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Abstract 
There are many advantages to direct sequential simulation (DSS).  Avoiding a Gaussian or 
indicator transform permits correct integration of data of different volume supports; the non-
linear transform of Gaussian and indicator simulation techniques only allows reproduction of the 
trend or rank of the data at different scale than the simulated grid blocks.  In particular, 
simulation of unstructured grids requires consideration of previously simulated grid blocks at 
many different scales.  Moreover, DSS allows a more correct approach to account for secondary 
data that is often at larger scale. 

The main limitation of DSS has been difficulty with histogram reproduction, that is, the global 
histogram of the simulated values ends up as a hybrid of the data histogram and a symmetric 
Gaussian distribution due to the central limit theorem.  Attempts to honor the global histogram 
by-construction have largely failed.  A post-processing quantile transformation is required to 
enforce the global histogram.  This post-processing removes ergodic fluctuations and destroys 
reproduction of large-scale data. 

We introduce a procedure that allows the global histogram to be reproduced, within ergodic 
fluctuations, by-construction in a theoretically correct manner.  The mean and variance of the 
conditional distribution at each step of DSS come from simple (co)kriging (as it must).  The 
shape of the conditional distribution is taken from the correct shape if a univariate Gaussian 
transform were used.  The method does not assume multiGaussianity nor are the data transformed 
to a Gaussian distribution; the shape implicit to the Gaussian model is simply used as a  viable 
shape to honor all input data and the global distribution.  The approach and implementation 
details are explained. 

Introduction 
The sequential paradigm to simulation has become increasingly popular.  It has advantages over 
classical geostatistical techniques such as matrix methods, spectral methods, and moving average 
methods.  These classical methods only work with multivariate Gaussian distributions and require 
a kriging step to make the simulated realizations honor local data.  The sequential simulation 
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approach is somewhat more flexible for continuous and categorical variables and accomplishes 
the simulation in one step. 

Sequential simulation methods have historically been applied to transformed variables, that is, a 
Gaussian transform of continuous variables and an indicator transform for categorical variables.  
The indicator transform could also be used for continuous variables; however, this approach is 
more demanding for inference – we do not concern ourselves with indicator methods in this 
report.  The application of Monte Carlo simulation from a series of conditional distribution is a 
classical statistical procedure that is well grounded in Bayesian statistics.  Sequential simulation 
can be seen as Monte Carlo simulation from a multivariate distribution by decomposing that 
multivariate distribution into a succession of conditional distributions by recursive application of 
Bayes Law.  The sequential paradigm is not approximate; however, care must be taken to avoid 
artifacts by poor implementation decisions such as using too few previously simulated values. 

The Gaussian transformation makes implementation of sequential simulation remarkably 
straightforward.  A decision is made to model the full multivariate distribution with a Gaussian 
distribution after univariate transformation to a normal or Gaussian distribution.  Then, the 
conditional distributions at each step of the sequential simulation are Gaussian in shape with 
mean and variance given by simple (co)kriging.  The original Z variable is transformed to a Y 
Gaussian variable, simulation is done in Y Gaussian space, and the simulated y values are back 
transformed to z values.  The covariance or variogram of the Y random variable is correct. 

Variogram reproduction is guaranteed by use of all data and previously simulated grid blocks and 
by application of simple kriging.  In practice, a limited search neighborhood is used, but 
variogram reproduction can be checked and more data used if variogram reproduction is deemed 
unacceptable.  Secondary data such as seismic data can also be used after transformation to a 
Gaussian distribution and assuming that both variables are jointly multivariate Gaussian.  
Sequential Gaussian simulation (SGS) is arguably the most powerful and commonly used 
geostatistical simulation technique at the present time. 

The histogram of any particular SGS realization does not match the input histogram exactly.  The 
back transformation in SGS would only impose the histogram exactly if the Gaussian or normal 
values were exactly normal with a mean of 0, variance of 1, and correct shape.  Simulated 
realizations show statistical or ergodic fluctuations between realizations.  These variations are an 
important part of uncertainty; we will expect variability in the sample statistics over any study 
area of finite size.  It is wrong to transform the results of SGS to impose the histogram exactly. 

