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Abstract 
Secondary data are important in geostatistical simulation of continuous variables.  Seismic data 
and geological trends are used for porosity modeling.  Porosity is used for permeability and 
residual water saturation modeling.  Multiple mineral or contaminant concentrations must often 
be modeled for mining and environmental applications.  Sequential Gaussian simulation (or some 
other variant of Gaussian simulation) is often used because of its relative simplicity and 
robustness.  The two most common approaches to integrate secondary data in Gaussian 
simulation are with (1) locally varying mean, or (2) collocated cokriging. 

A significant problem with both of these techniques is variance inflation, that is, the variance of 
the resulting simulated values is too high because of an inappropriate decision of stationarity or 
an artifact of choosing a single secondary data in presence of many.  Correction of the simulated 
results by post-processing or using an ad-hoc variance reduction factor is problematic.  Local data 
are not reproduced at their locations and correction factors must be determined iteratively. 

We introduce a self-healing procedure for dynamic correction as the simulation proceeds.  The 
dynamic correction is different for the locally varying mean approach and for collocated 
cokriging since there are different reasons why each of these methods causes variance inflation.  
The reasons for variance inflation are discussed and the self-healing is applied to a number of 
data sets.  Widespread application is expected; the revised sgsim program is documented. 

Introduction 
Sequential Gaussian simulation (as coded in sgsim from GSLIB, for example) is remarkably 
robust and flexible for the generation of geostatistical realizations.  SGS is arguably the most 
powerful and commonly used geostatistical simulation technique at the present time.  The key 
features of SGS are that input data are honored at their locations and the global histogram and 
variogram are reproduced within ergodic fluctuations. 

The histogram and variogram of any particular SGS realization does not match the input 
histogram exactly.  The back transformation in SGS would only impose the histogram exactly if 
the Gaussian or normal values were exactly normal with a mean of 0, variance of 1, and correct 
shape.  We expect statistical or ergodic fluctuations between realizations.  SGS realizations and 
these fluctuations are reasonable when the input data are consistent with the stationary histogram 
and variogram and there are no secondary data. 

In presence of secondary data, however, we are not on a solid theoretical foundation.  A full block 
cokriging approach would have that theoretical foundation, but it is avoided because of 
significant inference and CPU time.  The locally varying mean (LVM) approach is widely used to 
account for geological trends, but the LVM violates the implicit assumption of stationarity in 
SGS.  The collocated cokriging (CLK) approach does not consider highly correlated secondary 
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data near the location being estimated.  The consequence of these theoretical violations is often an 
inflated variance in normal space. 

The dispersion variance D2(v,A), where v is the modeling scale and A is the domain being 
simulated, is the expected variance of the simulated values.  This variance is nearly 1.0 in normal 
space.  The variance of the simulated values when using an LVM or CLK can systematically be 
in the range of 1.3 to 2.0, which translates to a significant bias and error on back transformation 
to the original Z data units. 

Some empirical corrections have been used.  The variance of the secondary data can be reduced, 
that is, the values multiplied by a factor less than one after standardization and before use in LVM 
or CLK.  Alternatively, the kriging variance can be reduced by a factor less than one during the 
sequential simulation procedure.  Both of these correction factors require some iteration to set 
correctly.  The correction factors depend on the variograms of the primary and secondary data, on 
the correlation between the variables, and on many other implementation decisions such as search 
neighborhood.  An automatic procedure to correct the simulated values would remove the need 
for these iterations. 

We are increasingly interested in generating realizations for different input parameters such as the 
variogram and correlation coefficient.  This would allow us to quantify a more rigorous model of 
uncertainty that accounts for uncertainty in the input parameters (e.g., Jacta approach).  It is 
intractable to iteratively find the required correction factor for each combination of input 
parameters in such a large scale Monte Carlo Simulation approach. 

We propose a method to dynamically correct the simulated realizations as the simulation 
proceeds.  The method is called self-healing because the correction is only administered when the 
results start going wrong and the size of the correction depends on the magnitude of the problem.  
Self-healing will be described in detail with examples. 

Integration of Secondary Data 
Sequential simulation is described in many sources and will not be repeated here.  Of particular 
concern to us is the presence of secondary data.  Secondary data come from a variety of sources: 

• Geologic trend mapping in the areally or vertical direction provides critical information 
on large-scale variations in the variable we are modeling.  There are good reasons to 
expect the average value to depend on location; virtually all of our study areas are a type 
of geologic anomaly. 

