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Abstract

Reservoir models have large uncertainty due to spatial variability and limited sample data.

Our ultimate aim is to use simultaneously all available data sources to reduce uncertainty

and provide reliable reservoir models for resource assessment and ow simulation. Seismic

impedance or some other attribute provides a key source of data for reservoir modeling. This

seismic data is at a coarser scale than the hard well data and it not an exact measurement

of facies proportions or porosity. A requirement for data integration is the cross-covariance

between the well and seismic data.

The size scaling behavior of the cross-correlation for di�erent measurement scales has

been investigated. The size scaling relationship is derived theoretically and validated by nu-

merical studies (including an example with real data). The limit properties of the cross-
correlation coe�cient when the averaging volume becomes large is shown. After some aver-

aging volume, the volume-dependent cross- correlation coe�cient reaches a stablized-value.

This plateau value is mainly controlled by the large-scale behaviour of the cross and direct

variograms.

The cross-correlation can increase or decrease with volume support depending on the

relative importance of long and short-scale covariance structures. If the direct and cross

variograms are proportional, there is no change in the cross-correlation as the averaging

volume changes. Our study shows that the volume-dependent cross-correlation coe�cient

is sensitive to the shape of the cross-variogram and asymmetry or di�erences between the

direct variograms of the well data and seismic data.

Keywords: data-integration, correlation coe�cient, volume scaling, dispersion variance,
dispersion covariance

Introduction

Reconciling di�erent data types for spatial modeling of reservoir properties is important
because di�erent data provide complementary information about the reservoir architecture
and heterogeneity. There are a variety of methods to integrate di�erent data types in-
cluding External Drift, Locally Varying Mean, Block Kriging [2, 3, 7, 16], Block Cokriging

[9], Markov-Bayes (or Bayesian Updating Rule) [4, 10, 11, 12, 17, 21], Truncated Gaussian
simulation [5] and Collocated cokriging [1, 10, 25]. Details and application examples of
these methods are given in literature [7, 8, 16]. The main aim of this paper is to address a
common requirement: the cross- covariance between multiple data types.
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The problem of how to handle the cross-covariance between multiple variables with
di�erent measurement scales is an important step for all data integration techniques. Some
approaches assume that the soft or secondary data provides information on large-scale trends
of the primary variable; the external drift and locally varying mean algorithms assume the
spatial variability of the secondary variable gives information on trends in the primary
variable. This approach does not fully capture the spatial cross-correlation.

A better approach to data integration is cokriging, which uses a cross- covariance that
explicitly measures the information content of the secondary data with regard to the primary
variable [14]. Not only is the computational and inference more burdensome, a major
problem is that conventional implementations of cokriging assume the secondary data are
de�ned at the same volume support as the hard well data. Inference of the cross-covariance
becomes a problem.

A Markov-type assumption [1, 15, 20] simpli�es inference of the cross variogram, but is
not valid when the secondary variable is de�ned on a much larger support than the primary
variable. For such cases, a di�erent Markov hypothesis is proposed [15, 20], leading to
a di�erent cross-covariance model. The cross- covariance, for this case, is de�ned as the
function of secondary variable (have large measurement volume) covariance and again co-
located or small-scale correlation coe�cient, �(0). In both approaches, there is no explicit
formalism to specify the cross-covariance; it is rescaled from either primary or secondary
variable covariance by the factor of small-scale correlation coe�cient, which is treated as
independent of scale.

In another study, Kupfersberger and coauthors [18] propose analytical equations to infer
small-scale variograms with a combination of small-scale data and large-scale data. The
key idea is to downscale large-scale variograms to small-scale and complete the horizontal
directions of 3-D small scale variogram with more extensive secondary data.

The better we understand the size scaling behavior of cross-correlation, the more reli-
able our numerical models. Data sources have a wide range of measurement volumes and
cross-correlation characteristics. A volume or size dependent cross-correlation structure is
required. Vargas-Guzman and coauthors [23, 24] have tackled a related question. They
extend the concept of dispersion variance to the multivariate case where the volume size
or support a�ects dispersion covariances and the matrix of correlation between attributes.
This leads to a correlation between attributes as a function of sample support and the size
of the physical domain. They show that the correlation matrix asymptotically approaches a
constant at two or three times the largest variogram range. They also analyzed the behavior
of the cross-covariance by keeping the data support at a point support and changing the
�eld size.

