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Abstract

Reservoir forecasting requires 3-D realizations of lithofacies codes, porosity and permeability at a
sufficiently detailed resolution to provide a reliable basis for well planning, volumetric calculations,
and performance forecasting. Since field data comes from different sources (thin sections, cores, logs,
seismic) and at different length scales (microscopic through large scale), the construction process of
3-D models is particularly difficult and is associated with uncertainty. The simultaneous integration
of these data sources to build reliable numerical models is still a challenge and the main aim of this
research.

Incorporating all available data requires that we bring them to a common scale or establish quanti-
tative means to relate the different scales. Some of the data should be upscaled, and some downscaled,
based on their measurement volumes. Although “Geostatistical scaling laws” [67] tell us how to do
this for limited cases, there are some rigorous assumptions behind these laws that make them unre-
alistic and difficult to apply to real reservoir conditions. The research focuces on revising these laws
to achieve a reliable, accurate and practical scaling theory which, in turn, can be successfully used in
multiscale data integration.

An extensive literature review for data integration associated with upscaling and downscaling is
also presented. Besides, validation of “scaling laws” with synthetic data and the efficiency of them
for the real data are demonstated accordingly.

Introduction

The development of “3D Earth Modeling” technology is one of the fastest growing technologies
in the industry [45]. This sort of model brings together data and interpretation at a number of
different scales: core description, petrophysical measurements, well logs, seismic mapping and seismic
attributes interpretation. Dubrule et al. [35] and Fontaine et al. [45] discuss the recent developments
in 3D Earth Modeling and emphasize the underlying importance of multiscale data integration for
the construction of initial structural model to detail conceptual model.
In the field of reservoir modeling, the integration of data from different sources and of different

types is critical for more accurate models, fluid flow simulations and production decision making.
Field data come from different sources (thin sections, cores logs, seismic . . . ) and at different length
scales (microscopic, small, medium and large scale) making this integration process particularly
difficult. Small and medium scale heterogeneties can be responsible for non- contacted oil regions
between wells, poor communication between sand bodies or oil trapped in small scale structures. In
Figure 1, different data types are presented along with their measurement volumes [47]. There is
more than 10 orders of magnitude difference between core and seismic data.
Incorporating all available data requires that we bring them to a common scale or establish

quantitative means to relate the different scales. Some of the data should be upscaled and some of
downscaled based on their measurement volumes. “Geostatistical scaling laws“ developed in 1960s
[67] tell us how to do this for limited cases. There are some rigorous assumptions behind these laws
that make them unrealistic and difficult to apply to real reservoir conditions.
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Application of scaling laws to heterogeneous reservoirs is difficult because they are limited to sta-
tistically homogeneous reservoirs. Another assumption of scaling laws is that the random function is
multiGaussian. Real reservoirs are deposited with specific patterns of variation and shows continuity
patterns inconsistent with multiGaussian fields. The multiGaussian models, which import severe
restrictions, are not always fully appreciated [13]. Another significant assumption of conventional
scaling laws is that the spatial variability is completely characterized by a stationary random func-
tion using 2- point statistics (histograms and covariances or variograms ). This assumption may not
be suitable in presence of non-linear continuity or objects. Higher order spatial characteristics are
not accounted in these scaling laws, which may pose a serious problem in real reservoirs. Since high
and low values are represented by the same variogram, we may get un-realistic results. Improve-
ment in connecting extremes could be obtained by using indicator simulation method [28]. But the
method is still restricted to two-locations only and therefore to two- point statistics. On the other
hand, there is no methodology that permits scaling of the indicator variograms consistently. We
can also use multipoint statistics; however, multi-point scaling is still a research area. Yet another
important assumption is that the petrophysical properties average linearly. In terms of permeability
or saturations this linear averaging technique is not appropriate. Finally, there is an assumption
that the variogram shape does not change for different scaling ratios. Only the ranges and sill values
are scaled. The variogram shape does change and this assumption may be critical [47, 99].
The purpose of this study to go through the definition of traditional“scaling laws” and relax

the assumptions behind them by numerical modeling and theory development. This research is
motivated by the need for a reliable, accurate and practical methodology for scaling and data
integration under real reservoir conditions. Main effort will be given to the scaling of different
data sources ( see Figure 1) under realistic reservoir conditions for high resolution models with
minimum uncertainity. Proper integration of different data sources will help to create realistic
models. Throughout the different stages, this research will be conducted with input from ELF Oil
Company and Geological Survey of Denmark and Greenland (GEUS).

A General Overview on Scaling

Holden [58] disscusses the different aspects of data integration with different case studies on realistic
data. As well, Bierkens [11], in his thesis, discusses the basic concepts of upscaling and explains
why we have a circular problem; we need block values for dynamic model simulation but, our block
values depend on the boundary conditions which in turn depends on the small scale properties. His
thesis provides a valuable review of random variables and random fields, which provides the basis of
geostatistical modeling.
The most common property that has been worked on, in scaling researh, is hydraulic conductivity

and permeability. There is no universal methodology to upscale these properties to simulation block
volumes [80]. Many assumptions are not applicable to real reservoir flow conditions. The basic
assumptions of single phase, steady-state flow are not suitable when two or more fluid phases are
present [80, 89].
Numerical methods to investigate effective permeability in heterogeneous reservoirs can be cum-

bersome and computer intensive. On the other hand, algebraic methods, such as renormalization
[71] or power averaging [27, 30, 66] of point support conductivities or permeabilities are not based
on physical considerations of fluid flow, although they are applicable and widely used to give an
estimate on the order of magnitude of the effective permeability.
Crossflow and crossbedding are two important problems in upscaling. They are functions of

orientation, permeability contrast and inclination angle [103]. Care should be taken while upscaling
from laminae scale to geological model scale. In this scaling, small scale heterogeneties are very
important because the effect of capillary pressure on the global recorvery is dominant. One can not
ignore those small scale heterogeneties. That means we need to invoke full tensor representation of
effective permeability when crossbedding exists. Actually, most sedimentary rocks have crossbeds
or ripples.
Numerical simulations can be performed to derive a tensor permeability by calculating the ratio

2



Figure 1: Integration of multiscale data and illustration of the volume measures (in cubic metres) for
different scales of data
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of the total flow to the average gradient accross the block. In order to calculate the nine terms of the
permeability tensor (in 3D), we require at least three sets of boundary conditions. Several techniques
have been developed to take account of the effects of different boundary conditions such as no flow
or periodic boundary conditions. There is no unique definition since the boundary conditions change
and are not known [39, 52, 88, 105].
Other approaches consider flow field as statistically stationary and that the large scale-permeability

tensor is symmetric. A completely random porous media is assumed in which there is no correlation
between the neighbouring local-scale permeabilities (perturbation method). However, sedimentary
basins frequently present a layered structure with large variations in local-scale permeability from
layer to layer. In general, such porous media can neither be considered as statistically stationary
nor as completely random [21].
The most widely investigated form of upscaling is single-phase upscaling [15]. The aim is to

preserve the gross features of flow with the simulation grid properties. Two-phase upscaling is
needed because, absolute permeability alone does not fully characterize displacement in heteroge-
neous medium. Although some recent studies are encouraging [43, 72, 80, 92, 98] , this area still
open to research.