Working in Gaussian space makes calculations straightforward; however, it was shown early in 
the development of sequential techniques that the variogram structure is reproduced without 
transformation to Gaussian space (Journel, class notes, 1987).  Direct sequential simulation (DSS), 
applied directly with the original Z data values, would lead to simulated values that follow the 
correct variogram.  The Monte Carlo simulation at each step must consider probability 
distributions with the mean and variance given by simple (co)kriging, but the shape of the 
conditional distribution does not matter if we only want to reproduce the mean and variogram.  
Until now, there has been no good way to decide what shape of distribution to use in DSS.  In 
general, regardless of the shape chosen for the conditional distributions, the global histogram of 
the final values taken altogether is not reproduced.  The histogram is important; it is a first order 
statistic that has a first order affect on calculations made with the simulated realizations.  The 
inability of DSS to honor the input histogram has been a significant problem. 

Notwithstanding this significant problem with DSS, interest in a direct method has grown.  The 
main reason is that we must use a direct method to simultaneously account for data of different 
volumetric scale.  Transforming data of different scale to Gaussian space is problematic: the 
transform to a Gaussian distribution is non-linear and yet most averaging is linear (porosity) or 
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very particular (permeability).  A direct method would avoid the need for this problematic 
transformation.  There are other reasons such as the integration of secondary variables at the 
correct scale and with the correct level of precision.  The problem of global histogram 
reproduction must be addressed for successful application of DSS. 

The same quantile-transformation procedure used to transform original Z values to Gaussian Y 
values can be used to transform the output-simulated values from direct simulation to the correct 
input histogram.  The problem with this back transformation is that the final global histogram has 
no uncertainty (ergodic fluctuations) and, more importantly, large scale data is not reproduced.  
The transformation can be modified so that local hard data are reproduced (the values before and 
after transformation can be averaged together with a special weighting function); however, the 
problems of block data statistical fluctuations are important. 

Caers (CapeTown, 2000) proposed to reproduce the global histogram by formulating an objective 
function as a measure of difference between the input global histogram and the histogram of the 
simulated values.  This objective function can be used to selectively accept/reject certain 
simulated values to ensure that the final realization reproduces the global histogram.  This 
approach also removes most ergodic fluctuations and could introduce artifacts. 

Soares (Hedberg Conference, 2000) proposed a different approach to reproduce the histogram in 
DSS.  The central idea of Soares’s proposal was also to draw values selectively based on the 
kriged mean and variance.  The procedure does not seem to work well except when the variogram 
is nearly pure nugget effect. 

We propose another method for histogram reproduction.  The challenge has always been to 
determine the shape of the conditional distribution.  The true beauty of the Gaussian approach is 
that the shape is always Gaussian or normal.  In original Z units, there is no way to know the right 
shape so that the final simulated values reproduce the global histogram when taken altogether.  
The key ideas behind our method is to (1) work in original Z space, that is, a true DSS application, 
and (2) work out the shape of the conditional distributions as a function of their mean and 
variance using the normal-score or Gaussian transformation.  We can have the best of both worlds, 
that is, no data transformation and guaranteed reproduction of the input histogram within 
statistical fluctuations. 

The method will be described in detail with attention to practical implementation details and 
limitations. 

A Look at Sequential Simulation 
Sequential simulation is described in many sources including Deutsch and Journel, 1998 and 
Goovaerts, 1997; the details will not be repeated here.  The properties of kriging and expected 
values recalled below give one view of sequential simulation.  There are, of course, different 
ways of deriving and explaining the theoretical basis for sequential simulation.  Nevertheless, it is 
correct to say that there are two key results that makes sequential simulation work: (1) the 
covariance reproduction property of kriging, that is, the covariance between kriged values and the 
original data values follows the input model, and (2) addition of an independent random variable 
to a kriged estimate increases variance without changing the covariance.  The combination of 
these two results makes sequential simulation work.  Following are informal proofs of each result. 