In terms of data integration, changing the data support size for a �xed �eld size is more
critical; this has not been tackled by previous workers. Therefore, our focus in this paper
is on the e�ect of the data support on cross-correlation. We organize the paper according
to the following sections:

� Theoretical Development: The cross-correlation coe�cient is de�ned with the
dispersion variance and dispersion covariance terms. A general equation for volume-
dependent cross-correlation coe�cient is presented and the critical terms forming this
equation are interpreted. Some solution techniques for the governing equation are
also discussed.
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� Numerical Validation of Theory: A numerical solution technique for the volume-
dependent cross-correlation coe�cient equation is described. We show how to cal-
culate the required volume-average covariance values. An example illustrates the
volume-dependent cross- correlation coe�cient and its numerical calculation.

� Sensitivity Cases: The cross-variogram, nugget e�ect, and asymmetry of the direct
variograms are looked at in detail to better understand the characteristics of the
cross-correlation with respect to \upscaling". The functional relationship of the cross
correlation to scales is complex and depends on many factors.

� Application: Theory and practice are compared with real satellite data. Direct
variograms and cross-variogram are calculated and upscaled to estimate the cross-
correlation at di�erent scales. The experimentally-obtained results are close to the
theoretical and numerical results.

� Analytical Analysis: The complexity and non-linearity of the terms forming the
volume-dependent cross-correlation coe�cient equation are investigated. Closed-form
equations for the estimation of volume-dependent cross-correlation coe�cient are
shown for some limited cases. The asymptotic values of the cross-correlation as the
scale becomes very large are considered; a good match is seen between the numerical
and analytical results.

There are many bene�ts to better understanding the size-scaling relationship of the cross
correlation: (1) the input parameters for conventional collocated cokriging applications
(small-scale correlation coe�cient) can be chosen more correctly on the basis of the calcu-
lated large-scale correlation coe�cient, (2) the value of seismic data can be more realistically
appraised, and (3) correct variograms can be used for development of rigorous block cok-
riging.

Theoretical Development

There exist two kinds of spatial variability in almost all natural phenomena; local random
aspects and general structured aspects [16]. The concept of a \random function" provides
a representation of both aspects of variability. A random variable (RV) Z is a variable that
can take series of outcome values, z, according to some probability distribution. A random
function (RF) is de�ned as a set of dependent variables Z(u), one for each location u in
the study area A, (Z(u);8u 2 A).

Classically, the �rst order moment of the fuction Z(u) is its expected value, which is
the probability-weighted sum of all possible occurences of the RV. \Stationarity", that is
spatial homogeneity, removes the location-dependent nature of the expected value,

EfZ(u)g = mZ ; 8u 2 A (1)

where mZ is the stationarity mean. The assumption of stationarity is critical. The station-
ary variance is de�ned as:

V arZfZ(u)g = �2 = Ef[Z(u)�mZ ]
2g; 8u 2 A (2)
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Moving on from classical one-point statistics we consider pairs of data a vector h apart,
[Z(u); Z(u + h)]. Second order stationarity amounts to assume that pairs of data do not
depend on the location u within A, but rather only on the distance, h separating them.
The stationary covaraince is de�ned as:

CZ(h) = EfZ(u) � Z(u+ h)g �m2
Z 8u 2 A (3)

The variogram is de�ned as:

2Z(h) = Ef[Z(u) � Z(u+ h)]2g; 8u 2 A (4)

The relation between the stationary semivariogram and the stationary covariance is straight-
forwardly derived:

Z(h) = �2 � C(h) (5)

One important remark on Equations from 1 to 5 is that they are all at \point-scale". For
example the covariance given by Equation 3 is the measure of similarity of data values,
which are h distance away, at the point-scale. A challenge is to be able to calculate them
at di�erent scales. This is addressed in the next Section. Another implementation detail,
that will not be addressed in this paper, is the estimation of the expected values in practical
settings with limited data. This is an important and critical subject that is discussed in
geostatistical texts and papers.