• Geophysical data can often provide large-scale information related to the variable we are 
modeling.  The geophysical data and the variable under consideration are often correlated 
with a correlation coefficient in the range of 0.5 to 0.8. 

• Production data can also provide valuable secondary data related to the variable we are 
modeling. 

• Multiple variables are often constructed sequentially, so the first variable modeled 
provides a secondary variable for the next, and so on. 

Geostatistical models must consider such secondary information and deterministic trends.  The 
two commonly used procedures to integrate such secondary data are to use a locally varying 
mean (LVM) or collocated cokriging (CLK).  The external drift formalism is infrequently used in 
simulation because of the lack of explicit control over the magnitude of the correlation.  Full 
cokriging formalism is also infrequently used because of the additional inference and 
computational effort required. 
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LVM Approach 
The LVM kriging estimate, system of equations, and kriging variance may be written: 
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The approach simply amounts to estimating the residual from the local mean at u using residuals 
of the data from their local mean values ui, i=1,…,n.  The stationary covariance C(h=u1-u2) is 
often inferred from variogram calculation using the original data (C(h)=1-γy(h)).  Of course, we 
note immediately that the right covariance is the residual covariance, but that is problematic since 
there are no true residual data and, inevitably, the mean values m(u) are correlated with the data 
values y(u). 

The locally varying mean values {m(u), u ∈  A} come from the secondary data.  The original local 
mean data are in the units of the original Z data variable.  These values, however, must be 
transformed to standard normal space for use as an LVM.  In practice, the normal score transform 
from the Z variable is used, e.g., 

 ( ) ( )( )( )uu zZ mFGm 1−=  (2) 

where mz(u) is the local mean coming directly from geological mapping or some other source, Fz() 
is the stationary CDF of the Z variable, and G() is the standard normal CDF.  As the variation in 
the local mean values increases there is more potential for variance inflation in the final simulated 
values.  One correction procedure is to scale the local mean values by a correction factor, f, that is 
less than one and determined iteratively: m*(u) = f •  m(u).  There is no guarantee that the local 
mean values will be reproduced in the final simulated realizations.  We could, of course, check 
reproduction of the local mean values by generating multiple realizations and calculating the 
resultant local mean values from the simulated realizations. 

CLK Approach 
The collocated cokriging (CLK) estimate, system of equations, and kriging variance may be 
written: 
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The collocated secondary data at the location being estimated, y2(u), is needed at each location 
being estimated and the correlation coefficient, ρ, between collocated y/y2 data is also required.  
An equivalent Bayesian updating formalism could be written. 

The secondary data do not come in standard Gaussian units, but the variable is independently 
transformed to Gaussian distribution using normal scores transformation. 

The practical problem that arises with CLK is an overstatement of the kriging variance, σ2
k(u), 

because only one of many nearby secondary data are used.  The secondary data are usually 
smooth so including more secondary data would not significantly change the estimate, but the 
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kriging variance would go down.  The amount it would go down depends on the spacing of the 
data, the variogram of the primary variable, the variogram of the secondary variable, and the 
correlation between them, and other implementation details of the search.  Efforts to determine 
how much the variance is overstated have largely failed due to the interrelationships between 
these variables. 

One correction procedure is to scale the local kriging variance values by a correction factor, f, that 
is less than one and determined iteratively: σ2*

k(u) = f •  σ2
k(u).  This has been reasonably 

successful in practice since the underlying problem is a consistent overstatement of the kriging 
variance.  The factor must be determined iteratively and it is very sensitive to changes in the 
variogram structure and correlation coefficient.  The dependence is highly non linear and even 
non monotonic.  For example, the f factor should be 1 for ρ=0 or |ρ|=1, but something less than 
one in between.  The sgsim program allows specification of f and the user must determine what 
it should be by repeatedly running the program. 

Methodology for Self-Healing 
The general idea of self-healing is to dynamically fix the simulated values as simulation proceeds.  
This is convenient since most people find it annoying to iteratively tweak a parameter until the 
global histogram is reproduced.  Leaving the variance reduction parameter at the default amounts 
to accept realizations that do not match the global histogram.  The mechanism of variance 
inflation is different for LVM and CLK; therefore, a different dynamic correction is applied in 
both cases.  The general idea is the same though: 

• The mean and variance of all previously simulated values (including original data) is kept 
up to date during the simulation, n, m, s2. 

• A correction is considered when s2 exceeds the theoretical variance D2(v,A), that is, when 
the ratio s2/D2(v,A) exceeds one.  The amount of the correction depends on how large 
(s2/D2(v,A)–1) becomes. 

