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ABSTRACT 
Unstructured grids are receiving more attention in reservoir modeling.  This is due to the 
promise of more realistic representation of geological heterogeneities and more flexible 
adaptation to the non-uniform flow near well bores.  Conventional geostatistical 
algorithms are for a regular Cartesian grid in stratigraphic coordinates.  Simulation is 
used to assign either point estimates at the grid nodes or block estimates of equal-sized 
blocks on a regular grid.  Directly assigning petrophysical properties on unstructured 
grids presents unique challenges such as (1) searching for nearby relevant data and 
previously assigned grid blocks, and (2) calculating the covariances between the data and 
grid blocks and between the grid blocks and themselves.  These covariances are needed 
for kriging to get the expected value and variance of conditional distributions in a 
sequential simulation scheme. 

The covariance between blocks requires calculation of volume averaged covariance or 
variogram functions instead of simple point variogram.  In practice, these average 
variogram or “gammabar” values are calculated by numerical integration, which is very 
time-consuming due to the large number of blocks involved in a simulation and the high 
level of discretization required for reliable integration. 

We propose a very fast method for gammabar calculation on unstructured grids.  The key 
aspects (1) using a table lookup of the variogram function instead of using the equation 
each time, (2) exploiting symmetry in the numerical integration to reduce the number of 
calculations, and (3) approximating the gammabar values through a trained neural 
network that captures the complex nonlinear relationship between the gammabar values 
and the unstructured grid. Future issues related to the direct simulation of unstructured 
grid are summarized. 

                                                 
1 Now with Pacific Northwest Laboratories in Richland Washington (yulong.xie@pnl.gov).  
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INTRODUCTION 
Irregular grids are being considered more often in reservoir flow simulation [1].  Irregular 
grids provide flexibility to account for geological constraints associated with faults, 
stratigraphic pinch outs, lithofacies heterogeneities and flow constraints associated with 
well locations and interaction between injection and production wells [1,5,6,13].  Figure 
1 shows some unstructured grids such as the so-called Tartan grid, corner point grid [4], 
and locally refined grid (LRG) [11].  A review of unstructured grids used in flow 
simulation is presented in a companion report [14]. 

 

                           
 

Figure 1:  Some unstructured or irregular grids Tartan (left), Corner point (middle) and LRG (right) 

Conventional geostatistical modeling is conducted on regular Cartesian grids with blocks 
of the same size and shape.  The assumption is that all blocks have a constant volume 
support.  In fact, the properties are typically assigned at grid node locations with the same 
volume as the data.  There is no explicit handling of unstructured grids in geostatistical 
modeling.  One evident approach is to construct a fine-scale geostatistical model and 
scale that model to the unstructured irregular grid system; however, this is inefficient 
particularly when multiple realizations are used for uncertainty assessment. 

Direct population of irregular grid systems would be convenient, CPU efficient, and 
minimize storage requirements.  The key is to use block Kriging is the basis of most 
geostatistical estimation and simulation.  The Kriging mean and variance are important 
parameters for stochastic simulation.  The Kriging equations are general in the sense that 
there are no constraints on the volume support of the input data.  The block estimate on 
unstructured grids can be written as follows: 
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Block covariances (average variogram or gammabar) values are required instead of point 
variogram values in order to assign properties on unstructured grids.  Second, a modified 
search strategy must be used to identify those blocks that are related to the block being 
considered.  Third, when considering soft data, cokriging and the corresponding cross 
average variogram values have to be evaluated. 

Average variogram or gammabar ),( vvγ and )',( vvγ  values are calculated numerically 
by averaging the point variogram values of data pairs discretizing the block volumes.  It 
is assumed that averaging is linear.  The numerical evaluation of gammabar is a CPU-
expensive process that is a bottleneck for the practical usage of unstructured grid kriging 
methods; therefore, we focus on the fast calculation of gammabar values. 

BACKGROUND ON UNSTRUCTURED GRIDS 
Regular Cartesian coordinate grids after stratigraphic coordinate transformation are the 
most widely grid systems for reservoir modeling and flow simulation.  These grids are 
simple and the stratigraphic coordinate system transformation makes the grid conform to 
reservoir stratigraphic boundaries [2]; however, there are drawbacks [1]. 