Theoretical Relationships and Scaling Laws

Theoretical Relationships, or volume-variance relations have been applied widely in Mining industry
[67, 86], and have in the petroleum literature [23, 24, 29, 47, 73]. Deutsch et al. [29] used “scaling
laws” to calculate the dispersion variance of the geological modeling cell volume support for differ-
ent block sizes using the well-log derived porosity variogram model. Kupfersberger et al. [73] used
the “scaling laws” to integrate well-log and seismic data to get a more reliable 3D model. They
specifically used them to get the small scale models of large-scale seismic data and cross-covariance
between well-log data and seimic data. Then, using full cokriging method, they model the spatial
distribution of 3D porosity data. Frkyman and Deutsch [47] illustrates how data of different scales
may be used simultaneously in the construction of high resolution geostatistical models. They ap-
plied scaling laws to predict the volume of well-log measurement. Moreover, they showed how to
predict log-scale variogram given core-scale variogram model. They explicilty stressed on that, the
application of scaling laws for pertroleum literature is new and the available studies have the draw-
backs of linear averaging, no-shape change in the variograms from one scale to another, stationarity
and the adequacy of two-point statictics.
Desbarats [23, 24] used a linear approximation of the log-conductivity obtained by power averag-

ing together with “scaling laws”. He computed the expected value and the variance of block values
in terms of average variogram at block scale. The drawbacks of this approach are the dependence on
power-average approach to compute block conductivities and the linearization of the conductivity.
Jennings [64] presented a new calibration technique that determines how much core sample

variance should be reproduced by calibrated log. According to this method, there is no additional
need to have finely spaced measurements which are used for getting the accurate average values and
properly calibrating log. He uses “variance corrected calibration” to construct correlation structures
(i.e. variogram) of core and log data along the wellbore. Then, this extra information can be used
to independently determine the ratio of calibrated and uncalibrated log variances, which in turn
determines what the predicted variance should be.
Clark [17] presented a FORTRAN program for the scaling of spherical semivariogram. Recently,

Oz et al. [84] presented a public Visual Basic program, VarScale, that performs Variogram and
Histogram scaling via conventional scaling laws. They also included an option for scaling of linear
model of coregionalization.

Direct Block Value Generation

Rubin and Gómez-Hernández [91] were the first to approach this problem. They computed the
expected value and covariance of block conductivities as well as the cross-covariance between cell
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and block conductivity values. Using these expected values and the assumption of multilognormal-
ity for the cell and block conductivities, the generation of block conductivites conditioned to cell
measurements are achieved by standard geostatistical techniques. Their approach is limited by the
assumptions of isotropic spatial variability of cell conductivities, small variability of log-conductivity,
and scalar block conductivity. Knowing these problems, Gómez-Hernández [50, 51] proposed the
inference of the cell to block covariances through the use of a “training image”. It is a general
method and can be applied to statistically anisotropic, non-scalar or bimodally distributed systems.
In the flow domain several sub-domains are defined to serve as training areas. For these training
areas several realizations of measurement scale conductivities are simulated, either conditional or
non-conditional. With a numerical flow model, for each realizations, the full tensorial block con-
ductivities is estimated for all blocks in the training areas. From these realizations of measurement
scale conductivities and block tensor elements all the necessary covariances and cross-covariances
are estimated for the direct simulation of block tensor elements, conditioned to the measurement
scale conductivity observations.
The problem in training image concept is the number of covariances to infer. Tran [100] proposed

to infer the auto and cross-covariances only for the components of the block conductivity where he
assumes that the principal components of the conductivity tensor are parallel to the block sides.
This attempt reduces the number of variables to two and number of covariances to three in 2D.
As stated in “Studies on Scaling Laws” section, Desbarats’s two studies [23, 24] may also be

included here since his aim is to get the expected value and variance of the block values directly.
The generation of block conductivities conditional to cell conductivity data is done with stochastic
co-simulation.
A recent important contribution to the development of expressions for direct estimation of block

values are the papers by Indelman and Dagan [62, 63]. They obtained the expected value and covari-
ance of the upscaled block values using an energy dissipation definition for block conductivity. Their
main theme is the preservation of ensemble mean energy dissipation at the block and measurement
scale. In their papers, they also described the step-by-step procedure for the direct generation of
block conductivities. However, their expressions are quite complex and the existence and uniqueness
of a solution in general, is not proven.

Classical Scale-up Techniques

Simple and Power Averaging

These techniques implicitly assume that block values are an explicit function of the cell values.
Because of the anisotropic correlation of cell permeabilities or conductivities [65, 74], block perme-
abilities or conductivities have tensorial nature compared to scalar nature of cell ones. Dagan [19, 20]
applied the assumption of infinite blocks to finite blocks and brought solution to the estimation of
block conductivities by simple averaging.
Durlofsky [40] investigated the use of simple averaging methods to compute block conductivities

in 2-D for different spatial distributions of cell conductivities (statistically isotropic, anisotropic,
correlated and uncorrelated). His main conclusion was that “there is no simple average that is valid
for all heterogeneous formations”. However, Gómez-Hernández and Wen [53] showed that, in 2-D,
the geometric mean gives good estimates for block conductivity as long as the spatial variability of
cell conductivity does not display a strong anisotropy.
Journel et al [66] proposed the use of a power average to compute equivalent block conductivities;

the power average varies between the harmonic and arithmetic averages according to the averaging
exponent. They state that the averaging exponent depends on the specific type of cell conductivity,
spatial heterogeneity and can be obtained by after calibration with numerical simulation results.
This technique has been applied successfully by different researchers [24, 27, 53]. Recently, Dimi-
trakopoulos and Desbarats [30] defined the block permeabilities as the spatial power averaging of
core support scale values over the averaging volume of reservoir block. They are functions of the
permeability variogram, averaging volume and power averaging constant. Their main difference is
the derivation of averaging constant. The power averaging constant is derived emprically by a simple
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graphical method.

Renormalization

Renormalization is based on the calculation of the block conductivity (or permeability) of a very
small block and then successive upscaling using self-repetitive geometry until the final block size is
reached. The technique is farirly fast and is not limited by the domain size or variance of the block
conductivities. King [71] applied normalization to 2D grids of spatially uncorrelated values. Later
Mohanty and Sharma [82] applied to 3D and correlated to fields. The method provides good results
for statistically isotropic, lognormal permeability fields.
The major drawback is the implicit boundary conditions applied to the sides of each 2 by 2

block, which may be unrealistic. Malick [79] showed that those unrealistic boundary conditions,
when applied repeatedly during renormalization, may cause important errors in the final block
conductivity or permeability estimate.
Recently Peaceman [87] modified the renormalization technique to be applicable for anisotropic

and varying block size. He stated that this technique, comparing to direct methods, is inherently
less accurate. Comparison of running time shows that a highly efficient iterative solver for the direct
method is just as fast as renormalization.

