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Abstract

The basis of all geostatistical modeling is statistical inference. Such inference is based on the
data and the relations between them. To create sound geostatistical models of regionalized
variables, the underlying relationship between the variables must be understood in order
to apply the appropriate analytic tools. The assumption that the multivariate distribution
is well behaved (i.e. homoscedastic and linear) is implicit when carrying out conventional
geostatistics techniques; however, geologic data rarely conform to such well behaved distri-
butions. In these instances, multivariate statistical techniques must be adapted to the data
so that conventional geostatistical simulation can proceed.

Although multivariate statistical methods are well documented, few resources exist that
documents their application to geostatistical problems. This paper provides an overview of
multivariate statistical techniques for use in a geostatistical framework. Several groups of
statistical techniques are presented: dimension-reducing, transformation, and classi�cation
techniques. During the exploratory data analysis phase of a study, the group of classi�cation
techniques could be e�ective in distinguishing between di�erent populations. Once the
decision to use only a certain number of samples is made, we may wish to try to reduce
the number of di�erent variables for simulation. In this instance, the dimension reducing
techniques would be most e�ective. In the case where dimension reduction is not an issue,
but non-linearity and/or complex multivariate constraints limit the applicability of typical
geostatistical tools, the data transformation methods may prove particularly useful.

Introduction

Geostatistics is a relatively new and rapidly growing area in the geosciences and applied
mathematics. The �eld is devoted to the application of statistical techniques in the study
of spatially variable phenomena. Although geostatistics was �rst developed to improve ore
reserve estimation in a mining context, it has grown to encompass other areas of the earth
sciences.

Today the use of geostatistics is no longer hampered by the computational restrictions
of its early days in the 1960s and 1970s. Technological advances in the past few decades
make it possible to build complex 3-dimensional numerical models of geologic phenomena
that were once limited by computational time and e�ort.

Modeling of geologic data typically involves consideration of multiple variables. For
example, the modeling of a petroleum reservoir typically involves modeling porosity and
permeability. In a mining context, several di�erent minerals and/or metals may be present
at the mine site.
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Figure 1: Schematic Illustration of Di�erent Bivariate Distributions: Non-linear(left), Con-
straint(centre) and Heteroscedastic (right)

Problem De�nition

The basis of all geostatistical modeling is statistical inference. Such inference is based on
the data and the relations between them. To create geostatistical models of the regionalized
variables, the underlying relationship between the variables must be understood in order to
apply the appropriate analytic tools.

Conventional geostatistical approaches dealing with multiple variables include simula-
tion using either collocated or full co-kriging. Both approaches require that the primary
variable be de�ned at every location within the grid. The di�erence in the two approaches
lies in the amount of secondary data used in simulation: the former technique uses only the
collocated primary data in simulation while the latter technique uses secondary data within
the range of correlation.

An important assumption inherent in conventional techniques is that the multivariate
distribution is homoscedastic and linear; however, geologic data rarely satisfy such assump-
tions. Instead, the multivariate distributions may show signs of non-linearity, mineralogical
constraints, and heteroscedasticity (See Figure 1). In these instances, our concern lies in
the available statistical techniques that can be applied to transform the data so that con-
ventional geostatistical simulation can proceed.

Many techniques exist to analyse multivariate data; however, the application of these
techniques in geostatistics have been limited. Multivariate statistical techniques are well
documented; however, few resources exist that documents these di�erent techniques with
speci�c geostatistical applications. The objective of this report is to provide an overview of
multivariate statistical techniques for use in a geostatistical framework.

The following sections look at di�erent groups of techniques. The �rst class of techniques
are the dimension reducing methods, which include principal components analysis (PCA)
and factor analysis. These seek to simplify the multivariate problem by reducing the number
or dimension of the data. Another distinct set of approaches is data transformation. In par-
ticular, two not-so-common yet very powerful techniques are discussed: stepwise conditional
transformation and alternating conditional expectation. The next group of techniques are
the classi�cation techniques which include both discriminant analysis and cluster analysis.
As the name suggests, both approaches focus on the classi�cation of data into groups - one
requires that groups are pre-established while the other seeks to de�ne the di�erent groups.
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Throughout this paper, a multivariate data set from a nickel laterite deposit is used to
demonstrate and compare the results of most of the multivariate techniques presented. The
data is comprised of 4 mineral variables: nickel, iron, silicate oxide, and magnesium oxide.