Proof of the covariance reproduction property of kriging: first consider the simple kriging 
estimate, system of equations, and kriging variance for a standardized variable y: 
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Standard geostatistical notation is used, that is, u represents a 3-D location vector, the subscript 
i=1,…,n relates to the available data, and C(h=u1-u2) is the stationary covariance (1-γ(h)).  The 
covariance between the kriging estimate y*(u) and one particular data value y(ui) can be 
calculated: 
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Note that (1) considering a standardized variable removes the need to consider the product of 
means in the covariance, and (2) the final substitution comes from the simple kriging equations 
(1).  This is a powerful result.  The covariance between the kriging estimate y*(u) and each of the 
data values y(ui), i=1,…,n using in kriging is correct.  This could be used as justification for the 
use of kriging and the sequential simulation as a way to enforce covariance reproduction between 
all simulated values. 

Although sequential kriging would lead to values that reproduce the required covariance, the 
resulting values would be too smooth, that is, the variance would be too small.  Although the 
covariance is correct, the variogram is not because the variance is too small.  Another very 
important property of kriging is that the amount of smoothness can be calculated ahead of time.  
The smoothing is exactly the simple kriging variance.  The variance of the kriged estimate is the 
stationary variance minus the kriging variance: 

 ( ){ } ( )uu 22*
kyVar σσ −=  (3) 

This leads to the second key aspect of sequential simulation.  The variance of the estimates must 
be increased by the kriging variance.  A random residual is added at each step: 

 ( ) ( ) ( )uuu ryys += *  (4) 

The random residual is drawn by Monte Carlo simulation (independently) from a distribution 
with zero mean and variance equal to the kriging variance ( )u2

kσ .  Regardless of the distribution 
for r(u), the expected value of the simulated value ys(u) is that of the kriged value: 
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Moreover, the variance of the simulated value has been restituted to the full variance σ2, which is 
required for the stationary random function: 
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The most important result of adding a random number r(u) with no spatial correlation is that the 
covariance reproduction property of kriging (2) is not changed: 
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The expected value of the random number r(u) multiplied by data value at i y(ui) is zero because 
they are independent of each other and the expected value of r(u) is zero.  Independence entails 
that the expected value of the product is the product of expected values (Bayes Theorem); hence 
the covariance is correct. 

Drawing a random number r(u) from a distribution with a mean of zero and a variance of ( )u2
kσ  

and adding the kriged estimate y*(u) is identical to drawing from a distribution with a mean of 
y*(u) and a variance of ( )u2

kσ .  As mentioned in the introduction, the issue comes down to what 
shape of distribution should we use for this distribution.  Kriging can be thought of as an additive 
or averaging procedure.  The central limit theorem tells us that the average of independent (which 
the r(u)  values are) identically distributed values tends toward a Gaussian distribution; therefore, 
if the original y data are standard Gaussian and a Gaussian shape is used for the r(u) values, the 
final result will tend toward the correct standard Gaussian histogram.  A more formal proof of 
this could be offered; however, geostatisticians know that sequential Gaussian simulation (SGS) 
works in practice.  Data are transformed to a standard Gaussian distribution, sequential simulation 
proceeds, and the simulated values are back transformed afterwards. 

Gaussian simulation works fine when the data are all at the same volumetric scale and the 
simulation is being conducted at that exact same scale.  Gaussian simulation does not work in 
presence of multiple data at different scale or when we want to simulate at a different scale from 
the data.  To use Gaussian simulation, we must assume that the variable averages linearly after 
Gaussian transformation, which is not the case.  We would like to work in original Z data units 
for variables that average linearly and, perhaps, in ω-power law transformed space for 
permeability that approximately follows a constant power-law average.  Working in original data 
units or with some arbitrary non-Gaussian transform requires us to address the question of what 
shape of distribution do we use for r in sequential simulation? 

Failure to address this question satisfactorily will result in simulated realizations that reproduce (1) 
the conditioning data at the scale of the simulation, and (2) the variogram.  The simulated 
realizations will not, however, reproduce the global histogram of the variable. 
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Methodology for Histogram Reproduction 
The correct shape of the conditional distributions in sequential simulation is known for the 
Gaussian case because we have a model for the full multivariate distribution.  An evident 
approach to work in original Z units is to derive an alternative multivariate model.  There are 
significant problems with this idea: (1) there are no alternative models as tractable as the 
Gaussian model, and (2) a non-Gaussian analytical model would necessarily follow some other 
parametric model that would not likely match our data. 