Stream Tube Method and Full Tensor Representation

The stream tube method [5, 6, 55, 56] is specifically designed to calculate block conductivities in
sand-shale formations (bimodal formations). In direction parallel to the shale, the block conductivity
is equal to the sandstone conductivity, whereas, the block conductivity orthogonal to the shales is
related to the streamline lengths through a tortuosity factor. Desbarats [22] showed that the method
overestimates vertical conductivity when flow paths become very tortuous.
Kasap and Lake [69] worked on computing block conductivity tensors when cross-bedding is

observed at the measurement scale. They developed an analytical technique for computing tensor
conductivities for the case of anisotropic conductivities at the measurement scale. Kasap and Lake
[70] also developed analytical expressions to calculate average block-scale permeability where the
off-diagonal terms in the permeability are caused by crossbedding angle, with perturbation. The
perturbation is a region having different permeability from the rest of the system. The main draw-
back of this study is that the geological structure of the subsurface is not fully taken into account.
Then, Aasum et al. [1] proposed full tensor method for 2D systems, which accounts small scale
heterogeneties within the grid block. Lee et al. [77] extended the method to 3D systems. Zijl and
Stam [110] derived expressions for all nine components of the block-scale permeability tensor of
imperfectly layered porous media (large variations in local-scale permeability from layer to layer)
without assuming block tensor symmetry. Their most important conclusion is that the block tensor
is generally nonsymmetric. Tests of their method are described in Stam and Zijl [97]. Recently, Lee
et al. [76] presented a 3D absolute permeability upscaling method by incorporating 3D directional
search and coordinate rotation procedures. Flow simulation results show that the method is superior
to the other non-tensor analytical upscaling methods, which do not account for the effect of cross
flow.
Wen and Gómez-Hernández [103] proposed “selective upscaling” technique to handle complex

geological formations and flow patterns. This method provides full hydraulic conductivity tensor for
each block. They applied it to cross-bedded formations in which the fine scale hydraulic conductivi-
ties are full tensors with principal directions not parallel to the statistical anisotropy of their spatial
distributions.
A good overview on tensor representation of the block scale permeability can be found in Pickup et

al. [89]. They stated the conditions under which tensors are required (i.e. in crossbedded structures
with a high bedding angle, high permeability contrast, and laminae of comparable thickness) and
cases where the off-diagonal terms can be neglected. Their central conclusion is that it is important
to incorporate the effects of the tensor representation at whatever scale it occurs.
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Boundary-Condition Dependence

“Simple Averaging Techniques” derive block conductivities which are explicit functional relations
of the cell conductivities within the block. Since, the resulting values depend on some implicit
boundary conditions, block conductivities are not solely function of cell values but also depend on
the flow conditions around the block that is, “boundary conditions”. Moreover, the simple average
approach and the renormalization methods assume that block conductivity tensor is scalar.
The initial step of boundary condition dependant techniques is to solve flow equations at the

measurement scale to get the vectors of specific discharge and head gradient. All of these techniques
referred to Laplacian since they are based on the solution of the Laplace equation. The principal
component of the block conductivity tensors are assumed parallel to the block sides, and each
principal component is computed by numerically solving a flow problem with prescribed heads (or
pressures) in the faces of the block orthogonal to the principal direction and impermeable parallel
to the principal direction [51].
Warren and Price [102] were the first researchers attempting to get upscaled block values, by

conducting small scale simulations. They analyzed random distributions of cell conductivities within
the block, and found that the geometric mean was a good approximation to block conductivities.
The Laplacian techniques improve the accuracy of the estimation of block values. However, there

remain important assumptions that block conductivity tensors have; principal components parallel
to the block sides, and that the boundary conditions used to solve the problems at the measurement
scale may be different from the boundary conditions actually existing at the faces of the block in
the model.
Holden and Lia [57] extended this simple Laplacian technique to calculate full block tensors in

3D. An iterative technique is used for the solution of the flow equation within each block.
White [104] andWhite and Horne [105] were the first to propose a technique to determine full non-

diagonal block conductivity tensors. The problem of the calculation of non-diagonal conductivities
has two equations and four unknowns, leaving the definition of block conductivity undetermined.
White and Horne [105] suggested that the problem could be solved by solving the flow equations
many times at the numerical scale with varying boundary conditions applied to the entire sysytem.
Then “Least squares method” is used to solve these equations.
Pickup et al. [88] suggested that it would be more pertinent to determine the block conductivity

tensor for the specific boundary conditions existing at aquifer or reservoir scale, (instead of producing
tensors that are applicable to a wide range of flow conditions). The key idea behind this approach
is to perturb the boundary conditions to produce a different flow patterns within the block but
without deviating too much from the correct values. The major drawback of this approach is the
high sensitivity of the resulting block conductivities to the magnitude of the perturbation and the
difficulty of selecting an appropriate perturbation value.
To reduce the time in White and Horne [105] method, Gómez-Hernández [51] presented another

Laplacian approach inspired by that of White and Horne [105]. His method also yields full block
conductivity tensors, and attempts to impose realistic boundary conditions on the sides of the block.
Holden and Lia [57] extended this technique to 3D.
Saez et al. [93] presented an analytical expression for block conductivity values using the “mul-

tiple scale” method. They proposed that block conductivity is the sum of the arithmetic average
of large scale value, and a perturbation due to the heterogeneity at the smaller scale. Rubin and
Gómez-Hernández [91] derived and validated numerically an anaylytical expression for 2D block con-
ductivities for the case of block embedded in a heterogeneous infinite aquifer with constant specific
discharge at the infinity. Both the cell and the block values are assumed to be scalar. Their method
is only valid for small variances of the data values.
Both White and Horne [105] and Gómez-Hernández [51] do not constrain the block conductiv-

ity tensor to be positive-definite and symmetric. Using periodic (repetitive) boundary conditions,
Durlofsky and Chung [41] and Durlofsky [39] present a Laplacian approach that always yields sym-
metric and positive-definite block conductivity tensors. The method is based on the assumption
that the spatial heterogeneity of measurement-scale conductivities occurs at two scale, a large scale
variability that defines the long trends in conductivity variation and small scale varaibility that is
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periodic in space. Comparison made by Pickup et al. [88, 90] showed that Durlofsky’ s approach
[39] is quite accurate for even situations where periodic boundary conditions do not strictly apply.
All the methods described up to this point use boundary conditions that impose parallel flow

through the block. Desbarats [25, 26] studied the problem of determining block conductivities under
radial flow. Using an emprical numerical approach, he concludes that, in 2D, a weighted geometric
average of the cell conductivities, with weights proportional to the inverse of the squared distance
to the well yields good results for low to moderate variance of log conductivity.

Integration of Seismic Data and Down-scaling

“3D Earth Modeling” brings together data and interpretation at a number of different scales: core
description, petrophysical measurements, well logs, seismic mapping and seismic attributes inter-
pretation. Dubrule et al. [35] and Fontaine et al. [45] discuss recent developments in 3D Earth
Modeling and emphasize the underlying importance of seismic data from the construction of initial
structural model to detail conceptual model.
Well data, such as logs, typically provide sufficient vertical resolution but have a great distance

between the wells. 3D seismic data, on the other hand provides more detailed reservoir character-
ization between wells. However, vertical resolution of seismic data is poor compared to that well
data.
There are several difficulties hindering the incorporation of seismic data into mapping of reservoir

properties [83]; the inexact nature of the relationship between seismic and reservoir properties.
Many seismic characteristics exhibit complicated effects of reservoir parameters such as lithology,
petrophysics and fluid content. Hence, the link between seismic and reservoir properties is often non-
unique, multivariate and non-linear [107]. Gastaldi [49] discusses the non-linear aspects between
several attributes (amplitude, impedance, slowness . . . ) and reservoir physical property such as
lithology.
Because it is unlikely to directly calculate reservoir properties from seismic data, we need to

calibrate seismic data to well data, assuming well data is a more direct measurement of reservoir
properties. The calibration can be done in two steps. The first step is to transform seismic data
into a property that is more directly related to well data. Typically this means inverting seismic
amplitude to impedance (or pseudo-impedance). The second step is to convert the transformed
seismic data to reservoir property.
Currently, there are four common approaches to integrate seismic data. In the next four sections,

these methods will be briefly discussed.