The elementary statistics described above could be calculated with a primary data
variable, denoted Z, or a di�erent secondary data variable, denoted Y . A familiar statistic
relating two variables is the correlation coe�cient, �, de�ned as:

� =
EfZ(u) � Y (u)g �mZmY

�Z�Y

=
CZ;Y g

CZ;ZCY;Y
(6)

where two di�erent notations are used; both notations are consistent with common practice
and the introductions above.

The correlation coe�cient is a standardized covariance that measures the linear depen-
dence of the two variables. The value of � is always between -1 and +1. The positive values
represent \direct' relations; whereas, negative values represent \inverse" relations between
two data types. It is important to note that � provides a measure of the linear relationship
between two variables. If the relationship between two variables is not linear, the correlation
coe�cient will not adequately reect the relatioship between the two variables. Further-
more, the correlation coe�cient is strongly a�ected by outlier data or extreme data pairs.
The correlation coe�cient can be arti�cially enhanced by an outlier pair that falls along
the general trend of the data or arti�cially damaged by an outlier pair that does not fall
along the lines of the general trend of the data pairs. The correlation coe�cient, �, given
by Equation 6 is a point-scale measure of correlation.
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0.0.1 Volume-Dependent Correlation Coe�cient

The equation for the data-scale correlation coe�cient was presented above in Equation 6.
The correlation coe�cient at a scale v di�erent than the data scale is de�ned as:

�(v) = ( �CZ;Y (v)) � (
1q

�CZ;Z(v)
) � (

1q
�CY;Y (v)

) (7)

where, �CZ;Y (v) is the volume-averaged cross-variogram, �Czz(v) and �Cyy(v) are the volume-
averaged direct variograms. These volume averaged covariances are classically de�ned asR
v

R
v C(u� u0)dudu0, which is closely approximated by numerical integration.
As a side note, the sill value of a direct semivariogram is the variance. The variance at

an arbitrary scale v is also called the \dispersion variance" and is equal to the �C(v) when
the area is large. The sill value of a cross semivariogram is similarly de�ned.

The dependence of correlation coe�cient on volume is linked through equation 7. A nu-
merical approach to calculate this from the point-scale variance and covariance is presented
next.

Numerical Validation of Theory

Consider a semivariogram model at arbitrary scale V made up of a nugget e�ect and nst
nested variogram structures:

V (h) = C0
V +

nstX
i=1

Ci
V �

i
V (h) (8)

where V (h) is the variogram model at the V scale, C0
V is the nugget e�ect, nst is the

number of nested variogram structures, Ci
V is the variance contribution of each nested

structure, i = 1; : : : ; nst, and �i
V (h) are nested structures consisting of analytical functions.

The \sill" of each analytical function �i
V (h) is unity, the C

i
V terms describe the variance

contributions of each nested structure. The sum of the variance contribution is the variance
at the V -scale and is a also called the dispersion variance:

D2(V;A) = C0
V +

nstX
i=1

Ci
V (9)

where D2(V;A) is the variance (dispersion) of volumes of size V in the entire area of interest
A. The variance decreases as the volume increases since high and low values are averaged
out as the volume of investigation increases.

The variance contribution of each nested structure changes with volume in a well un-
derstood manner [16]:

Ci
V = Ci

v

1� ��(V; V )

1� ��(v; v)
(10)

where Ci
V is the variance contribution of nested structure i at the large scale and the

Ci
v is the variance contribution of nested structure i at the data scale, and ��(V; V ) and
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��(v; v) are the average variogram or \gamma-bar" values. Note that the change in the
variance contribution is calculated separately for each nested structure. The \gamma-bar"
value represents the mean value of �(h) when one extremity of the vector h describes the
domain V (u) and the other extremity independently describes the same domain V (u). In
mathematical notation the \gamma-bar" value is expressed as:

�(V (u); V (u)) =
1

V � V

Z
V (u)

Z
V (u)

(y � y0)dydy0 (11)

Although there exist certain analytical solutions [6, 16] to �(V (u); V (u)), the value of
\gamma-bar" is usually estimated numerically by discretizing the volume V (u) and V (u)
into a number of points and simply averaging the variogram values:

�(V (u); V (u)) �
1

n � n0

nX
i=1

nX
j=1

(ui � u0j) (12)

where n is the number of regular spaced points discretizing the volume V (u) with the same
fractional volume of V (u).