Grid orientation effects [10] are an often-mentioned problem with regular Cartesian grids 
in flow simulation.  In a simulation study of unfavorable mobility displacement, the areal 
orientation of the grid system, with respect to the location of the injectors and producers, 
can have a large affect the calculated results.  Significant numerical dispersion [12] is 
caused by a combination of lower-order differencing schemes with large block size and a 
grid geometry that does not conform locally to the geometry of the flow field. 

Numerous studies have been conducted toward alleviating the difficulties with 
conventional Cartesian grid [1,5,6,13].  They include local refinement on the base grids 
[11], conforming mapping of Cartesian grid from computational domain into curvilinear 
grid in physical domain [3], and flexible gridding systems [9,13].  In the companion 
report, various gridding methods are reviewed and classified based on the nature in the 
construction and their pros and cons are summarized [14]. 

In fact, even geostatistical simulation with Cartesian coordinate systems has trouble 
conforming to large scale curvilinear structural heterogeneities [7].  The traditional 
rectilinear Cartesian coordinate axes cut through meanders and folds, irrespective of the 
original sequence of sedimentation/genesis.  This results in sample variograms that are 
typically too noisy and interpolation schemes that do not respect actual geological 
continuity. 

Even if the influence of gridding on geostatistical simulation is not as significant as in the 
flow simulation, it will be computationally efficient to conduct geostatistical simulation 
in the same gridding system as the flow simulation. 

Numerical Evaluation of Gammabar 
The average variogram between two block volumes can be calculated based on an 
integration formula. The integration is conducted over the two volumes.  In practice, the 
numerical summation shown below closely approximates the analytical solution: 
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CPU time saving is possible by: (1) keeping 
1vn and 

2vn  as small as possible, (2) 

calculating )'( ji uu −γ  as fast as possible, and (3) calculating )'( ji uu −γ for as few data 
pairs as possible.  We also consider approximating gammabar ),( 21 vvγ  with the point 
variogram between the centroids, )'( ji uu −γ , and a correction for the influence of the 
shapes, sizes, spatial orientations and separation of the two volumes. 

Procedures aimed at speeding up the gammabar calculation are proposed.  First, to avoid 
tedious direct calculation of variogram for every data pair discretizing the blocks, a 
variogram value lookup table is pre-calculated.  In the evaluation of gammabar between 
two blocks, the variogram values of data pairs are retrieved from such a lookup table. 

Second, the symmetry of the data pairs is used to reduce the number of pairs to be 
considered.  The blocks are enclosed by circumscribed rectangles or rectangular 
parallelepipeds in 2D and 3D cases, respectively, and discretized with equal increments 
in each direction for both blocks.  Only data pairs having unique variogram distances will 
be calculated and stored.  If the blocks are rectangular the number of data pairs with the 
same unique variogram distance can be determined beforehand, which makes the 
gammabar calculation a summation of the unique variogram values multiplied by their 
number of data pairs.  For blocks with irregular shapes, the accumulation of gammabar 
from the unique variogram values will be modified by the number of discretized data 
pairs inside the blocks. 

Third, further speeding up in the gammabar evaluation may still be required with the 
consideration of many blocks in a grid system.  The diagonal elements in the kriging 
matrix are critical and they are calculated precisely with the steps above.  The off-
diagonal elements are for volumes that do not overlap and could be approximated by 
correcting from the point variogram between the centroid of the blocks.  Training data is 
generated for each major isotropic variogram model considering the possible distribution 
of the size, shape, orientation and separation of two blocks in the normalized range space.  
The ratio between the gammabar and point variogram is pre-calculated.  The relationship 
between this factor and the size, shape, orientation, spatial separation of the two blocks is 
established by a neural network.  For a block pair in a real situation, the point variogram 
between centroids will be calculated, a correction factor will be predicted, and the 
gammabar will be approximated by correcting the point variogram with the factor. 
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Numerical Integration for Gammabar 
The discretizing level is one of the factors influencing the computation of gammabar.  
The precision of the approximation of the numerical solution to the analytical average 
variogram depends on the discretization level.  Two arbitrary variogram models are used 
to give an idea about the asymptotic convergence of the gammabar value for increasing 
levels of numerical discretization. 
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The two blocks are assumed to be rectangular parallelepipeds.  The table below shows 
the gammabar values for different discretization levels. 