Seismic Inversion

The inversion of seismic data [4, 18, 31, 36, 37, 54, 60, 75, 106, 109] to obtain seismic velocity
distribution and then generating reservoir properties either using emprical models or through data
calibration with existing wells are the basic steps of this procedure. Basically, seismic inversion is
a methodology to convert seismic amplitude into impedance data. This approach is complicated
by large variations in lithology, fluid saturation and other petrological factors; the inverted seismic
velocity alone may not be sufficient to characterize reservoir properties with confidence.

Geostatistical Inversion approach was introduced by Haas and Dubrule [54]. It is also stated
and discussed in Dubrule et al. [36]. Its application on a synthetic data is described in Dubrule
et al. [37]. Recently, it was applied to an actual case by Lamy et al. [75]. At each seismic trace
location, a large number of impedance traces is generated by conditional simulation, and a local
objective function is minimized to find the trace that best fits the actual seismic trace. Several
3D acoustic impedance realizations, which are constrained both by well logs and seismic data, are
obtained. Acoustic impedances are transformed into other parameters such as shale volume (Vshale)
through statistical relationships (collocated cokriging was used by Lamy et al. [75]). Finally results
are transferred from time to depth domain for flow simulation.
Cooke et al. [18] introduced a Generalized Linear Inversion (GLI ) technique for the acoustic

impedance inversion which has become quite popular. It is a nonlinear regression, or inverse modeling
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technique finding a hypothetical earth cross section whose response accounts for (is identical to) the
data being analyzed. Sen et al. [94] applied both simulated annealing and genetic algorithms for
the inversion to obtain layer velocity. Recently, Modified Stochastic Hillclimbing Algorithm [59,
109], which has combinational and steepest descent features, and the stochastic nature has been
introduced. The implicit constraint of using the “velocity pdf” reduces the non-uniqueness of the
solution and makes it computationally efficient.

Conventional Techniques and Simulated Annealing

A nice overview of conventional techniques and simulated annealing is given by Deutsch [29]. The
fundamentals are described in Mining Geostatistics [67] and GSLIB [28]. External Drift, Locally
Varying Mean, Block Kriging [7, 8, 28, 67], Block Cokriging [31],Markov-Bayes (or Bayesian Updating
Rule) [9, 32, 33, 34, 101], Truncated Gaussian simulation [10] and Collocated cokriging [2, 32, 106]
techniques have been applied successfully for the integration of seismic data with the well data.
Since details [28, 29, 67] and the application of these methods are given detail in literature, they will
not be discussed here. Most of these methods assume that seismic attribute has the same volumetric
support as the geological modelling cells. On the other hand, the conventional techniques do not
simultaneously address the issue of precision. However, integrating seismic attributes in lithofacies
or porosity mapping requires both the scale and precision [29].
An incremental modification to the simulated annealing based approach was proposed, by Deutsch [29]

to explicitly account for the vertical scale and imprecision of the seismic data. In his study, he came
up with a better integration of seismic data than conventional techniques.

Multivariate Statistical Correlation

It is important to take into account all the information contained in the seismic traces. Thus,
we need to simultaneously study a large number of seismic parameters computed from the traces.
The most efficient way to deal with this data is to carry out multivariate analyses of the seismic
parameters extracted from the traces. This is also necessary since different attributes of seismic may
carry different information and links with the petrological properties, such as porosity, permeability,
saturation.
Extraction of various seismic attributes from the formation under consideration and then esti-

mating reservoir properties may be done using multivariate statistical correlation [46, 61, 107] or
pattern recognition algorithms with multivariate statistics [12, 38, 68]. These methods are statis-
tical in nature. Although they are not direct methods like inversion, they can incorporate many
seismic attributes and therefore deal with more complicated reservoirs [107]. Tradional stochastic
cosimulation techniques are not suitable for cases where multiple seismic attributes are involved.
Furthermore, such methods can not account for non-linear relationships between seismic and well
data limited by restrictions to Gaussian random variables.

Optimal Non-Parametric Transformation

Xue [107, 108] proposed a two-stage approach to integrate seismic data into reservoir characteri-
zation. First, a non-parametric approach is used to calibrate the seismic and well data through
an optimal transformation to obtain the maximum correlation between two data sets. An iterative
procedure using alternating conditional expectations (ACE) forms the basis for calibration (data
calibration does not require any prior functional relationship). Next, cokriging or stochastic cosimu-
lation is carried out in the transformed space. Finally, conditional realizations or reservoir properties
are generated after back transformation. Recently, Idrobo et al. [61] presented a field application
to infer interwell water saturation distribution by combining cross-well seismic and well data. They
used ACE to correlate sonic velocity with resistivity and porosity at the wells
The important advantage of this approach over traditional cokriging or stochastic cosimulation

methods are; (1) does not require a linear relatioship between hard (well) and soft (seismic) data
(2) maximazes the influence of the soft information by using optimal transformation to obtain the
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maximal correlation between two data sets, (3) can be easily extended to cases where several types
of soft data are involved, and (4) is not restricted to Gaussian random fields.

New Methodologies for Scaling and Data Integration

Artifical Neural Newtorks

During the last decade, the application of Artificial Neural Networks (ANN) for identification of
nonlinear, time and non-stationary systems has increased. Recently, Artifical Neural Networks have
been used in reservoir characterization to model permeability in old fields [95], and model oil and
water imbibition processes [48]. Application of ANN for reservoir characterization using multiple
point statistics is an active research area [13]. The main characteristics of Artifical Neural Networks
is that they do not require specification of structural relationships between input and output data,
but can extract and recognize underlying patterns structures, and relationships between data.
Soto et al. [96] applied this technique in conjuction with the multivariate statistical techniques

to integrate core, well log and seismic data simultaneously. They developed a multivariate Artifical
Neural Network model to predict the pseudo-gamma ray log from 3D seismic attributes and log data
which is also calibrated with core data.
Recently, Chawathe et al. [14] developed a method called Neural Vector Quantization, NVQ, to

achive upscaling in vector spaces. The purpose of the vector quantization is to categorize a given
set, or a distribution of input vectors, into several clusters which are considered to be similar and
fall into the same cluster. The vector corresponding to the centroid of the cluster is the globally
averaged value or upscaled value of all the input vectors in that cluster.
The application of ANN in reservoir characterization and particularly in scaling is promising.

Non-uniform Coarsening

Durlofsky et al. [43, 44] applied this technique for the cross sectional models. The cross sectional
method achieves such a scale up by efficiently identifying the likely regions of high fluid velocities
(via single phase flow calculations), which can lead to the early breakthrough of displacing fluids.
These regions are then modeled in detail, using a fine scale permeability description, within the
coarsened reservoir model. The remainder of the fine scale description is coarsened using a general
technique, based on homogenization theory [3], for the calculation of effective, directional permeabili-
ties (homogenization theory provides the mathematical basis for upscaling). The resulting coarsened
reservoir description is able to model both average reservoir behavior and some important effects
due to extremes in reservoir properties (such as the early breakthrough of injected fluids), without
prior knowledge of the global flow field. This indicates that the scaled-up model is largely process
independent. Then, Durlofsky et al. [42] extended their previuos techniques [43, 44] to the fully
three dimensional case and successfully applied to the simulation of three actaul reservoirs and was
demonstrated to provide coarsened reservoir models which give simulation results in close agreement
with those of the original fine scale description but at considerable computational savings. Recently,
Li et al. [78] developed an alternative approach for the non-uniform coarsening of a fine grid model.
Their method attempts to maintain the variance and spatial correlation of the fine grid permeability
field in the coarse grid model. This method differs from Durlofsky et al. [42, 43, 44] in that it is
based on the preservation of permeability statistics while Durlofsky et al.’ s are flow-based.