The same approach can be used to calculate the dispersion covariance using Equations
8 to 12; but instead of using auto or direct variograms, a cross-variogram is used.

The values of dispersion variances and covariances allow calculation of the volume-
dependent correlation coe�cient:

�(v;A) = (D2
zy(V;A)) � (

1p
D2

zz(V;A)
) � (

1q
D2

yy(V;A)
) (13)

where, D2
zy(V;A) is the dispersion covariance and D2

zz(V;A) and D2
yy(V;A) are the disper-

sion variances at V -scale.
The VarScale program [19] can be used to calculate these dispersion variances and

dispersion covariances. This program implements the classical \Geostatistical Scaling Laws"
[16]. Consider an example to illustrate the numerical calculation of volume- dependent
cross-correlation coe�cient via Equation 13.

Numerical Veri�cation

A full co-simulation technique was used to simulate a prior-de�ned linear model of core-
gionalization (LMC) [13, 16]. The linear model of coregionalization provides a method for
modeling the auto and cross-variograms of two or more variables. Each variable is charac-
terized by its own variogram and each pair of variables with a cross-variogram.

An unconditional realization of 500 by 500 image was generated using the Sgsim from
GSLIB [7] and an isotropic variogram model. Using this generated image as secondary
data in Sgsimfc [7] (Sequential Gaussian Full CoSimulation) program, another image was
created using the isotropic LMC model given by Equation 15. Two images were generated
having correlation structure and direct variograms de�ned by Equation 15.

Z(h) = 0:5Sph15 + 0:5Sph75 (14)

Z(h) = 0:5Sph15 + 0:5Sph75
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Figure 1: Illusration of cross-correlation coe�cient from the results obtained by numerical calcula-

tion and upscaling the images generated by Sgsimfc

Y (h) = 0:5Sph15 + 0:5Sph75 (15)

ZY (h) = 0:2Sph15 + 0:5Sph75

The two images are upscaled and the corresponding volume-dependent cross-correlation
coe�cients calculated. Next, using the LMC model in Equation 15 and the de�nition
of volume-dependent cross-correlation coe�cient in Equation 13, the values of correlation
coe�cient for di�erent scaling ratios are calculated numerically by VarScale program [19].
The numerically calculated volume-dependent cross-correlation coe�cients and the ones
obtained by upscaling the two images are illustrated on Figure 1.

The characteristics of the cross-correlation coe�cient for di�erent averaging volumes is
now considered in more detail.

Numerical Experimentation

The main purpose of this study is to understand the general behavior of the cross-correlation
for di�erent measurement scales. Some sensitivity runs are performed to understand the
characteristics of the volume-dependent cross-correlation coe�cient. These runs include
sensitivity on the shape of the cross variogram, nugget e�ect of cross variogram and asym-
metry of direct variograms.

Contribution of Nested Structures in Cross Variogram:

Direct variograms,zz(h) and yy(h), for variables z and y were �xed and di�erent cases
of cross variograms were considered. The direct variograms and all the considered cross
variograms are presented in Figure 2. The direct variograms are �xed at zz(h) = yy(h) =
0:5Sph(jhj=1) + 0:5Sph(jhj=5). Two small scale cross correlation coe�cients were consid-
ered, 0.7 and 0.3. There are three scenarios for the cross variogram:

Equal contribution cases 1 and 2:

zy(h) = 0:35Sph(jhj=1) + 0:35Sph(jhj=5)
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zy(h) = 0:15Sph(jhj=1) + 0:15Sph(jhj=5)

Focus on short-scale cases 3 and 4:

zy(h) = 0:5Sph(jhj=1) + 0:2Sph(jhj=5)

zy(h) = 0:3Sph(jhj=1)

Focus on long-scale cases 5 and 6:

zy(h) = 0:2Sph(jhj=1) + 0:5Sph(jhj=5)

zy(h) = 0:3Sph(jhj=5)

Cases 1 and 2 correspond to an \intrinsic" case where the shape of the cross variogram is
identical to the direct variograms. The short scale contribution is increased to its maximum
allowable under the linear model of coregionalization in Cases 3 and 4. The long scale
structure is maximum in Cases 5 and 6. The upscaled values of the correlation coe�cient
are given in Figure 3 for each case. The value of the correlation coe�cient does not depend
on volume scale for the equal contribution cases; however, increasing the contribution of
short- scale decreases the correlation coe�cient and increasing the contribution of long-scale
increases the correlation coe�cient. For large averaging volumes, the volume-dependent
correlation coe�cient stabilizes to a plateau-value.