 
Discretization 

Level 
Number of data 

pairs 
Average Variogram 

(Model 1) 
Average Variogram 

(Model 2) 
2 64 0.2505 0.1356 
3 729 0.2700 0.1485 
4 4,096 0.2716 0.1523 
5 15,625 0.2773 0.1539 
6 46,656 0.2784 0.1548 
7 117,649 0.2791 0.1553 
8 262,144 0.2795 0.1556 
9 531,441 0.2798 0.1559 

10 1,000,000 0.2800 0.1560 
11 1,771,561 0.2801 0.1562 
15 11,390,625 0.2804 0.1564 
21 85,766,121 0.2806 0.1565 
31 887,503,681 0.2807 0.1566 

The calculated average variogram levels out when the discretization number exceeds 5 
and approaches 10.  Therefore, 10 may be the maximum number one wants to use for the 
discretization of a block in any one direction. 

LOOKUP TABLE 
The original gammabar program in GSLIB proceeds by (1) calculating squared 
anisotropic distance for each data pairs between the two blocks, (2) getting the distance 
by a square root, and (3) calculating the variogram based on the variogram formulas.  The 
following formulas are used: 
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where hx, hy and hz are the distances in natural coordinate system and hα, hβ, hθ are the 
distance after considering axis rotation (ri,j’s) and anisotropy (λ 's). 
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The direct calculation of variograms takes time, especially for the exponential and 
Gaussian variogram models because of the exponentiation. 

The idea is to pre-calculate variogram values up to certain distance limit for each 
variogram structure and to establish a variogram value lookup table.  The direct 
calculation of the variogram value will be replaced by (1) calculating squared variogram 
distance for the data pairs between the two blocks, (2) getting the index of such a squared 
distance in the lookup table, and (3) retrieving the variogram value from the table.  The 
lookup table is organized with equal squared distance to save the square root operation. 

The time for direct calculation of the variogram is variogram model dependent.  
Exponential and Gaussian variogram models take much more time than Spherical 
variogram model.  The table lookup depends on the squared distance calculation and 
indexing, which is independent of the variogram model type. 

The time for table lookup and direct calculation is compared.  10001 points are kept in 
the lookup table, but the size of the lookup table has little influence on the time for 
retrieval.  The following table is for a modest PC for calculation of 10 million variogram 
values. The time saving depends on the variogram types and nested structures in the 
variogram model. 

 
 Table Lookup(s) Call Cova3 (s) 

Sph 4.2 14.3 
Exp 4.2 21.2 
Gau 4.2 22.4 

Sph+Exp 7.4 54.4 
Sph+Gau 7.4 56.7 
Exp+Gau 7.4 70.1 

Sph+Exp+Gau 10.6 123.0 

The upper limit of the squared variogram distance in the lookup table has to be larger 
than the largest possible squared variogram distance.  The upper limit can be set large 
enough to ensure complete coverage.  A reasonable upper limit is to use the physical 
maximum separation between the extreme points of any two blocks. 
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EXPLOIT SYMMETRY 

The original gammabar program enumerates all data pairs in the two blocks.  The 
calculation is very heavy due to the number of the large number of data pairs; however, 
when the two blocks are discretized with the same increments, there are many duplicate 
calculations because of pairs with the same separation angle and distance.  Figure 2 
shows the duplication due to the symmetry. 

It is noticed that the variogram between data pairs 2-5, 3-6, 4-6, 4-7, 5-8¸6-9 will be the 
same as that from data pair 1-4 due to the symmetry. 

 
Figure 2. Illustration of the duplication of variogram distance. 

Therefore the variogram value will be calculated only for data pairs with unique 
variogram distances.  The number of data pairs for a certain unique variogram distance 
can be easily determined, which speeds the gammabar calculation. 

Let nx1, ny1, nz1 and nx2, ny2, nz2 be the discretization number for the two blocks based on 
the same increments, dx, dy and dz.  The data pairs with unique variogram distance only 
consist of (1) every point of the first Y-Z slice in block one (red cells) with every point in 
block two (blue cells), and 2) the first Y-Z slice in block two (blue cells) with every point 
in block one except those in the first Y-Z slice (red cells), as shown in Figure 4. 

