The Theoretical Approach and the
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Figure 7: Simulated Variogram and Model used as Input.
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Local Simulation Method presented in this paper generate the same result. The Global
Simulation Method requires more computer time and should give the same result, since
the idea is basically the same than the Local Method; however, it is difficult to honor the
variogram between the sampling locations and consequently, the results are quite different.
Another reason to justify these differences is that the multiGaussianity can not be checked.
An important result from the Global Simulation Method is that one can observe the shape
of the entire distribution of uncertainty in the variogram for each lag. As it was expected,
the distribution is not normal (the variogram cannot take negative values), so one should
be cautious when applying the theory.

The confidence intervals were calculated using the experimental variogram value as a
mean for each lag and the standard deviation assuming normality. This assumption is not
totally correct since the histogram of variogram values obtained for each lag is asymmetric
and constrained by the condition of non-negativity of the variogram.

The difference between the point uncertainty and the joint uncertainty must be ad-
dressed: the procedures presented in this paper allows the calculation of the pointwise
uncertainty. Within this uncertainty, several variogram models (joint models) can be fit-
ted. The confidence intervals for the joint model will be different since one is interested in
finding the uncertainty in the continuity of the variable. Several joint models with different
degrees of continuity (e.g. characterized by a Gaussian model the more continuous and by a
spherical model the less) should be used in the subsequent stages of the study (simulations,
flow modeling) to account for the joint uncertainty of the variogram model.

Future Work / Conclusions

The objective in evaluating the variogram variance at each lag is to propagate a joint uncer-
tainty (i.e. the uncertainty in the whole model) through the next steps in the geostatistical
study. The relation between the ergodic fluctuations and the variance calculated for each
lag must be studied. The use of the joint uncertainty (fitting a model using the variances
at each lag) is an issue that must be considered in future research.
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Appendix

gamu allows the calculation of the variogram uncertainty at each lag through a local LU
simulation of each pair of pairs used in the calculation of the experimental variogram. The
parameters are basically the same than those of gamv in GSLIB, however a variogram model
must be specified. The number of LU simulations and the seed number must also be given.
Figure 9 shows the parameter file to run gamu. The parameter file requires the following
variables:

• datafl: File with the input normal transformed data.

• icolx, icoly and icolz: Columns for x, y, and z coordinates.

• nvar and ivar(1),. . . , ivar(nvar): Number of variables and their column order in
the data file.

• tmin and tmax: Minimum and maximum value to trim data.

• outfl: File for variogram output. In this file the experimental variogram and the
model are listed.

• outfl2: File for variogram uncertainty. This file contains columns with the lag num-
ber, lag distance, experimental variogram value, variogram model and variance of the
model for each lag.

• nlag: Number of lags to calculate.

• xlag: Lag separation distance.

• xltol: Lag tolerance.

• azm, atol, bandwh, dip, textbfdtol, and bandwd: The azimuth angle, the half-
window azimuth tolerance, the azimuth bandwidth, the dip angle, The half-window
dip tolerance, and the dip bandwidth.

• standarize: If set to 1, the variogram values will be divided by the variance.

• ivtail, ivhead, and ivtype: The variable for the tail and the head of the vector used
to calculate the variogram, and the type of variogram (refer to GSLIB for the list of
possible variograms).

• nst and c0: The number of structures and the nugget effect.

• it, cc, ang1, ang2, and ang3: For each structure, the type of structure, the c
parameter, and the angles defining the geometric anisotropy must be specified.

• aahmax, aahmin, and aavert: For each structure, the maximum horizontal range,
the minimum horizontal range and the vertical range must be specified.

• seed: Random number seed (a large odd integer).
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Parameters for GAMU
*******************

START OF PARAMETERS:
nscore.out -file with normal data
1 2 0 -columns for X, Y, Z coordinates
1 7 -number of variables,col numbers
-1.0e21 1.0e21 -trimming limits
gamv0.out -file for variogram output
gamu0.out -file for var. uncertainty output
4 -number of lags
4.0 -lag separation distance
2.0 -lag tolerance
0.0 22.5 15.0 0.0 90.0 50.0 -azm,atol,bandh,dip,dtol,bandv
0 -standardize sills? (0=no, 1=yes)
1 1 1 -tail var., head var., variogram type
1 0.10 -nst, nugget effect
1 0.90 0.0 0.0 0.0 -ivt, cc, ang1, ang2, ang3
15.0 15.0 15.0 -a_hmax, a_hmin, a_vert
69069 -random number seed
100 -number of realizations

Figure 9: Parameters for gamu.
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Parameters for GAMU2
********************

START OF PARAMETERS:
nscore.out -file with normal data
1 2 0 -columns for X, Y, Z coordinates
1 7 -number of variables,col numbers
-1.0e21 1.0e21 -trimming limits
gamv0.out -file for variogram output
gamu0.out -file for var. uncertainty output
4 -number of lags
4.0 -lag separation distance
2.0 -lag tolerance
1 -number of directions
0.0 22.5 15.0 0.0 90.0 50.0 -azm,atol,bandh,dip,dtol,bandv
0 -standardize sills? (0=no, 1=yes)
1 1 1 -tail var., head var., variogram type
1 0.10 -nst, nugget effect
1 0.90 0.0 0.0 0.0 -ivt, cc, ang1, ang2, ang3
15.0 15.0 15.0 -a_hmax, a_hmin, a_vert

Figure 10: Parameters for gamu2.

• nsim: The number of realizations to generate.

The parameter file for gamu2 is presented in Figure 10. The variables are exactly the
same than those for gamu, except for seed and nsim, which are not needed in this case.

Finally, the parameter file for gamuplt is given in Figure 11. The parameters needed to
run gamuplt are:

• outfl: File for PostScript output.

• xmin and xmax: Minimum and maximum plotting limits for the x axis (distance).

• ymin and ymax: Minimum and maximum plotting limits for the y axis (variogram).

• title: A 40-character title for the top of the plot.

• datafl: File with model data. Recall that the model was stored in the second vari-
ogram in the first output file (outfl) of gamu or gamu2.

• vnum and color: The position of the model in the file datafl and the color to plot it.

• datafl2: File with the experimental variogram and uncertainty for each lag.

• vnum and color: The position of the uncertainty data in the file datafl2 and the
color to plot it.
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Parameters for GAMUPLT
**********************

START OF PARAMETERS:
gamuplt.ps -file for PostScript output
0.0 20.0 -distance limits (from data if max<min)
0.0 3.0 -variogram limits (from data if max<min)
N-S Semivariogram Uncertainty -Title for variogram
gamv1.out -file with model data
2 1 -variogram #, color
gamu1.out -file with variogram uncertainty
1 1 -variogram #, color

Figure 11: Parameters for gamuplt.
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