Other ideas have been put forward.  Caers suggests dynamic monitoring of the global distribution 
and using selective sampling to ensure the global is approximately reproduced.  Soares proposes a 
different selective sampling procedure where values are drawn from particular regions of the 
global distribution depending on the kriging mean and variance.  These techniques do not ensure 
the global distribution is reproduced and remove important fluctuations in the result. 

Rather than attempt selective sampling that destroys the statistical properties of our final models, 
we propose to use a family of distribution shapes that we infer from the multivariate Gaussian 
transform procedure. 

Conditional Distribution Shapes from Multivariate Gaussian Model 
Consider an original Z variable with stationary histogram FZ(z).  In the Gaussian approach this 
variable is transformed to a Y variable with stationary standard normal distribution G(y).  The 
quantile or normal-score transformation is widely used to transform any z-value to a 
corresponding y-value: 

 ( )( )zFGy Z
1−=  (8) 

This transformation can be reversed at any time to get back to the original variable units: 

 ( )( )yGFz Z
1−=  (9) 

The CDFs or cumulative distribution functions (FZ(z) and G(y)) are known and their inverse 
relations or quantile functions (FZ

-1(z) and G-1(y)) are also known.  Thus, we have a direct link 
between Z and Y space.  This transformation is unique, reversible, and non-linear. 

A fantastic property of the multivariate Gaussian model is that we know the shape of every 
conditional distribution: univariate Gaussian!  The mean and variance are given by kriging.  The 
distribution of uncertainty in Z space can be determined from the non-standard univariate 
Gaussian distribution by Monte Carlo simulation (drawing L random y values) or straightforward 
back transform of L regularly spaced quantiles: 

 LlypGGFz
k

l

Z
l ,...,1,)( *1
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σ
 (10) 

where y* and σk are the mean and variance of the non-standard Gaussian distribution of 
uncertainty, and the pl,l=1,…,L values are uniformly distributed between 0 and 1.  The 
distribution of uncertainty in Z space is assembled from the zl, 1,…,L values.  There is no 
analytical expression for this distribution, aside from expression 10; nevertheless, the distribution 
is completely defined: 

 ( )zF
kyZ σ,, *  (11) 

We add the Gaussian parameters as subscripts to denote a conditional distribution relating to a 
particular conditional distribution in Gaussian space.  The shape, mean, and variance of this 
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distribution depend on the original Z distribution, but are not the same as the original Z 
distribution. 

Figure 1 shows this concept graphically.  The top row shows histograms of “real” Z space and 
Gaussian Y space.  The second row shows the cumulative Z and Y distribution functions, FZ(z) 
and G(y).  This is the only way to go between Z and Y units.  The lower two rows of figures 
shows histograms and cumulative distribution functions of conditional distributions (low and high 
mean / low and high variance).  It is important to note that the shape of the z-conditional 
distributions are neither Gaussian nor identical to the original Z data distribution. 

The shape of every z-conditional distribution is explicitly known.  Our proposal is to use those 
known shapes in DSS. 

DSS with Predetermined Conditional Distribution Shapes 
Our proposal is for direct sequential simulation (DSS), that is, all kriging and simulation is 
performed in original Z variable units (or with an appropriate ω-power law transform).  We only 
use the Gaussian transform to get the shape of the conditional distributions.  In concept, our 
proposal consists of conventional sequential simulation with the following modifications: 

1. Determine the appropriate mean and variance in Z units by (co)kriging using all relevant 
original data and previously simulated grid nodes or blocks, z*(u) / σz

2(u). 

2. Find the corresponding Gaussian mean and variance y*(u) / σy
2(u) that would yield a z-

conditional distribution with the z mean and variance from step one (z*(u) / σz
2(u)). 

3. Draw a simulated z value from this conditional distribution, that is, ( )( )zF
kyZ uu σ),(, * , see 

relations (10) and (11). 