 

 
Figure 3. Data pair with unique variogram distance 

The variogram values will be calculated only for those data pairs with unique variogram 
distances.  These variogram values could be organized into a 3D tensor consisting of two 
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portions of dimension nx2×( ny2× nz2)×( ny1× nz1) (denoted as A) and the first Y-Z block 
in point of volume v2 with every point in volume v1 except those in the first Y-Z block 
results a cube with a dimension of (nx1-1)×( ny2× nz2) ×(ny1× nz1) (denoted as B). 
For the regular blocks shown in Figure 3, the number of data pairs having the same 
unique variogram distance (value) can be determined and the gammabar value will be 
calculated by weighting the unique variogram values by the right number of the data 
pairs.  The following pseudo code shows the use of the multiplication factor for each 
unique data pair to complete the gammabar calculation. 

 
In the case of nx1≤ nx2: 
 do ix=1,nx2 

  if (ix ≤ (nx2-nx1+1)) 
   every element in A will be multiplied by nx1  
  else 
   every element in A will be multiplied by (nx2 – ix + 1)   

  end if 
 end do 

 do ix=2,nx1 
  every element in B will be multiplied by (nx1 – ix + 1) 

 end do 
 

And in the case of nx2> nx1: 
 do ix=1,nx2 
  every element in A will be multiplied by (nx2 – ix + 1) 

 end do 
 do ix=2,nx1 

  if (ix ≤ (nx1-nx2+1)) 
   every element in B will be multiplied by nx2  
  else 
   every element in B will be multiplied by (nx1 – ix + 1)   

  end if 
 end do 
Note that A and B are not saved since the multiplication can be done while the elements 
are being calculated.  The number of data pairs to be calculated is:  nx2× (ny1× nz1)×(ny2× 
nz2) + (nx1 - 1)×(ny1× nz1) ×(ny2× nz2).  The reduction factor in the number of data pairs 
to be conducted variogram calculation is: 
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The distinction between x, y, and z is arbitrary; therefore, it is always possible to choose 
the directions to ensure the greatest reduction in the data pairs. 

The Table below shows a comparison between the modified and the original variogram 
program.  The same two variograms models as listed above were used in the calculation.  
The CPU time and the average variogram values are listed. 
 
Discretization 

No 
Variogram Model 1 Variogram Model 2 

 Original Program Modified program Original Program Modified program 
 Value Time (s) Value Time(s)  Time (s) Value Time(s) 

2 0.2505    0.1356    
3 0.2700    0.1485    
4 0.2716    0.1523    
5 0.2773 0.06 0.2770 0.06 0.1539 0.16 0.1538 0.06 
6 0.2784    0.1548    
7 0.2791    0.1553    
8 0.2795    0.1556    
9 0.2798    0.1559    

10 0.2800    0.1560    
11 0.2801 7.47 0.2797 1.10 0.1562 11.15 0.1559 1.38 
15 0.2804 44.71 0.2799 3.29 0.1564 68.72 0.1562 4.56 
21 0.2806 333.73 0.2801 15.54 0.1565 512.84 0.1563 22.63 
31 0.2807 3435.26 0.2802 107.44 0.1566 5298.49 0.1564 157.42 

Computer configuration:  P III 450, 128 MB RAM 

The CPU time is also compared for the following four situations (1) enumerate all data 
pairs and direct calculation of variogram value by calling cova3, (2) enumerate all data 
pairs and retrieve variogram values from lookup table, (3) calculate only the unique data 
pairs and direct variogram calculation by calling cova3, and (4) calculate only the unique 
data pairs and retrieve variogram values from lookup table.  The variogram model is the 
second variogram model listed in above and the discretization number is 21 for each 
lateral direction.  The Table below gives the results.  The lookup table saves about 50% 
CPU time and the reduction of data pairs saves 90% CPU time.  The combination reduces 
the CPU to 5% of the original CPU time.  The time saving is variogram model (shape and 
nest structure) dependent. 
 
 Enumerate+Direct Enumerate+Retrieve Unique+Direct Unique+Retrieve 
Time (s) 492 231 47 22 
Value 0.1565 0.1563 0.1565 0.1563 

Note that the difference between 492 s (here) and 512 s (above) is due to two different 
programs.  The latter is the original gammabar program and the former comes from the 
modified program. 