Dimension Reducing Methods

As the title suggests, the techniques presented in this chapter have a common aim: to reduce
the dimension of the data, thus simplifying the multivariate problem. The two primary
approaches that fall within this group of methods are principal components analysis and
factor analysis. The development of the former technique is credited to the work of Pearson
in 1901 and Hotelling in 1933, while the concept of factor analysis �rst originated with
work by Spearman in 1904 and 1926. The following sections describes the basic theory and
methodology of principal components and factor analysis.

Principal Components Analysis

The basis for principal components analysis (PCA) is the transformation of correlated
variables into uncorrelated variables called principal components. We �rst begin by looking
at the n centered samples (i.e. residuals) of the p random variables Zi, where i = 1; : : : ; p,
and denoted as Z in matrix notation.

Z =

2
64
z11 � � � z1p
...

. . .
...

zn1 � � � znp

3
75 = Z(n�p)

The covariance matrix of the data is then given by:

V ar(Z(n�p)) =
1

n
ZTZ = V(p�p)

De�ne variables Yi, i = 1; : : : ; p, such that they are uncorrelated with each other with zero
mean, i.e. EfYig = 0. Furthermore, these variables are linear combinations of the original
variables:

Y(n�p) = Z(n�p) �A(p�p) with ATA = I

where I is the identity matrix and A is an p� p orthogonal matrix of coeÆcients, referred
to as a transformation matrix. The covariance matrix of the Y variables is:

Cov(Y ) =
1

n
Y TY =

2
64
c11 0

. . .

0 cpp

3
75 = C(p�p)

where cii is the variance of the Yi variable. Solving for the matrix A becomes a spectral
decomposition problem [18]:
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Y = ZA
1

n
Y TY =

1

n
Y TZA

C =
1

n
(ZA)TZA

C =
1

n
ATZTZA

C = AT

�
1

n
ZTZ

�
A

C = ATV A

V A = AC

Therefore the transformation matrix A is simply a matrix of orthonormal eigenvectors
of V . Since the covariance matrix is a positive de�nite matrix, then all the eigenvalues are
positive and are interpreted as the variance of the Yi variables.

These Yi variables are the principal components of Z. The importance of a principal
component is derived directly from the rank of the eigenvalue, i.e. the largest eigenvalue
corresponds to the principal component that contributes maximally to the variance of the
Z data. If the variability of the data can be adequately captured by consideration of only
the �rst few principal components, then the dimension of the original multivariate problem
is reduced.

One consequence of �nding uncorrelated variables that maximizes the variance is the
sensitivity to outliers. Outliers inate the variance of the data, and as a result the principal
components may not account for the variance of the true, representative data (i.e. excluding
outliers).

Steps in PCA

1. Calculate the residual value of the data samples for each variable by determining the
mean of variable Xi and then subtracting this mean from each sample to obtain
Zi, i = 1; : : : ; p where p is the number of variables.

2. Determine the covariance matrix, V between the centered data, Zi and Zj ,
i; j = 1; : : : ; p.

3. Find the eigenvalues and corresponding eigenvectors. The coeÆcients of the �rst
principal component are given by the eigenvector, a1i, i = 1; : : : ; p, and its variance is
given by its eigenvalue, �1.

4. Decide whether to discard the lowest variance-contributing principal component(s).
Conduct geostatistical analysis using the remaining principal components.

5. After geostatistical analysis and simulation, back transform principal components into
the original centered variables Zi by matrix multiplication using the inverted rotation
matrix, A.
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The use of standardized variables translates to �nding the principal components of the
correlation matrix.

Application of PCA

A principal components analysis was performed on the nickel laterite data. Figure 2 shows
cross plots between the four principal components, con�rming their independence. Figure
3 shows the relative importance of each component based on their variance contribution.
As expected, the �rst component accounts for the maximal variance of approximately 91%,
followed by the second component with a variance contribution of 6:7%. If we were satis�ed
with simulating at least 95% of the deposit's variability, then simulation is greatly sim-
pli�ed by considering only two independent variables. This simpli�cation of geostatistical
simulation is another attractive consequence of PCA.