Step 2 in this procedure could potentially require significant computing effort; however, for 
practical implementation, we build a database of local distributions with different y means and 
variances.  Determining the correct local distribution shape amounts to a fast table look-up. 

Theoretical Justification 
Clearly this proposal will create realizations that reproduce the (1) local data at point and block 
scale since kriging is done in original Z data units, and (2) the mean and variogram of the Z 
variable because of the principles of DSS simulation described above.  It remains to be shown 
that the global distribution of the Z variable, FZ(z), is reproduced. 

There is an appealing argument to be made about the parallel between Z space and Y space and 
the linkage of equations (8) and (9).  A p-quantile in Y space is directly linked to the 
corresponding p-quantile in Z space and.  Simulating a y value in normal space and back-
transforming to z space afterwards is identical to drawing the same uniform random number and 
directly generating a z value from the corresponding distribution (11). 

This is not a proof.  We must demonstrate the link between y*(u) / σy
2(u) and z*(u) / σz

2(u) using 
the same data and the correct y and z covariance structure. 

The procedure works in practice. 
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Examples 
Four data sets were used to test the algorithm.  Data set one contains permeability data from two 
vertical wells.  The horizontal separation of the two wells is 600 meters and the vertical spans 
about 100 meters.  Data set two is a 3D data set of copper grades.  Data sets three and four are 
synthetic data sets with nearly Gaussian histograms.  The histograms for the four datasets are 
shown on Figure 2.   

The experiment variograms of the first two sets were calculated and modeled.  Figure 3 shows the 
experimental and model variogram for the first two datasets.  The variogram models for all four 
datasets are given below: 

 
Data Set Mean/Std Variogram Model 

1 1176/1141 
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Since there is no direct control on the mean and standard deviation of the local distribution in the 
original data space, the distribution domain of local distributions in the original space is 
investigated.  100,000 random pair of mean and standard deviation are generated in the Gaussian 
space.  The mean obeys the standard normal between –3.5 to 3.5 and the standard deviation is a 
uniform distribution between 0 and 1.  Each Gaussian distribution corresponding to a 
mean/standard deviation pair is back transformed to the original data space, and the mean and 
standard deviation in the data space are calculated.   

Figures 4 show the scatter plots (red dots) of mean versus standard deviation in the original data 
space.  The cross of two blue lines corresponds to the global distribution.  The shape of such 
domains depends on the data distributions.  It seems the closer to the Gaussian of the data 
distribution, the more symmetrical of the domain.  Also it seems the shape of such a domain is 
very sensitive to the shape of the data distribution.  For example, both Data set III and IV are 
Gaussian, but data set IV seems like a little bit more skewed, the distribution domain in the 
original data space is more asymmetrical.   

In the practice, the storage and retrieval of 100,000 distributions will be inappropriate and limited 
distributions will be generated as an approximation of that domain.  Usually regular spacing point 
in the mean and variance axes are taking and distribution are generated based on these 
mean/variance pairs.  The green dots in the Figures are scatter plots of the mean versus standard 
deviation of the distributions in the database when discretizing the mean and variance axes with 
101 levels.  Figure 5 shows the approximation when discretizing the domain using 11 levels.  It is 
obviously that the more discretization levels, the better the approximation of the domain.  
However, it should compromise in practice between the precision of the approximation and the 
memory and computation requirement. 
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Direct simulations were carried out for each data set based on 101 discretization levels for both 
mean and standard deviation.  The simulation domains are listed below. 

 
Data Set Simulation Domain 

1 120×550 with ∆x = 5.0, ∆y = 0.2 
2 400×600 with ∆x = 5.0, ∆y = 5.0 
3 10000 with ∆x = 0.1 
4 250×250 with ∆x = 0.2, ∆y = 0.2 

The blue dots shown in Figure 4 are the scatter plot of Kriging mean versus Kriging standard 
deviations.  It is noticed that for the two non-Gaussian data sets the domain of the local 
distributions generated does not cover the real domain from Kriging.  That poses a serious 
problem because one cannot find a close distribution for those blue dots located outside the 
distribution domain.  The adoption of the available local distribution with very different 
mean/standard deviation will change the distribution of the simulated value very much. 