Geometry Utilization for Irregular Blocks 
A “large” rectangle is used to enclose irregular blocks.  Two different irregular shapes, 
polygon (polyhedron) and ellipse (ellipsoid), are considered here.   
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Figure 4 shows two ellipses of different size and spatial orientation.  The discretization 
increment in x direction is based on ellipse 1 which has a longer x side and the y 
increment is based on ellipse 2 which as a longer y side.  The y origin of the 
circumscribed rectangle for ellipse 1 and the x origin of the circumscribed rectangle for 
ellipse 2 are shifted a little bit to let the centroids of the circumscribed shapes coincide 
with the ellipses. 
 

 
Figure 4:  The discretization of irregular blocks 

As with regular shaped volumes, the variogram values for unique data pairs are 
calculated.  The number of data pairs for each unique variogram distance is calculated by 
using an indicator for each discretized point in the block. 

The indexing described below will allow quick retrieval of the corresponding unique 
variogram for each data pair.  Once again, consider the discretization for two blocks as:  
nx1, ny1, nz1 and nx2, ny2, nz2 and the looping is on x direction.  The entire unique 
variogram tensor is shown in Figure 5. 
 

 
 

Figure 5: Tensor of unique variogram values 

If we index the unique tensor in the way shown in Figure 5, we can then calculate and 
apply the unique variogram in the way shown as in the pseudo code as follows: 
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for ix=1:nx1   
 for jx=1:nx2 
        if (jx>=ix),  
              index = jx-ix  
       else if (jx<ix) 
             index = ix-jx+(nx2-1) 
       end if 
   end  
end 

 
Specifically: 

1. if (ix==1) or if ((ix>1) & (jx==1)) 
the gammabar should be calculated and stored in the indexed 
slice of the tensor                                                                   

2. for all other ix and jx, the gammabar would be retrieved from 
the indexed slice in the tensor, i.e,: 
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The time improvement in the gammabar calculation for irregular blocks depends on the 
shape, size, irregularity, and spatial orientation. 
Two block pairs have been used for time comparison.  One pair consists of two rectangles 
with the coordinates of {25/25, 25/50, 50/50, 50/25} and {25/50, 25/75, 50/75, 50/50}.  
The other pair consists of two polygons both having four vertices with the coordinates of 
{26/70, 30/90, 50/95, 54/65} and {30/90, 26/105, 46/110, 50/95}.   Variogram model two 
is used.  The gammabar calculation is evaluated with the proposed procedure and 
compared with a reference method without considering the lookup table and the 
symmetry.  The calculated gammabar values and the time are listed below.  We see a 
significant saving in the computation. 

 γ γ  'γ  No T (s) T’(s) 
Rectangles 0.0554 0.0557 0.0558 256 0.0050 0.050 
 0.0554 0.0557 0.0558 1464 0.110 0.280 
 0.0554 0.0557 0.0558 19448 0.280 2.690 
 0.0554 0.0569 0.0570 923521 0.710 11.10 
 0.0554 0.0557 0.0558 2825761 1.60 32.25 
Polygons 0.0481 0.0474 0.0475 84 0.060 0.056 
 0.0481 0.0482 0.0483 4094 0.060 0.270 
 0.0481 0.0484 0.0485 52920 0.220 1.920 
 0.0481 0.0483 0.0484 251120 0.490 7.140 
 0.0481 0.0483 0.0485 767514 1.10 21.03 
γ: point variogram between centroids of the blocks 
γ : gammabar calculated from modified algorithm 

'γ : gammabar calculated from brute force reference method 
No: overall valid pairs 
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T (s): overall time for modified method 
T’(s): overall time for reference method 

APPROXIMATE TECHNIQUE 

Approximation of gammabar for non-overlapping blocks 

Although we show significant improvement in the computation time for gammabar 
values, an unstructured grid could consist of millions of blocks.  Further reduction in the 
computation time is investigated for practical application. 

The gammabar value is the average of the variogram values of data pairs between two 
blocks.  All data pairs differ by the difference between the centroids of the blocks.  The 
relationship between gammabar and the variogram value between the centroids is 
complex and nonlinear, which depends on the sizes, orientation, shapes, and separation of 
the blocks.  Qualitatively, this relationship is interpretable based on the variogram model 
but is too complex to be formulated quantitatively for prediction purpose.  We train a 
neural network to learn such a relationship and the gammabar value is then predicted 
from the point variogram value (between block centroids) by correcting the influence of 
the shapes, size, spatial orientation of the blocks.  Note that this technique is only for 
non-overlapping volumes. 