• The mean, m, and variance, s2, are not reliably informed until at some number of nodes 
(say n>200) are simulated.  The first n’ nodes are simulated with no modification; then, 
healing is considered.  The first n’ nodes are revisited after the entire grid has been 
populated to avoid artifacts due to excess variance at the first grid node locations. 

The correction mechanism for both LVM and CLK is to reduce the kriging variance by a 
multiplicative constant: 

 ( ) ( )uu 2*2
kk f σσ ⋅=  (4) 

The correction factor, f, is 1.0 when no correction (or healing) is required.  Correcting the kriging 
variance and not the kriging estimate ensures that local conditioning data are reproduced exactly.  
Moreover, the covariance reproduction property of kriging is not changed; changing the variance 
of the random residual used in sequential simulation does not change the covariance between the 
simulated value and each data value.  Of course, changing the kriging variance does change the 
final variance, which is our goal, and it changes the final variogram reproduction by modification 
of the variance.  This is the price1 of fixing the histogram.  We discuss this more later. 

As mentioned above, the mechanism of variance inflation in LVM and CLK is different; 
therefore, a different prescription is used for each method. 

 

                                                 
1 There is no such thing as a free lunch. 
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Correction for LVM Approach 
The mechanism for variance inflation in LVM is a too high probability for extreme values in 
regions where the local mean is high or low and the estimation variance is high.  Figure 1 shows 
an illustration of a locally varying mean (solid line) versus location, u, and three conditional 
distributions.  The shaded regions of the two outside distributions cause variance inflation 
because there is a too high probability to draw large and small values.  The simulation of a few 
high and low values cause even more problems as the sequential simulation proceeds; there is a 
need for dynamic correction of such extreme values. 

The kriging estimate, y*
LVM(u) cannot be far from zero when the kriging variance, σ2

k(u), is large 
because the kriging weights in such a case must all be small (refer back to equation (1)).  The 
presence of data that would make the kriging estimate different from zero also makes the kriging 
variance small.  Variance inflation in LVM is caused by locations where the kriging estimate is 
large or small and the kriging variance is large. 

Our prescription for LVM is to link the f factor to the bivariate relation between the kriging 
estimate, y*

LVM(u) and the kriging variance, σ2
k(u).  Figure 2 illustrates correction factor on a 

cross plot of the kriging variance (vertical axis) and absolute value of the kriging estimate 
(horizontal axis).  When the points fall in an allowable region (hatched region) the f factor is set 
to 1.  The f factor is set to zero if the points fall outside (the spotted region).  There is an 
intermediate region where the f factor is set between 0 and 1. 

The A’ distance parameter (in units of the kriging estimate) on Figure 2 is somewhat subjective; 
however, we know that it should be large when there are no problems and shorter when the 
variance starts inflating.  Although it seems to be getting complicated, we link the A’ parameter to 
the variance inflation s2/D2(v,A), see Figure 3.  Some numerical experimentation was done to 
arrive at universally robust settings of these parameters.  In practice, the user does not need to 
concern themselves with these details; they just “check the self-healing box.” 

Correction for CLK Approach 
The mechanism for variance inflation in CLK is a too high estimation variance because too few 
secondary data are used.  Figure 4 shows an illustration of the data configuration for collocated 
cokriging.  There are secondary data at all locations, but only the collocated data (central location 
marked with a “?”) is used for kriging.  This causes the kriging variance to be too high.  The 
kriging estimate is typically okay because the smooth nature of most secondary data sources 
means that nearby secondary data have similar values. 

The variance inflation of CLK is independent of the kriging estimate.  There is a systematic 
overstatement of the kriging variance; therefore, the prescription for CLK is to reduce the kriging 
variance by a factor f that depends only on the variance inflation s2/D2(v,A), see Figure 5.  As the 
variance gets inflated, the kriging variance is reduced by a more significant f factor.  Numerical 
experimentation has shown that the results are very robust with respect to the details of how f is 
reduced.  As long as the kriging variance is reduced, then the final variance will be reproduced. 

Once again, the user does not need to concern themselves with these details; they just “check the 
self-healing box.” 

Examples 
Three sets of data were examined to illustrate the problem of variance inflation and the utility of 
the self-healing algorithm.  These data sets are representative of those commonly encountered in 
the petroleum and mining industries. 
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GSLIB Data 
The first data set was taken from GSLIB CD.  Figure 6 shows a location map (note the area of 
high values in the NE portion of the study area), a histogram of the primary hard data variable for 
the 29 data (note the mean of 3.38 and standard deviation of 5.08 while the secondary variable 
has a mean of 2.32 and a standard deviation of 2.71).  The correlation between these two 
variables is 0.774.  A variogram for the primary variable was modeled as an omnidirectional 
variogram. 