Sensitivity on the Nugget E�ect of Cross-Variogram:

For this case, direct variograms were again �xed and di�erent cases of nugget e�ects of the
cross variograms were considered. The direct variograms and all the cross variograms are
presented in Figure 4. The direct variograms: zz(h) = yy(h) = 0:3 + 0:7Sph(jhj=2:5)

Equal contribution case 7:

zy(h) = 0:21 + 0:49Sph(jhj=2:5)

Largest nugget cases 8 and 9:

zy(h) = 0:3 + 0:4Sph(jhj=2:5)

zy(h) = 0:3

No nugget cases 10 and 11:
zy(h) = 0:7Sph(jhj=2:5)

zy(h) = 0:3Sph(jhj=2:5)

The upscaled values of the correlation coe�cient are given in Figure 5. It is seen that, again,
equal contribution does not e�ect the value of the correlation coe�cient for successive
volume scaling; however, increasing the contribution of the nugget e�ect decreases the
correlation coe�cient. Again, for large averaging volumes the volume-dependent correlation
coe�cient reaches a plateau-value.
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Figure 2: Fixed Direct variogram and di�erent cross variograms for the cases of Cross Variogram
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Sensitivity on Cross Variogram for
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Case-1: Equal Contribution

Case-2: Equal Contribution

a) Sensitivity on Cross Variogram to illustrate the effect of equal contribution of each structure in cross-variogram

Correlation coefficient fixed to 0.7 for cross variogram.

b) Sensitivity on cross variogram to illustrate the effect of focusing on long-scale and short-scale.
Correlation coefficient fixed to 0.7 for cross variogram.

c) Sensitivity on cross variogram to illustrate the effect of focusing on long-scale and short-scale.
Correlation coefficient fixed to 0.3 for cross variogram.

Figure 3: Sensitivity runs for cross variogram to illusrate the e�ects of Equal contribution, focusing

on short-scale and long-scale 10
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Figure 4: Fixed Direct variograms and di�erent cross variograms for the cases of cross variogram
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Sensitivity on Cross Variogram Nugget Effect
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Figure 5: Sensitivity runs for cross variogram nugget e�ect to illusrate the e�ects of equal contri-

bution, largest and no nugget 12



Sensitivity on the Asymmetry of Direct Variogram Structures:

In this sensitivity the cross variogram is �xed and di�erent direct variograms are considered.
Both the direct variograms and the cross variograms are presented in Figure 6. The cross
variogram is �xed at zy(h) = 0:35Sph(jhj=1) + 0:35Gauss(jhj=5)

No asymmetry case 12:

zz(h) = yy(h) = 0:5Sph(jhj=1) + 0:5Gauss(jhj=5)

High asymmetry case 13:

zz(h) = 0:15Sph(jhj=1) + 0:85Gauss(jhj=5)

yy(h) = 0:85Sph(jhj=1) + 0:15Gauss(jhj=5)

Partial asymmetry cases 14:

zz(h) = 0:3Sph(jhj=1) + 0:7Gauss(jhj=5)

yy(h) = 0:7Sph(jhj=1) + 0:3Gauss(jhj=5)

The upscaled values of the correlation coe�cient are given in Figure 7. As we have seen
before, the equal contribution (no asymmetry) does not e�ect the value of the correlation
coe�cient; however, increasing the asymmetry of direct variograms increaes the correlation
coe�cient and this increase is directly proportional to the magnitude of the considered
asymmetry ratio. Once more, the volume- dependent correlation coe�cient reaches a sta-
bilized value.

An Application to Real Data

A real �eld example is investigated to see if the theoretical results are validated by real data.
This is an important step because this validation will identify shortcomings in current theory
and prompt research into analytical relations.