As a first approximation we assume that the blocks can be represented by an 
ellipse/ellipsoid where the centroid of the ellipse/ellipsoid is that of the irregular shape 
and the ratio of the long and short axis of the ellipse/ellipsoid reflect the geometric 
orientation of the irregular shape.  The orientations of the long/short axes of the 
ellipse/ellipsoid are determined by a principal component analysis of the discretized 
irregular shape.  The ellipse/ellipsoid will have the same area/volume of the irregular 
shapes.   

A training set is constructed by randomly generating a set of paired ellipses.  The long 
axes, short axes, azimuth angles of both ellipses, and the separation in both x and y 
directions are used as training attributes for the neural networks.  The point variogram 
between the centroids and gammabar values are calculated.  The ratio between the 
gammabar value and the point variogram value is obtained and used as the target attribute 
for neural network training.  For generality, all parameters and calculations are performed 
in normalized space, that is, with a standard isotropic variogram model with unit range.  
In the normalized space, the distributions for drawing the attributes are: 
Training Attribute Distribution 
Azimuth angle of ellipse 1 uniform distribution between 0 to 360 
Long axis of ellipse 1 exponential distribution with average of 1 
Short/Long of ellipse 1 uniform distribution between 0 to 1 
Azimuth angle of ellipse 2 uniform distribution between 0 to 360 
Long axis of ellipse 2 exponential distribution with average of 1 
Short/Long of ellipse 2 uniform distribution between 0 to 1 
Separation of centroid in x direction exponential distribution with average of 1 
Separation of centroid in y direction exponential distribution with average of 1 
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Target Attribute   
Ratio of gammabar and centroid variogram   

As we discussed previously, the diagonal elements of the covariance matrix are critical; 
therefore, for the blocks themselves we calculate the gammabar values precisely.  The 
approximation with point variogram between centroid and neural network will be used 
for the off diagonal elements (non-overlapping) average variogram calculation.  100,000 
non-overlapping ellipsoids have been generated for neural network training.   

Figure 6 shows the histograms of the training parameters and Figure 7 show the 
histograms of the target attributes, which are the ratio between gammabar and centroid 
variogram for three types of variogram models (these figures have been put after the 
references).  Virtually all of the factors are between 0.95 and 1.05, which makes 
prediction difficult in some senses, but easy in the sense that slight errors are not 
compounded in later calculations.  The attempts to use all 100,000 data for training are 
not successful due to the distributions of the attributes.  A reduced training set containing 
8504 data is retrieved from the entire data set. 

Multivariate Regression and Neural Network 
A supervised learning algorithm is used to discern a relationship between two sets of 
attributes.  There are many multivariate statistical techniques, such as multiple linear 
regression (MLR), regression techniques based on latent variables, principal component 
regression (PCR) and partial least square regression (PLS).  When the intrinsic 
relationship is believed to be non-linear, non-linear modification to those techniques is 
required or technique dedicated to nonlinear relationship such as multivariate Adaptive 
Regression Splines (MARS) and neural networks (NN) could be used.  Neural network 
with Back Propagation (BP) of error is a popular method [8].  Besides BP, there are 
Radial Basis Functions (RBF), Generalized Regression NN (GRNN) for supervised 
learning.  We tried multivariate regression with non-linear terms and BP-NN to discern a 
relationship between volume characteristics and the correction factor.  The principle of 
BP network and implementation details can be found in the vast literature [8] of neural 
networks. 

For multivariate regression, we supplemented the linear terms with exponential terms and 
squared terms to account for the nonlinearity.  Figure 8 shows the scatter plots between 
the predicted values versus the real target values in the training set for regression models 
with different nonlinear terms.  Note the very low correlation coefficient that suggests 
simplistic multivariate regression does not work very well. 

For the neural network training, the target values are normalized to 0.2 to 0.8 using the 
maximum and minimum values.  All the training attributes are scaled in to 0/1 range.  
Parameters such as momentum, learning rate, and number of nodes in the hidden layer 
have been varied to get optimal training configuration.  Figure 9 shows the scatter plots 
between the predicted values versus the real target values in the training set.  The much 
higher correlation coefficient suggests neural network is superior for this kind of 
nonlinear relationship learning. 