In order to alleviate this problem, the domain of the local distributions is increased in the creation.  
Although we know variance 1 in the normal space represent the variance of the global 
distribution which has the maximum variance, we increase this limit to 2 with the hope that we 
will get a wider coverage of the distributions in the original data space.  Figure 6 show the 
enlarged distribution domains for all the data sets together with the actual Kriging space. 

From the figure, it is noticed that the doubling the variance in the Gaussian space does not have 
the same significance to the variance change in the original data space.  Although the alleviation 
of the non-coverage problem, it does not eliminate it. 

The proposed procedure aims to get right shape of the local distributions.  Figures 7 to 10 show 
several local distributions generated for the four data sets. 

The local distributions appear systematical change from highly positive skewed to highly 
negative skewed through the transition of the global distribution.   

Figure 11 shows the histograms of the simulated values for four data sets.  Comparing to the data 
histograms shown in Figure 2, the histogram reproduction for the two Gaussian data sets (data set 
III and IV) are quite good, but the reproduction of the other data sets are not so satisfactory, 
especially for data set I.  This is not beyond the expectation given the non-covered Kriging space 
by the domain of the local distributions shown in Figures 4 and 6.  By taking distribution inside 
the domain as a replacement for those Kriging dots lie outside the domain shifts the values 
systematically to a higher ones, which may explain why the quartiles of the simulated values are 
all bigger than that in original data (but why the renormalization by the Kriging mean/standard 
deviation does not avoid this, does this suggest the distribution shapes of those outside dots are 
significantly different from the ones selected from the distribution database??) 

From Figure 6 those Kriging estimates outside the domain of the local distributions have low 
Kriging mean (even lower than data minimum) but still have high enough variance.  Theoretically, 
the further away of the Kriging mean away from global mean, the more known information are 
used in such a determination, the less the Kriging variance should be.  In Kriging, the Kriging 
variance is determined independent from data values as well as the weights, the Kriging estimate 
is determined subsequently.  We have checked the weights for some Kriging dots outside the 
distribution domain, and we do not find obvious weird weights associated.  Mostly such 
situations associate with the appearance of negative weights.  A small negative weight associated 
with a large data value may lead to a Kriging mean far less the minimum data value.  However 
sometimes a set of descent positive weights may also lead to very small Kriging mean because 
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simple Kriging is used to kriging the residual from the global mean.  Even for a non-problematic 
Kriging mean, the inability to find a close local distribution from the distribution database, the 
subsequent rescaling of the simulated value may also lie way out of the data range.  Even though 
the local distribution used for drawing the simulation is well behaved within the data range, the 
rescaling of the simulated value based on the Kriging mean/standard deviation will cast the 
simulated value far way from the data range.   

If no constraints applied to the simulated value, the accumulation of weird simulated values 
(which will affect subsequent Kriging mean) will result much more Kriging dot outside the 
distribution domain.  The blue dots plots shown in Figure 6 actually are after constraining the 
simulated values inside the data range.  The constraints of simulated value inside the data range 
should not be a good option although it alleviates the phenomenon of Kriging dots outside of the 
distribution domain.  In sgsim, there is no such a constraint.  Instead, the tail extrapolation option 
allows the simulation has simulated values outside data range but within the low/up data limits.  
Since in sgsim, the Kriging is on the nscore space and the simulated value will be back 
transformed into data space, it is unlikely to have weird simulated value.  In direct simulation, the 
Kriging is on the data space, and there is no control at all which kind of Kriging estimate occurs.  
Applying constraints to the Kriging mean may violate the principle behind, but no constraints 
may results more deteriorated results.   

However, the reproduction of the histograms are not so bad even though it seems there are lots of 
Kriging dots are outside of the local distribution domain.  I guess, the significance of the 
influence of those outside dots depends on the difference of the shapes in the local distributions of 
those dots from the local distribution used in the simulation.  If no difference in the shape, it 
actually does not matter because the simulated value will be rescaled based on Kriging estimates 
anyway.  However, there is no way to compare the distributions because we do not know the real 
distribution shape for each Kriging estimates. 