Wavelet Transforms

The wavelet transform (WT ) has very recently pervaded the field of upscaling [16, 85]. The proper-
ties of WT that make them so attractive for heterogeneous space upscaling is their multiresolution
framework and compact support. The multiresolution framework allows us to upscale properties
varying at various scales, whereas, as the compact support property localizes the effect of the trans-
form (i.e. zero outside a finite interval which means that only localy non-zero). The WT may
be looked upon as the Fourier transform in heterogeneous space. The Fourier transform (FT ) is
characterized by its orthogonal basis functions (the sine and cosine). The equivalent basis functions
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for WT are the scaling functions and the wavelets. However, unlike FT, where the basis functions
are spread over the entire real line, the scaling functions and wavelets in WT have quite compact
support, which make them suitable for segregating information contained in data into localized inter-
vals. WT is well suited for analyzing non-stationary data. In other words, a projection of a function
or a discrete data set onto a time-frequency space using WT shows how the function behaves at
different scales of measurement.
Panda et al. [85] applied wavelet transforms to one-dimensional and two-dimensional perme-

ability data to determine the locations of layer boundaries and other discontinuties. They applied
orthogonal wavelets for scaling up of spatially correlated heterogeneous permeability fields.
Initial studies related using WT, indicate promising results from an overall flow behavior per-

spective, as well as the preservation of localized heterogeneity.

Validation of Scaling Laws with Synthetic Data

Application of “scaling laws” is limited by certain assumptions. The main assumption is that the
variable is “multivariate Gaussian”. In Gaussian space, data have maximum spatial entropy and
both the high and low values are disconnected. by the single variogram.
To verify that scaling laws are applicable in Gaussian space and are working properly for this

ideal case, three different senarios were tested. For all cases Sequential Gaussian Simulation, SGSIM,
program from GSLIB [28] was used to generate three 2000 × 2000 images with a normal histogram.

• pure nugget effect (random),
• single spherical structure having a range of 75, and
• 50 percent nugget effect plus 50 percent spherical structure.

All the images were upscaled with ratios of 16, 100, 1600 and 10000. These new upscaled images
were used as experimental data to validate theoretical scaling laws.

Validation of Dispersion Variance Match

The dispersion variance of the upscaled images were calculated therotically and compared with the
experimental ones. The result of those comparisons are given in Table 1. In Figure 2, these results
are presented graphically. It is clear that the theory of scaling laws is working properly for the
dispersion variance.

Reproduction of Variogram

To verify that the variogram is reproduced, the two images with spherical structures were used.
Using the upscaled experimental data, experimental vaiograms were obtained via Gam program from
GSLIB [28]. In order to get average variograms for different volumes, gammabar program was used.
The result of the verification of variogram reproduction for the single structure for different

upscaled volumes (or ratios) are given by Figure 3.
For the nugget effect plus spherical structure case, the comparison of the experimental and the

theoretical variograms is given by Figure 4.
It is clear from Figures 3 and 4 that, for different upscaled volumes, variogram reproduction has

been achieved.

Application of Scaling Laws with Real Data

Scaling laws was applied to a ideal Gaussian case in previous section. No reservoir follows this ideal
case, then, it is the aim of this section to demonstrate the performance of scaling laws with real
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Scaling Ratio Dispersion Variance (reality) Dispersion Variance (theory) Difference (%)

1 0.997 1 -0.30

16 0.0623 0.0628 -0.80

100 0.00997 0.01 -0.30

1600 0.000623 0.000633 -1.61

10000 0.0000997 0.000105 -5.32

Scaling Ratio Dispersion Variance (reality) Dispersion Variance (theory) Difference (%)

1 0.949

16 0.897 0.904 -0.78

100 0.849 0.852 -0.35

1600 0.561 0.567 -1.07

10000 0.231 0.216 6.49

Scaling Ratio Dispersion Variance (reality) Dispersion Variance (theory) Difference (%)

1 0.965

16 0.51 0.515 -0.98

100 0.444 0.458 -3.15

1600 0.293 0.304 -3.75

10000 0.108 0.115 -6.48

c)Nugget Effect plus Spherical structure

b)Spherical structure

a) Pure nugget effect

Table 1: The experimental and theoretical dispersion variance for different cases for synthetic data
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Figure 2: Comparions of the experimental and theoretical dispersion variance for different cases for synthetic
data
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Figure 3: Variogram reproduction for different upscaled volumes for single structure for synthetic data

Figure 4: Variogram reproduction for different upscaled volumes for nugget effect plus spherical structure
for synthetic data
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Figure 5: Histogram for original data after digitized image of Wadi Kufra

data. For this reason, a high resolution image was selected to apply these laws up to the scaling
ratio of 104, although the scaling ratio in practice could reach 109 to 1012.
The image was taken from areal imagery of Wadi Kufra, Libya and the study consisted of

following steps:

1. General statistical study of the orginal data was performed. The upscaled images and their
statistical descriptions are illustrated. Upscaling ratios of 16, 100, 1600, and 10000 are consid-
ered.

2. A variogram model was fitted to the original data “upto” unit sill value. Then, this variogram
model was upscaled with the ratios of 16, 100, 1600, and 10000. These upscaled variograms
were compared with the real ones. Comparison was also made for dispersion variance. To
check variogram uncertainity, a variogram model was fitted to the original data “above” unit
sill and the study was repeated to see the effect of different variogram models.

3. Experimental indicator variograms were obtained and compared with Gaussian indicator var-
iograms obtained by the BIGAUS program from GSLIB. This checks if the original data follow
the Gaussian distribution or not.

Data Description

Wadi Kufra is near the Kufra Oasis in south Libya, centred at 23.3 degrees north latitude, 22.9
degrees east longitude. The image, taken by Spaceborne Imaging Radar, was digitized to get the
RBG values of each pixel. This image is 50 km versus 50 km and consists of 2000 by 2000 pixels. Red
values from RGB data are extracted and transformed to normal score. The histogram of original
data is given in Figure 5.
The original image was upscaled with the ratios of 16, 100, 1600 and 10000. In Figure 6, these 4

upscaled images along with the original image are presented. The histograms of the upscaled data
are given in Figure 7. It is clear that variance decreases as the support volume increases.
In Figure 8, probability plots of the scaled data are presented. The theoretical normal distribu-

tions are shown as lines. As expected, higher deviation from the theoretical line was seen for the
scaling ratio of 10000. The deviation is getting larger at the tails of the distribution.
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Figure 9: Directional Variograms modelled upto unit sill for Wadi Kufra. Direction -1 2 0 corresponds
N26W and 2 1 0 corresponds N64E

Upscaled Variograms from the Unit sill and above unit sill Variogram

Using the GAM program from GSLIB, two experimental directional orthogonal variograms were ob-
tained. In Figure 9, left variogram model shows the maximum continuity variogram model in N26W
(according to the GAM program conventions, this corresponds to -1 2 0), and the right one is per-
pendicular to this one in the direction of N64E, (according to the GAM program conventions, this
corresponds to 2 1 0). A 2D variogram model was fitted referencing to these directional variograms
and given in Equation 1.