A 500 by 500 pixel satellite image of Wadi Kufra, Libya (top of Figure 8) was used. The
\red" and \blue" color values of each pixel were considered, see the bottom two images of
Figure 8. These two values are colocated and correlated. The histogram and the scatter
plot of both red and blue data are given in Figures 9 and 10. It is interesting that the
frequency distribution of red values is close to normal and the frequency distribution for
blue values has a long tail more like a lognormal distribution.

Direct and cross variograms were calculated and a linear model of coregionalization
(LMC) was �tted. Recall that for a valid LMC, the auto and cross-variogram models must
be constructed using the same basic variogram models. The experimental directional and
the modelled direct and cross variograms are given in Figure 11. Two nested spherical
models without nugget e�ect were used:

red(h) = 770Sph(8;10) + 800Sph(380;105)

blue(h) = 2300Sph(8;10) + 1027Sph(380;105) (16)
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Figure 6: Fixed direct variogram and di�erent cross variograms for the cases of cross variogram

asymmetry sensitivity 14



a) Sensitivity on asymmetry of Cross Variogram to illustrate the effect of equal contribution of each structure in cross-variogram

Correlation coefficient fixed to 0.7 for cross variogram.

b) Sensitivity on asymmetry of cross variogram to illustrate the effect of partial asymmetry.
Correlation coefficient fixed to 0.7 for cross variogram.

c) Sensitivity on asymmetry of cross variogram to illustrate the effect of largest asymmetry.
Correlation coefficient fixed to 0.7 for cross variogram.
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Figure 7: Sensitivity runs for cross variogram asymmetry to illusrate the e�ects of equal contri-

bution, partial and large asymmetry 15
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Figure 8: Top: An image from Wadi Kufra, Libya; Bottom: The the images representing the red

and blue values of each pixel.
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Figure 10: Scatter Plot for red and blue data

redblue(h) = 695Sph(8;10) + 900Sph(380;105)

The sill values of the direct variograms are greater than zero, 770 � 2300 > 6952 and 800 �
1027 > 9002; therefore this LMC is positive de�nite.

A 2D linear upscaling was applied using 2 by 2, 5 by 5, 10 by 10, 20 by 20, 25 by 25,
50 by 50, 100 by 100 and 250 by 250 block dimensions. A new cross correlation coe�cient
was calculated for each up-scaled set of images. The distribution of the scaled or \volume-
dependent" cross- correlation coe�cient is shown on Figure 12.

Using the LMC model in Equation 16, and the de�nition of volume- dependent cross-
correlation coe�cient in Equation 13, cross- correlations were calculated numerically from
theory by using the VarScale program [19]. The comparison of the experimental and
theoretical volume-dependent cross-correlation coe�cients is presented in Figure 13. The
correlation coe�cient increases and approachs a steady-state value gradually after the av-
eraging volume of 50. This increase is due to the sill contribution of the large-scale nested
structure component of the cross variogram model (see earlier discussion).

The experimental and theoretical results are in general agreement; there is a particularly
good match for larger blocks. The di�erence for the small blocks might be explained by the
existence of spatial correlation at small scales that the variogram cannot capture. Notwith-
standing this small mismatch, the general agreement between experimental and theoretical
trends encourages us to seek for analytical relations between the averaging volume and the
volume-dependent cross-correlation coe�cient.

Analytical Analysis

The characteristics of the volume-dependent cross-correlation coe�cient would be under-
stood better by analtical relations. The theoretical equation and numerical solution are
brute force with little recourse for understanding except through repeated numerical exper-
iments. The terms controlling the volume-dependent cross- correlation coe�cient will be
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Figure 11: Directional Direct and Cros variograms for red and blue data along with the LMC model
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Figure 12: Behavior of cross correlation coe�cient for di�erent averaging volumes
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investigated more completely in this Section. Let's start with di�erentiating Equation 7,

@�(v)

@v
= (

@ �Czy(v)

@v
)( �C�1=2zz (v))( �C�1=2yy (v))�

1

2
(
@ �Czz(v)

@v
)( �C�3=2zz (v))( �Czy(v))( �C

�1=2
yy (v))

�
1

2
(
@ �Cyy(v)

@v
)( �C�3=2yy (v))( �Czy(v))( �C

�1=2
zz (v)) (17)

The correlation coe�cient at large scale can be written as:

�(v0 +�v) = �(v0) +
@�(v)

@v
�v (18)

The right hand side of the Equation 18 is the volume-dependent cross- correlation coe�cient
where, V = v0 +�v represents the volume at larger scales. Moreover, v0 is the point-scale,
�(v0) is the point-scale cross-correlation coe�cient and �v is the volume di�erence.