Obviously, the generated local distributions could not cover the local conditional distribution 
space encountered in the Kriging.  The problem may come from the linkage through the global 
distribution in the two spaces.   

Conclusions 
Although further work is required, we have shown an approach to simultaneously use DSS and 
reproduce the global distribution without ad-hoc post-processing or selective sampling.  The 
procedure amounts to pre-calculate the conditional distribution shapes that will be needed.  These 
shapes are calculated by back-transforming the theoretically correct shapes from Gaussian space 
using the theoretically correct back transformation procedure. 
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Appendix: Program Description 
The dssim.f90 program was created from the F90 version of sgsim.  The global distribution used 
to establish the local distribution set could be the data itself or a reference distribution for the data.  
Local distributions are created by generating Gaussian distributions with varied mean (from –3.5 
to 3.5) and variance (0 to 2, reason see later) and then transferred then into original data space. 

The user specified the discretization levels for the mean, variance and number of quantiles.  The 
local distributions are stored in memory for later retrieval in simulation. 

The simulation follows the same procedure as that in other sequential simulation algorithms.  
Each node in the simulation domain is visited following a random path.  Kriging mean and 
variance are obtained based on configuration of neighborhood.  By comparing the Kriging 
mean/variance with those of the local distributions in the database, the distribution with the 
closest mean/variance from Kriging ones is selected for the simulation drawing purpose. 

Since it is unlikely to find a distribution in the database with the exact mean/standard deviation 
values as the Kriging ones, the simulated value will be normalized to have the Kriging mean and 
variance.  

K
F

K
Fsimsim m

std
stdmvv

FK
+×−= )(  

where FFsim stdmv
F

,, are the simulated value, mean and standard deviation of the distribution 

from the database used for the simulation drawing and KKsim stdmv
K

,, are the final simulation 
value, Kriging mean and standard deviation for the node.   
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Figure 1: illustration of “real” Z space in the units of the data and Gaussian Y space where all conditional 
distributions are Gaussian.  The top row shows the univariate Z and the univariate Y histogram.  The second 
row shows the cumulative Z and Y distribution functions.  This is the only way to go between Z and Y units.  
The lower two rows of figures shows histograms and cumulative distribution functions of conditional 
distributions (low and high mean / low and high variance). 
 
 

 
Figure 2: Histograms of the four data sets used to test the histogram reproduction capabilities of the 
proposed algorithm. 
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Figure 3: Variograms for the first two data sets.  Note that these are not standardized since DSS requires 
the stationary variogram of the original Z variable. 
 
 
 

 
 
Figure 4:  Domain of local distributions (red dots), approximation through discretization of 101 levels in 
mean and standard deviation (green dots), and the practical domain from Kriging (blue dots). 
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Figure 5:  Domain of local distributions (red dots) and approximation through discretization of 11 levels in 
mean and standard deviation (green dots). 
 

 

 
Figure 6.  Domain of local distributions (red dots) and approximation through discretization of 101 levels 
in mean by increasing the variance in normal space from 1 to 2, and standard deviation (green dots). 
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Figure 7:  Local distributions of data set I (from left to right:  variance in normal space: 0.5/1.0/1.5; from 
top to bottom: mean in normal space: -3.01/-2.03/-1.05/0/1.05/2.03/3.01)  
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Figure 8.  Local distributions of data set II (from left to right:  variance in normal space: 0.5/1.0/1.5; from 
top to bottom: mean in normal space: -3.01/-2.03/-1.05/0/1.05/2.03/3.01) 
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Figure 9:  Local distributions of data set III (from left to right:  variance in normal space: 0.5/1.0/1.5; from 
top to bottom: mean in normal space: -3.01/-2.03/-1.05/0/1.05/2.03/3.01) 
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Figure 10:  Local distributions of data set IV (from left to right:  variance in normal space: 0.5/1.0/1.5; 
from top to bottom: mean in normal space: -3.01/-2.03/-1.05/0/1.05/2.03/3.01) 
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Figure 11.  Reproduction of the histograms 
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