γ(h1, h2) = 0.15 + 0.25Exp

√
(
h1

3.6
)2 + (

h2

3.2
)2 + 0.40Sph

√
(

h1

37.0
)2 + (

h2

17.0
)2

+ 0.20Exp

√
(

h1

40.0
)2 + (

h2

40.0
)2 (1)

This 2D variogram was upscaled with the ratios 16, 100, 1600 and 10000. For each ratios,
the parameters of the upscaled variograms (nugget effect, sill and range values) were obtained by
applying scaling laws. In Figure 11, the comparisons of the theoretical and experimental variograms
are presented for each ratios.
It is clear from Figure 10 that, there is mismatch between the theoretical and experimental

variograms. Until upscaling ratio of 100, experimental variograms are higher than the theoretical
ones, whereas, for upscaling ratios of 1600 and 10000, this is reversed. There is a larger mismatch in
the scaling ratio of 10000 as expected. The dispersion variance values versus upscaling ratios were
also calculated, and presented in Figure 11. A comparison for the numerical values of theoretical
and experimental Dispersion variance values is given in Table 2. We would like to determine the
cause of the difference.
The same study was repeated for the variogram model fitted above the unit sill. The purpose of

doing this second study, is to see the if this mismatch was caused from our first variogram model
which was fitted upto unit sill. Although these results are not presented here, there is still mismatch.

Checking for Multivariate Gaussian Characteristics

In order to check if the data themselves follow the Multi-gaussian distribution, experimental Indicator
Variograms were obtained and compared with theoretical Gaussian Indicator Variograms obtained
by the BIGAUS program from GSLIB.
First, omnidirectional experimental indicator variograms were obtained. The three cutoff values

and their corresponding “ccdf” values are given in Table 3a.
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Figure 10: Theoretical and Upscaled Variograms for upscaling ratios of 16, 100, 1600 and 10000 for Wadi
Kufra. Direction -1 2 0 corresponds N26W and 2 1 0 corresponds N64E
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Figure 11: Dispersion Variance vs Scaling ratios for unit sill variogram model case

Scaling Ratio Dispersion Variance (reality) Dispersion Variance (theory) Difference (%)

16 0.941 0.839 10.84

100 0.846 0.806 4.73

1600 0.739 0.742 -0.41

10000 0.641 0.684 -6.71

Table 2: Comparison of Theoretical and Upscaled Dispersion variances for unit sill variogram model case

Table 3: Cutoff Values for Indicator variograms to check for the MultiGaussianity of Wadi Kufra data.
a)Three cutoff values for omnidirectional indicator variograms, b)Five cutoff values for indicator variograms
along the maximum direction
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The comparison of the experimental and the theoretical indicator variograms for the each cutoff
values are given in Figure 13. For the two ccdf values, (0.5 and 0.8) which represent the median and
the high values, the theory and the experimental variograms follow each other; however, for the ccdf
value of 0.2 (i.e. for low values), there is a mismatch between the theoretical and the experimental
variograms.
Further study was conducted along the maximum direction. For this case, five cutoff values along

with the ccdf’s were obtained and presented in Table 4b. Ccdf values of 0.1 and 0.2 represent the
very low and low data, 0.5 represent the median, 0.75 and 0.9 corresponds to the high and very high
data. Once again for the case of omnidirectional indicator variograms, five experimental indicator
variograms were obtained and presented in Figure 14.
It is clear from Figure 14 that, low and very low experimental variograms do not follow the same

trend as the median and high ones. For low and very low indicator variograms sill value is above the
unit value of 1. Their variances are higher comparing the other three (median and high ones). The
basic conclusion from this result is that; the assumption that high and low values are represented
by a single variogram in Multivariate Gaussinaity is not valid for our data.
Comparison of the theoretical and experimental indicator variograms were given in Figure 15.

Again, mismatch is clear for the low and very low cases.

Research Directions

In general, the problem is to build 3-D realizations of lithofacies codes, porosity, permeability at a
sufficiently detailed resolution to provide a reliable basis for well planning, volumetric calculations,
and calculations of flow properties. We have different sources of data to accomplish this task.
The ratio between the support volumes of building blocks of reservoir models and porosity,

permeability data (from core plugs and well logs) in huge, from 109 to 1012. Thus, traditional
stochastic simulation methods actually provide only the central quasi-point value of the model
building block or geostatistical cell modeling. Association of that central value to the entire block or
cell average value amounts to ignoring all within-cell heterogeneties. That “missing scale” problem
during scaling is the main issue of this research, that is taking into account fine scale heterogenety
patterns to fluid flow will patterns.
“Data integration” with data at different scales will also be tackled. Every bit of information

gives us more knowledge about the actual spatial distribution, particularly that of extreme values.
Developing more reliable scaling laws will permit us to make use of all data in modeling. Some data
identify large-scale features such as faults and trends in petrophysical properties, whereas, other
sources of data identify laminae, fractures and other small-scale features. Accurate relationships
between large scale and fine scale heterogeneity must be defined to integrate all data simultaneously
in reservoir modelling. Therefore, in this research, we will not limit ourselves to block configu-
rations parallel and orthogonal to the flow direction, which limits our modeling ability to create
representative images of the reservoir.
We need a scaling theory that it is accurate and practical to apply. To accomplish this task,

tradional scaling laws, explained in Section 2, will be revised to remove certain contraints and
limitations. Research will be focused to a more general frame work that is not limited to “linear
averaging in Gaussian space”, “no variogram shape change”, and the inaccuracy of “two-point”
statistics. The Gaussian space assumption is not always realistic. Moreover, the continuity of
geological features is often nonlinear, which brings the alternatives to traditional variogram analysis.
The “training image” concept proceeds by first selecting a realistic image and subsequently

constructs a model that captures the essence of that image. Thus, instead of an analytical model
such as multi-Gaussian, one models an image deemed representative. In our case, I will use “training
images” for getting information to calibrate scaling laws. Getting representative scaled images, we
can further investigate the distribution of values throughout the whole reservoir. Representative
realistic “3D Mini Models” will be used as training images and the new “scaling theory” will be
developed on these images. Construction of realistic 3D mini models is not necessarily an easy task
[81]; however, more reliable and repsentative results will be achieved.
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Figure 12: Comparisons of Gaussian Indicator Variograms with Experimental Ones for Omnidirectional
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The main stages in this research can be outlined as;

• Construction of a realistic 3D mini models to prepare experimental data. Reliable 3D models
should cover the reservoir heterogeneity at all scales and be representative of the reservoir for
full-field-scale flow simulation to be conducted at the end. Development of new theory for the
scaling process will involve several stages based on the techniques that allow sedimentary struc-
tures (ripples, bedding, stratification) or fine scale heterogeneity, sedimentary facies (lithology,
grain-size and structures) and petrophysical properties (porosity, permeabililty, bulk density)
to be generated in mini 3D models.

• Flow simulation, calibration and numerical upscaling of 3D mini models for collection of nu-
merically upscaled data by dynamic flow simulation

• Theory development and explaination of numerical data with theoretical results
• Theory validation to account for different features such as non-linear, continuous structures
and extreme values

• Application to real reservoir modeling to judge performance of new theory on reservoir mod-
eling by using dynamic flow simulator

Major purpose of this study to go through the definition of traditional “scaling laws” and try to
relax the assumptions behind them. Knowing the needs for reliable model, a new methodology will
be developed to bring a practical and feasible solution to the problem of multiscale data integration
under real reservoir conditions. Throughout the different stages, this research will be conducted
with input from ELF Oil Company and Geological Survey of Denmark and Greenland (GEUS)

Construct Realistic 3D Models of Reservoir Heterogeneity

Small-scale modeling

1. Non-conditional simulation

Geological processes are deterministic nature. Small scale 3D mini models are generated by
non-conditional simulation of small-scale porosity, permeability and saturation over an area
larger than correlation range of the small-scale in x, y and z directions containing large number
of elementary cells and a small number of large-scale blocks. First, facies are embedded using
object or surface based methods then, petrophysical properties of porosity and permeability
are filled to the corresponding cells of the mini model.