Equation 18 is the general equation that can be used to calculate volume-dependent
cross-correlation coe�cient. The @�(v)

@v term, given in Equation 17, is the most critical
determining the characteristic path of volume-dependent cross- correlation coe�cient. De-
pending on its rate of change, the cross- correlation coe�cient at larger scale may also
increase or decrease. Calculation of @�(v)

@v term is mainly controlled by:

(
@ �C(v)

@v
) =

@

@v

Z v

0

Z v

0
C(x� x0)dxdx0 (19)

The di�erentation of dispersion variances is the inverse of computing auxilary fuctions
[22, 16] for the average variograms or cross-variograms. By de�ning a \growing window"
concept, Vargas- Guzman and coworkers [22] linked the dispersion variances and covariances
to the total variance function of G(w), where w is the size of the growing window. Then,
the derivative of G(w) with respect to w gives the variogram itself. Alternatively, we
can readily calculate Equation 19 numerically or simplify it by applying Leibniz's Theorem
twice. The terms that appear in Equation 19 control the @�(v)

@v (Equation 17) and �(v0+�v)
term (Equation 18). They are highly non-linear functions and their further simpli�cations
depend on the LMC model.

Although it will not be a general solution, we want to go one more step and present a
simple approximate solution to the Equation 18. Let's assume that we have same direct
variograms, then equation 17 reduces to:

@�(v)

@v
=

(@
�Czy(v)
@v )

�Czz(v)
�
(@

�Czz(v)
@v )

�C2
zz(v)

�Czy(v) (20)

If we assume one dimensional upscaling with length l is not greater than the variogram
range, a then, we can approximate the average variogram as [16]:

�(l) = C[
l

2a
�

l3

20a3
]; 8a � l (21)

where C is the sill contribution or variance. Equation 21 can be written in terms of average
covarince as:

�C(l) = C[1�
l

2a
�

l3

20a3
]; 8a � l (22)
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By taking the derivative of Equation 22, we can estimate the value of @ �C(l)
@l as:

@ �C(l)

@l
= C[�

0:5

a
+
0:15l2

a3
]; 8a � l (23)

By using the Equations 22 and 23, we can easily estimate the value of volume-dependent
cross-correlation coe�cient when a � l. This kind of approximation may be used when we
are upscaling along the wellbore from core-scale to log-scale.

Actually, when we anaylze the values calculated from Equation 23, 0:5
a is the dominant

term and after some larger averaging values of l, the second term 0:15l2

a3 also contributes.
Therefore we can assume that :

@ �C(l)

@l
�= �C

0:5

a
(24)

We can rewrite the Equation 21 assuming:

�(l) �= C
l

2a
(25)

We can relate the Equations 24 and 25:

@ �C(l)

@l
�= �

�(l)

l
(26)

Although it has some limititations, Equation 26 is a straightforward relationship depending
on the average variogram and averaging length.

In order to test the e�ciency of this approximation, we used the same LMC model as
above (Equation 15) to estimate the correlation coe�cients for di�erent length scales. Our
results show an error of around 3 to 5 percent for small averaging lengths. When we go
to averaging lengths larger than the variogram range, we can use another form of auxilary
fuction [22] for the spherical variogram:

�C(l) = C[0:75 �
a

l
� 0:2 �

a2

l2
]; 8l � a (27)

Then the derivative is given as:

@ �C(l)

@l
= C[�0:75 �

a

l2
+ 0:4 �

a2

l3
]; 8l � a (28)

By using the appropriate forms of Equations 27 and 28 in Equation 17, we can estimate the
volume-dependent cross-correlation coe�cient via Equation 18 for large averaging volumes.

Our aim here is to explore the governing equations of volume-dependent cross-correlation
coe�cient and hightlight some critical terms. It is intractable to present a general analytical
equation for complex coregionalization models. In general we resort to numerical techniques.