Simulations of the GSLIB data using locally varying mean and collocated cokriging are shown in 
Figure 7.  Along with the simulations the variogram reproduction and probability plots are also 
shown.  These can be compared to the self-healing results shown in Figure 8.  The differences 
between the traditional and self-healing methods are tabulated in Table 1. 

Siliciclastic Reservoir Data 

Data from a siliciclastic reservoir were considered for the second example.  Figure 9 shows the 
location map illustrating the presence of high values in the northern portion of the study area.  A 
histogram of the primary variable for the 100 data has a mean of 0.32 and standard deviation 
of .014 is also shown on Figure 9.  The correlation between the primary and secondary variables 
is 0.77.  An omnidirectional variogram for the primary variable was modeled with two nested 
structures contributing 0.4 and 0.5 for each spherical variogram at a range of 650 and 1000 m 
respectively. 

Simulated realizations using locally varying mean and collocated cokriging are shown in Figure 
10.  Along with the simulations the variogram reproduction and probability plots are also shown.  
These can be compared to the self-healing results shown in Figure 11.  The differences between 
the traditional and self-healing methods are tabulated in Table 2. 

Porphyry Deposit Data 

The final data set was from porphyry deposit that showed the presence of high values near the 
center of the study area and a steady drop away you moved towards the edges, seen in Figure 12.  
A histogram of the 94 primary data shows a mean of 0.56 and standard deviation of .865. The 
correlation between the primary and secondary variables is 0.936. An omnidirectional variogram 
for the primary variable was modeled with two spherical variogram contributing 0.63 and 0.3 
each and a nugget of 0.07. The spherical variogram were at a range of 300 and 375 m respectively. 

Simulated realizations using locally varying mean and collocated cokriging are shown in Figure 
13.  Along with the simulations the variogram reproduction and probability plots are also shown.  
These can be compared to the self-healing results shown in Figure 14.  The differences between 
the traditional and self-healing methods are tabulated in Table 3. 

Discussion 
The self-healing appears to work well at controlling variance inflation at the expense of 
variogram reproduction.  This was inevitable.  It is impossible to have a “noisy” primary variable 
highly correlated to a smooth variable.  Recall the requirement of a licit model of 
coregionalization: 
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There is an interesting interpretation of this in the present context.  Consider the following 
scenario (i) a smooth secondary variable, that is, ρyy is large, (ii) the primary and secondary data 
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are highly correlated, that is, ρzy is also large, therefore (iii) the primary variable must have 
smooth spatial structure, that is, large ρzz.  If our implementation of a simulation algorithm is 
trying to enforce greater variability in the primary variable and the variance of the secondary 
variable is fixed, then there must be additional variance inflation. 

Conclusions 
No objective criterion has been developed to judge when the excess variance is truly unacceptable.  
It is unlikely such an objective criterion could ever be determined.  Nevertheless, additional study 
is warranted to provide some check that the algorithm is giving acceptable results. 

We encounter a paradox as more data becomes available.  The additional data provide the means 
to identify a more reliable trend model, but they also make the trend model less important.  That 
is, the conditioning of geostatistical models to many data enforces both the deterministic and 
stochastic variations of the variable of interest.  Clearly, the usage of trend models is important in 
presence of sparse data. Additional work is warranted to provide guidelines on when trend 
models should be considered. 
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Realization 1 Realization 2 Average of 5 Realizations Technique 

mean Variance mean Variance mean variance 

SK 0.5670 1.0182 0.0238 0.9283 0.0053 0.9489 

LVM -0.2044 1.8260 -0.1006 1.8188 0.1311 1.8402 

LVM-SH -0.2321 1.0275 -0.0546 1.0024 0.1368 1.0284 

CCK 0.0002 1.4273 -0.0083 1.3574 0.0220 1.3764 

CCK-SH -0.0197 1.1815 -0.0075 1.1605 0.0253 1.1111 

Table 1: summary of results for modeling the GSLIB data set. 