Construction of realistic 3D Models will be done in collabration with ELF Oil Company.

2. Numerical calibration for scaling relatioships [105]

Small-scale flow models would be solved using flow simulator. Realistic boundary conditions
will be determined. These boundary conditions are the ones that should be used to solve the
flow equations within the block. Next, by perturbating the real boundary conditions, other set
of equtaion would be obtained. Then, using Darcy’ s equation at the coarse scale, upscaling
will be accomplished.

3. Comparison

Some interpretations will follow the above scaling techniques. Basically, comparions will be
made between

• Univariate values such as histogram (existance of bimodal or multimodal distributions),
expected values, skewness,
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• Variance (or dispersion variance),
• Variogram shape change analysis, discussion on range and sill values,

• Anisotropic structure revealing.
These investigations and comparisons will help to establish an understanding of scaling. The

conclusions achieved at this stage will be used to propose a “new theory”.

Large-scale modeling

For large scale modeling ;

• Conditional simulation to the small-scale data would be performed for the entire reservoir.
• Contiditional Simulation with the upscaled histograms obtained from the scaling techniques
mentioned above.

Comparison of the Results of the Small-scale and Large-scale modeling

The main concern during the scaling is to maintain the responses seen at the small-scale with the
large-scale. This could never be performed perfectly. No matter how good an upscaling method is,
it always involves an averaging of the flow problems that “filter out” some details of flow within the
block. The need for the identification and the analysis of the “information loss” or “detail loss” is
important. Upscaling techniques would be evaluated on the “comparisons” and “information loss”.
Reproduction of extreme values will also be tackled.

Theory Development

Going back to Roots of Scaling Laws

Deriving and understanding the scaling laws in Section 2 will lead to further issues;

• examining the derivation of scaling laws (going back to Section 2)
• assumptions behind them will be examined (stationarity, Multivariate Gaussian, 2-point
statistics, shape factor)

• some sensitivity analysis will be performed on these assumptions,
• the experience gained during the application of scaling laws to real data will make contributions
(see Appendix C).

Relax Limiting Assumptions and Propose new Theory

At this stage extensive comparison between the numerically upscaled mini 3D models (small
and large modeling) and the model upscaled using theoretical relations will be done. Comparisons
and investigations that are performed after the numerical scaling will be useful too. Examinations
and experiences achieved from the “training images” will be valuable sources for developing the
new theory. Results will be examined to see where the theoretical relations are not successful.
Depending on the extensive comparisons and some sensitivity tests, the assumptions behind the
theoretical relations will revisited. At this stage, several further tests will be conducted to measure
the efficiency of new theory which is based on non-stationarity, followed by higher order statistics
and non-Gaussian space.

Numerical Modeling with Calibrated Mini Models
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Even without a more general scaling theory, it is possible to use the numerical results of mini
models. The direct use of the mini models will be considered in addition to theory development.
Techniques such as “Direct Sequential Simulation ” (DSSIM), Artificial Neural Networks (ANN), and
Simulated Annealing would not call for new theory. Kriging-based techniques, however, would call
for extended theory.

Theory Validation

Comparison for the Previous and New Theory

Results of the previous theories and “new” theory will presented and extensive comparison will
be performed. Extreme values and trends will be examined and the success of new theory will be
measured.

Further on New Theory

It is important to predict the behaviour of the variable where no data available. Again extensive
comparison will be performed to see the success of new theory especially where there is much more
uncertainity in data. This is the case generally occured in petroleum industry. Most often, we have
less data to characterize and make forecast for the next exploration field.

Apply to Real Reservoir

Application to real reservoir data will be the vitial part of this research. For this, flow simulation
will also be used to get the response of the reservoir with the new upscaled theory. Responses will
be flow rate, performance analysis, and global movement of the fluid.
Advantages of the new theory should include, (1)better modeling of the connectivity of high and

low values (2) reduced uncertainity (3) reliable fine scale details in the numerical model and (4)
practical to apply.
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[53] J. J. Gómez-Hernández and X. H. Wen. Probabilistic assessment of travel times in groundwater
modeling. J. Stochastic Hydrology and Hydraulics, 8(1):19–55, 1994.

[54] A. Haas and O. Dubrule. Geostatistical inversion - a sequentail method of stoshastic reservoir
modelling constrained by seismic data. First Break, 12, 1994.

[55] H. H. Haldorsen and D. M. Chang. Notes on stochastic shales: from outcrop to simulation
model. In L. W. Lake and H. B. Caroll, editors, Reservoir Characterization, pages 445–485.
Academic Press, 1986.

[56] H. H. Haldorsen and L. W. Lake. A new approach to shale management in field-scale models.
SPE J, pages 447–457, April 1984.

[57] L. Holden and O. Lia. A tensor estimator for the homogenization of absolute permeability.
Transport in Porous Media, 8:37–46, 1992.

31



[58] L. Holden, H. Omre, and H. Tjelmeland. Integrated reservoir description. In SPE European
Petroleum Computer Conference, Slavenger, May 1992. SPE Paper Number 24261.

[59] X. Huang and M. G. Kelkar. Application of combinatorial algorithms for description of reser-
voir properties. In SPE/DOE Ninth Symposium on Improved Oil Recovery, Tulsa, OK, April
1994. Society of Petroleum Engineers. SPE Paper Number 27803.

[60] X. Huang and M. G. Kelkar. Reservoir characterization by integration of seismic and dynamic
data. In SPE/DOE Tenth Symposium on Improved Oil Recovery, Tulsa, OK, April 1996.
Society of Petroleum Engineers. SPE Paper Number 35415.

[61] E. A. Idrobo, A. H. Malallah, A. Datta-Gupta, and J. O. Parra. Characterizing fluid saturation
distribution using cross-well seismic and well data: A geostatistical study. In SPE Annual
Technical Conference and Exhibition, Houston, TX, October 1999. SPE Paper Number 56515.

[62] P. Indelman and G. Dagan. Upscaling of permeability of anisotropic heterogeneous formations:
1. the general framework. Water Resources Research, 29(4):917–923, 1993.

[63] P. Indelman and G. Dagan. Upscaling of permeability of anisotropic heterogeneous formations:
2. general structure and small perturbation analysis. Water Resources Research, 29(4):925–
933, 1993.

[64] J. W. Jennings. How much core sample variance should a well-log model reproduce? In 1997
SPE Annual Technical Conference and Exhibition, pages 219–229, San Antonio, TX, October
1997. Society of Petroleum Engineers. SPE Paper Number 38663.

[65] A. G. Journel. Conditional simulation of geologically averaged block permeabilities. Journal
of Hydrology, 183:23–35, 1996.

[66] A. G. Journel, C. V. Deutsch, and A. J. Desbarats. Power averaging for block effective perme-
ability. In 56th California Regional Meeting, pages 329–334. Society of Petroleum Engineers,
April 1986. SPE Paper Number 15128.

[67] A. G. Journel and C. J. Huijbregts. Mining Geostatistics. Academic Press, New York, 1978.

[68] J. H. Justice, D. J. Hawkins, and G. Wong. Multidimensional attribute analysis and pattern
recognition for seismic interpretation. Pattern Recognition, 18:391–407, 1985.

[69] E. Kasap and L. W. Lake. An analytical method to calculate the effective permeability tensor
of a grid block and its application in an outcrop study. In Tenth SPE Symposium on Reservoir
Simulation, pages 355–366, Houston, TX, February 1989. Society of Petroleum Engineers. SPE
Paper Number 18434.