 14 

 
 

Figure 6 Histogram of the training parameters 
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Figure 7.  Histograms of the target attributes 
 

 
 

Figure 8  MLR training results 
 

 
Figure 9  Neural network training result 
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Simulation Using the Approximated Covariance 
A 16 by 16 2-D Tartan grid is shown in Figure 10.  The size of the blocks reduces 500 by 
300 to 125 by 75 in the center of the domain.  A Spherical variogram model of 
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90.010.0 hhSphh is assumed.  Unconditional simulation is 

carried out in Gaussian space; we would expect to use Direct space in the future. 

 
Figure 10:  a 16 by 16 Tartan grid used for simulation 

Four situations are considered for comparison: (1) using point covariance for covariance 
matrices in Kriging, (2) using precisely calculated block covariances, (3) using precisely 
calculated block covariance for diagonal elements and point covariance for the off-
diagonal elements in the left hand covariance matrix, and (4) using precisely calculated 
block covariance for diagonal elements and approximated block covariance by trained 
neural network for the off-diagonal elements in the left hand covariance matrix of 
Kriging equations.  The purpose of this investigation is to see if there are any problems 
such as singular matrices when the neural net approximation is used. 

We found no singular matrices for any situation; however, we did notice some negative 
Kriging variances and unusually large Kriging weights (absolute value larger than 2) 
occurring when using point covariance or neural network predicted block covariance for 
the off-diagonal elements of the covariance matrix. 

 Reference Block 
Covariance 

Point 
Covariance 

Block/Point 
Covariance 

Block/Approximated 
block covariance 

# Singular 0 0 0 0 
. big weights 0 1 36 84 
# neg. variance 0 0 18 18 

These erratic large weights and negative Kriging variances have been investigated 
thoroughly.  The negative variances are related to the unusual large weights.  We checked 
each all 84 big weights and visualized the geometric configurations of the blocks 
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involved and found that the problem cases were almost always linked to some kind of 
screening.  Figure 11 shows four such situations. 

 

              

                     
 

Figure 11  Four cases of the node configuration and weights of Kriging equations 

 

Mostly, when two blocks are adjacent to the location being estimated, one block receives 
a large positive weight and the other block received a big negative weight for 
compensation.  These cause the Kriged mean values and Kriging variance to be 
unreliable.  Such problems associated with data screening effect become more serious as 
the simulation proceeds because there are an increasing number of nearby blocks and 
previous Kriging problems are compounded. 

An iterative process to remove non-adjacent blocks from Kriging equation is proposed to 
solve this problem.  For each Kriging system, if big weights occur to non-adjacent nodes 
(λ>2.5 or λ<-0.5) these non-adjacent nodes will be removed from the Kriging 
configuration and the weights recalculated.  This procedure is iterated until there are no 
big weights obtained from the Kriging solution.  In Figure 11, the remaining nodes in the 
Kriging equation and their weights after such iterations are plotted.  No more than three 
iterations are needed. 

Figure 12 shows the histograms and maps (at the same scale from pixelplt – we can plot 
at “real” scale by fixing the input data) of one realization from the four situations we 
investigated.  A cross validation exercise could be considered to test the validity of the 
neural network approximation. 
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Figure 12:  Histogram and map of simulated values of one realization 

 

Future Work 
We have presented some preliminary results towards the direct simulation of unstructured 
grids.  Our effort has been on the computation bottleneck problem, that is, the fast 
calculation of gammabar.  There are still some issues that have to be solved before 
practical application. 

As shown at the bottom of page 2, there are three types of average variogram 
(covariance) involved in the Kriging equations, i.e., (1) the right hand terms that measure 
the closeness between the estimated block and data blocks, (2) the diagonal elements and 
(3) the off-diagonal elements in the left hand that are accounted for the redundancy.  
Their importance to the Kriging estimate and variance should be investigated.  We 
anticipate that the off-diagonal elements are the least influential portion of the three; 
hence, we can take some approximations for them.  The simulation result support such a 
hypothesis, however, care should be taken to assure Kriging weights are rational..  

Neighborhood searching is another problem.  The closeness of the blocks involves more 
than the distance between centroids.  The blocks should be pre-sorted according to their 
centroids and size with some kind of searching tree can be constructed. 

Soft data integration is another outstanding consideration.  This may involve the 
straightforward calculation of cross gammabar (covariance) values. 

Finally, the DSS algorithm that uses the Kriged mean and variance must be designed to 
honor the right histogram.  This is the subject of ongoing research. 
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