 

 

 

Realization 1 Realization 2 Average of 5 Realizations Technique 

mean Variance mean Variance mean variance 

SK -0.0225 1.0478 -0.1514 1.3761 0.0564 1.1290 

LVM -0.1389 1.7456 -0.0806 1.4848 0.0766 1.6331 

LVM-SH -0.0795 1.0684 0.0457 1.0683 0.0293 1.0714 

CCK 0.0001 1.5785 -0.0203 1.5035 0.0114 1.4999 

CCK-SH -0.0074 1.3403 -0.0082 1.3307 0.0169 1.3324 

Table 2: summary of results for modeling the siliciclastic reservior data set 

 

 

 

Realization 1 Realization 2 Average of 5 Realizations Technique 

mean Variance mean Variance mean variance 

SK -0.0610 0.8734 -0.0309 0.8580 0.0917 0.8148 

LVM -0.2708 1.0722 -0.2433 1.1073 0.3023 1.0809 

LVM-SH -0.2390 0.9083 -0.1533 0.8852 0.2317 0.8754 

CCK -0.0340 1.0991 -0.0264 1.1220 0.0336 1.1064 

CCK-SH 0.0327 1.0397 -0.0296 1.0460 -0.0327 1.0458 

Table 3: summary of results for modeling the porphyry copper data set 
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Figure 1: illustration of a locally varying mean (solid line) versus location, u, and three conditional 
distributions.  The shaded regions of the two outside distributions cause variance inflation because there is 
a too high probability to draw large and small values. 
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Figure 2: the correction factor used for locally varying mean.  The region of F=1.0 is where no correction 
is applied to the kriging variance.  The region of F=0.0 is where the kriging variance is reduced to zero.  
There is a region where a factor between 1 and 0 is used. 
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Figure 3: the correction factor for locally varying mean.  The horizontal axis is the ratio of the actual 
variance to the theoretically expected variance.  The vertical axis is the “range” parameter for the correction 
scheme (see Figure 2).  As the variance becomes too large, this range becomes short.  The range is longer 
when the variance is too small. 
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Figure 4: illustration of the data configuration for collocated cokriging.  There are secondary data at all 
locations, but only the collocated data (central ?) is used for kriging.  This causes the kriging variance to be 
too high. 
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Figure 5: the correction factor for collocated cokriging.  The horizontal axis is the ratio of the actual 
variance to the theoretically expected variance.  The vertical axis is the correction factor.  No change is 
made when the variance is too small, but an increasingly severe correction is made as the variance becomes 
too large. 
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Figure 6: GSLIB data: upper left – location map of the 29 hard data, upper right – color scale map of the 
secondary data, lower left – histogram of the data, and lower right – normal score variogram from the hard 
data. 
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Figure 7: GSLIB data: left side – first realization with locally varying mean, probability plot of simulated 
values, and variogram of simulated values; right side – first realization of collocated cokriging, probability 
plot of simulated values, and variogram of simulated values.  All results are shown in normal space. 
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Figure 8: GSLIB data: left side – first self healed realization with locally varying mean, probability plot of 
simulated values, and variogram of simulated values; right side – first realization of self healed collocated 
cokriging, probability plot of simulated values, and variogram of simulated values.  All results are shown in 
normal space. 
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Figure 9: Siliciclastic reservoir data: upper left – location map of the 100 hard data, upper right – color 
scale map of the secondary data, lower left – histogram of the data, and lower right – normal score 
variogram from the hard data. 
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Figure 10: Siliciclastic reservoir data: left side – first realization with locally varying mean, probability 
plot of simulated values, and variogram of simulated values; right side – first realization of collocated 
cokriging, probability plot of simulated values, and variogram of simulated values.  All results are shown in 
normal space. 
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Figure 11: Siliciclastic reservoir data: left side – first self healed realization with locally varying mean, 
probability plot of simulated values, and variogram of simulated values; right side – first realization of self 
healed collocated cokriging, probability plot of simulated values, and variogram of simulated values.  All 
results are shown in normal space. 
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Figure 12: Porphyry deposit data: upper left – location map of the 94 hard data, upper right – color scale 
map of the secondary data, lower left – histogram of the data, and lower right – normal score variogram 
from the hard data. 
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Figure 13: Porphyry deposit data: left side – first realization with locally varying mean, probability plot of 
simulated values, and variogram of simulated values; right side – first realization of collocated cokriging, 
probability plot of simulated values, and variogram of simulated values.  All results are shown in normal 
space. 
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Figure 14: Porphyry deposit data: left side – first self healed realization with locally varying mean, 
probability plot of simulated values, and variogram of simulated values; right side – first realization of self 
healed collocated cokriging, probability plot of simulated values, and variogram of simulated values.  All 
results are shown in normal space. 
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