[70] E. Kasap and L. W. Lake. Calculating the effective permeability tensor of a grid block:. In
SPE Formation Evaluation, pages 192–200. Society of Petroleum Engineers, June 1990.

[71] P. R. King. The use of renormalization for calculating effective permeability. Transport in
Porous Media, 4:37–58, 1989.

[72] P. R. King, A. H. Muggeridge, and W. G. Price. Renormalization calculations of immiscible
flow. Transport in Porous Media, 12:237–260, 1993.

[73] H. Kupfersberger, C. V. Deutsch, and A. Journel. Deriving constraints on small-scale vari-
ograms due to variograms of large-scale data. Math. Geology, 30(7):837–851, 1998.

[74] L. W. Lake. The origins of anisotropy. Journal of Petroleum Technology, pages 395–396, April
1988.

32



[75] P. Lamy, P. A. Swaby, P. S. Rowbotham, and O. Dubrule. From seicmic to reservoir properties
using geostatistical inversion. In 1998 SPE Annual Technical Conference and Exhibition, New
Orleans, LO, September 1998. Society of Petroleum Engineers. SPE Paper Number 49147.

[76] J. Lee, E. Kasap, and M. G. Kelkar. Development and application of a new upscaling technique.
In Annual Technical Conference and Exhibition, pages 89–101, Dallas, TX, October 1995.
Society of Petroleum Engineers. SPE Paper Number 30712.

[77] J. Lee, E. Kasap, and M. G. Kelkar. Analytical upscaling of permeability for 3d gridblocks. In
SPE Journal, pages 59–68. Society of Petroleum Engineers, March 1996. SPE Paper Number
2785.

[78] D. Li, A. S. Cullick, and L. W. Lake. Global scale-up of reservoir model permeability with
local grid refinement. J. Pet. Sci. and Eng., 14:1–13, 1995.

[79] K. M. Malick. Boundary effects in the successive upscaling of absolute permeability. Master’s
thesis, Stanford University, Stanford, CA, 1995.

[80] M. A. Malik and L. W. Lake. A practical approach to scaling-up permeability and relative
permeabilities in heterogeneous permeable field. In SPE Western Regional Meeting, Long
Beach, CA, June 1997. SPE Paper Number 38310.

[81] G. J. Massonat, L. Poujol, and M. Rebelle. The missing scale: A U-Turn is necessary in its
management. In SPE Annual Technical Conference and Exhibition, pages 861–875, Texas, TX,
October 1999. Society of Petroleum Engineers. SPE Paper Number 56820.

[82] S. Mohanty and M. M. Sharma. A recursive method for estimating single and multiphase per-
meabilities. In 65th Annual Technical Conference and Exhibition, New Orleans, LA, September
1990. Society of Petroleum Engineers. SPE Paper Number 20477.

[83] T. Mukerji, G. Mavko, and P. Rio. Scales of reservoir heterogeneties and impact of seismic
resolution on geostatistical integration. Mathematical Geology, 29(7):933–951, 1997.

[84] B. Oz, C. V. Deutsch, and P. Frykman. A visual basic program for histogram and variogram
scaling. Computers & Geosciences. submitted in January 2000.

[85] M. N. Panda, C. Mosher, and A. K. Chopra. Application of wavelet transforms to reservoir
data analysis and scaling. In 71st SPE Annual Technical Conference and Exhibition, pages
251–264, Denver, CO, October 1996. Society of Petroleum Engineers. SPE Paper Number
36516.

[86] H. M. Parker. The volume-variance relationship: a useful tool for mine planning. In P. Mousset-
Jones, editor, Geostatistics, pages 61–91, New York, 1980. McGraw Hill.

[87] D. W. Peaceman. Effective transmissibilities of a gridblock by upscaling- why use renormaliza-
tion. In SPE Annual Technical Conference and Exhibition, Denver, CO, October 1996. SPE
Paper Number 36722.

[88] G. E. Pickup, J. L. Jensen, P. S. Ringrose, and K. S. Sorbie. A method for calculating
permeability tensors using perturbed boundary conditions. In 3rd European Conference on
the Mathematics of Oil Recovery, pages 225–237, Delft, June 1992.

[89] G. E. Pickup, P. S. Ringrose, J. L. Jensen, and K. S. Sorbie. Permeability tensors for sedi-
mentary structures. Mathematical Geology, 26(2):227–250, 1994.

[90] G. E. Pickup and K. S. Sorbie. Development and application of a new two-phase scaleup
method based on tensor permeabilities. In 69th Annual Technical Conference and Exhibition,
pages 217–230, New Orleans, LA, September 1994. Society of Petroleum Engineers. SPE Paper
Number 28586.

33



[91] Y. Rubin and J. J. Gómez-Hernández. A stochastic approach to the problem of upscaling
of conductivity in disorderd media: Theory and unconditional simulation. Water Resources
Research, 26(4):691–701, 1990.

[92] N. Saad, A. S. Cullick, and M. M. Honarpour. Effective relative permeability in scale-up and
simulation. In SPE Rocky Mountain Regional/Low-Permeability Reservoirs Symposium, pages
451–464, Denver, CO, March 1995. Society of Petroleum Engineers. SPE Paper Number 29592.

[93] A. E. Saez, C. J. Otero, and I. Rusinek. The effective homogeneous behavior of heterogeneous
porous media. Transport in Porous Media, 4:213–238, 1989.

[94] M. K. Sen and P. L. Stoffa. Porosity from seismic data: A geostatistical approach. Geophysics,
56(10):1624–1638, 1991.

[95] R. Soto, J. F. Ardila, H. Ferneynes, and A. Bejarano. Use of Neural Networks to predict the
permeability and porosity of zone C of the Cantagallo field. In 1997 Petroleum Computer
Conference, Dallas, TX, June 1997. SPE Paper Number 38134.

[96] R. Soto and S. A. Holditch. Development of reservoir characterization models using core, well
log and 3D seismic data and intelligent software. In SPE 1999 Eastern Regional Conference
and Exhibition, Charleston, WV, October 1999. SPE Paper Number 57457.

[97] J. M. T. Stam and W. Zijl. Modeling permeability in imperfectly layered porous media. ii.
a two dimensional application of block permeability. Mathematical Geology, 24(8):885–905,
1992.

[98] H. L. Stone. Rigorous black oil pseudo functions. In Eleventh SPE Symposium on Reservoir
Simulation, pages 57–68, Anaheim, CA, February 1991. Society of Petroleum Engineers.

[99] V. C. Tidwell. Laboratory investigation of constitutive property of scaling bahavior. In SPE
69th Annual Technical Conference and Exhibition, pages 947–957, New Orleans, LA, Septem-
ber 1994. Society of Petroleum Engineers. SPE Paper Number 28456.

[100] T. T. Tran. Stochastic Simulation of Permeability Fields and Their Scale-Up for Flow Model-
ing. PhD thesis, Stanford University, Stanford, CA, 1995.

[101] T. T. Tran, X.-H. Wen, and R. A. Behrens. Efficient conditioning of 3D fine-scale reservoir
model to multiphase production data using streamline-based coarse-scale inversion and geo-
statistical downscaling. In SPE Annual Technical Conference and Conference, Houston, TX,
October 1999. SPE Paper Number 56518.

[102] J. E. Warren and H. S. Price. Flow in heterogeneous porous media. Society of Petroleum
Engineering Journal, 1:153–169, 1961.
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