0.0.2 Limit value of volume-dependent cross-correlation coe�cient

As shown in all our case studies, the volume-dependent cross-correlation coe�cient con-
verges to a speci�c limit or \plateau" value for large averaging volumes. In order to estimate
this limit value, we need to seek for a solution to Equation 29:

lim
v!1

�(v) (29)
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Inserting the de�nition of �(v) we get:

lim
v!1

R v
0

R v
0 Czy(x� x0)dxdx0qR v

0

R v
0 Czz(x� x0)dxdx0 �

qR v
0

R v
0 Cyy(x� x0)dxdx0

(30)

Equation 30 is general equation for the limit value of volume-dependent cross-correlation
coe�cient. Without going through intermediate steps, we are directly giving a solution to
Equation 30 by assuming variograms are isotropic spherical models:

lim
v!1
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i
zya

i

q
[
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i
zzC

j
yyaiaj ]

(31)

where (Ci) values are the sill contribution of either direct variograms or cross-variograms
and the (ai) are the range values of the isotropic variograms or cross-variograms for the
corresponding nested structure component.

Assuming that direct variograms are same and LMC model is composed of two nested
structures, then we can rewrite Equation 31:

lim
v!1

�(v) =
C1
zya

1 + C2
zya

2

p
[C1

zza
1 + C2

zza
2]2

(32)

Now, let's calculate the asymptotic value for Case 3 in Exploratory Research section:

lim
v!1

�(v) =
0:5 � 1 + 0:2 � 5p
[0:5 � 1 + 0:5 � 5]2

= 0:5 (33)

From the numerical calculations, this limit value is expected to be between 0.5 and 0.51,
which is very close to our analytical limit value of 0.50. When we look for the limit value
for the Case 5, we get 0.90, which is very close to the numerically estimated one.

Interpretation of Results and Conclusions

� The theory of volume-dependent cross-correlation coe�cient is explained and a gen-
eral de�nition is provided by Equation 13. The dependence of volume-dependent
cross-correlation coe�cient on dispersion variance and dispersion covariance has been
discussed. The concept and the calculation precedures for dispersion variances and
dispersion covariances are presented. A numerical example is given to illustrate a
solution to the volume-dependent cross-correlation coe�cient given by Equation 13.

� The cross-correlation exhibits a functional relationship to averaging volumes. It can
increase or decrease with as volume support increases depending on the relative impor-
tance of long and short-scale variogram structures. If the direct and cross variograms
are proportional, there is no change in the cross-correlation as the averaging vol-
ume changes. After some averaging volume, the volume-dependent cross-correlation
coe�cient reaches a stablized-value. This plateau value is mainly controlled by the
large-scale nested structure component of cross- variogram and direct variograms. Our
study also shows that volume- dependent cross-correlation coe�cient is very sensitive
to the shape and sill contribution structure of cross-variogram and the asymmetry of
the two direct variograms
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� Increasing the contribution of long-scale variogram strucutres in the cross variogram
increases the correlation coe�cient; increasing the contribution of short-scale decreases
the correlation coe�cient. Increasing the asymmetry of the direct variograms increases
the correlation coe�cient. The volume-dependent correlation coe�cient stabilizes and
reaches a plateau-value for large averaging volumes.

� There is a good match between the numerically calculated volume- dependent cross-
correlations and ones obtained from a real �eld example (see Figure 13). This prompts
us to seek for analytical realations to estimate cross-correlation coe�cient as a function
of averaging volume.

� The general equations explaining the dependency of the cross-correlation on averaging
volume have been presented and explained. Understanding the nature of this scaling
for di�erent coregionalization models is practically important. The controlling factors
and limit values for large averaging volumes have been derived.

� Additional work is warranted to extend the analytical results to make them applicable
to the complexity of real problems; however, the numerical solution is fast, accurate,
and adequate in all cases.

� Since cross-correlation is the key element for data-integretion techniques, the LMC
model of coregionalization should be chosen carefully. A wrong LMC model may
cause cross-correlation to decrease instead of increasing and vice versa. A signi�cant
conclusion of this paper is that the volume-dependent cross-correlation should be
determined from the available data instead of assuming that it is independent of
scale.
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