Factor Analysis

The goals of factor analysis are similar to those of PCA: to reduce the dimension of the
data by �nding uncorrelated variables. One of the most obvious di�erences between the two
techniques is the de�nition of the uncorrelated variables, which are referred to as factors in
this approach. The n standardized data of the p-dimensional random variable Z are indi-
vidually de�ned as a linear combination of the m factors (m < p), fk, plus an independent
\error" term, "i, speci�c to Zi, i = 1; : : : ; p. So the jth sample of Zi is de�ned as:

zji =
mX
k=1

aikfkj + "ji i = 1; : : : ; p j = 1; : : : ; n

where fkj is the k
th common factor for the jth sample, "ij is the speci�c factor for the i

th

variable of the jth sample, and aik is the factor loading on the kth factor for the ith variable.
Each variable then has di�erent factor loadings. For obvious reasons, the fkj factors are
often referred to as the common terms, while the "ij term is referred to as the speci�c factor.
In matrix notation, the data variable Z is expressed as:

Z(n�p) = F(n�m) �A(m�p) + "(n�p)

Z = AF + " (1)

This technique is dependent on several key assumptions:

1. The sample data X are standardized to obtain Z with zero mean and unit variance.

2. The common factors, F , are assumed to be uncorrelated with zero mean and unit
variance.

3. The speci�c \error" term " has a mean of zero and is assumed to be independent
of the common factors and each other . However, no assumption is made about the
variance of the speci�c term, the value of which is denoted by  .
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Figure 2: Cross Plot of Principal Components using PCA on Nickel Laterite Deposit with
4 Variables
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Figure 3: Variance Contribution of Each Principal Component

Arising from these assumptions is another fundamental di�erence between the two methods:
factor analysis is based on a speci�c statistical model while PCA is not based on any
statistical model [13].

From equation 1, it follows that the variance-covariance matrix of Z is given by:

V ar(Z) = V ar(AF + ")

V ar(Z) = ATA+  (2)

Since the speci�c factors are uncorrelated with each other, then the o�-diagonal terms of  
are zeros. Equation 2 shows that the o�-diagonal terms of V ar(Z) (i.e. covariance between
the observations of Zi) are explained solely by the factor loadings. Furthermore, since Z
has unit variance, the correlation between two observations zi and zj is given by :

rij =
mX
k=1

aikajk (3)

From equation 3, two observations are highly correlated if the factor loadings for both ob-
servations are high for the same factors [4, 13]. For this reason, factor analysis is associated
with �nding the factors that contribute to maximal covariance while PCA is concerned
with �nding components with maximal variance.
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Another important measure is the communality of factors on Zi, which quantiti�es how
much of the variance of Zi is accounted for by the m common factors. This is de�ned as
the sum of the square of the factor loadings for that variable:

Comm(Zi) =
mX
k=1

a2ik (4)

Steps in Factor Analysis

1. Standardize the original data Xi to obtain Zi, i = 1; : : : ; p.

2. Determine factor loadings, A. The most common way of doing this is to perform PCA
on the data, and use the �rst m principal components as the m factors.

Y(n�p) = Z(n�p �AE(p�p)

Z(n�p) = Y(n�p) �AT
E(p�p)

where Y is the matrix of principal component scores from PCA and AE is the rotation
matrix from PCA and is referred to as the extraction matrix in factor analysis. Choose
the �rst m principal components as initial factors for factor analysis:

Z(n�p) = Y(n�m) �AT
E(m�p) + "(n�p)

Note that although the m factors are independent of (1) each other and (2) the
speci�c factor, the speci�c factors themselves are not uncorrelated with each other.
This essentially violates the third assumption of this technique; however, since the �rst
m principal components account for the maximal variance, the correlation between
the speci�c factors should be relatively insigni�cant.

3. Perform a factor rotation to �nd new factors that describes the data equally well.
Essentially, this involves �nding the rotation matrix to the Y(n�m) factors obtained
from PCA in the previous step, so that the new factors are linear combinations of the
PCA factors. A standard method to �nding an orthogonal factor rotation is called
varimax rotation, which basically maximizes the sum of the factor loadings, and hence
the covariance of the data.

Z(n�p) = F(n�m) �AT
R(m�p) + "(n�p)

where AR is the rotation matrix by optimizing some prede�ned function (based on
an optimization criterion such as varimax), and Fni is equivalent to the scaled PCA
factors after dividing by the standard deviation of Yi, or the square root of the ith

eigenvalue. Note that the factor rotation need not be uncorrelated (orthogonal), it
can also be correlated (oblique).
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4. Calculate the factor scores for each observation [9]:

F = (AT
RAR)

�1AT
RZ (5)

Perform geostatistical modeling using these uncorrelated factor scores.

5. After geostatistical simulation, back transform the simulated factor scores by using
the relation in equation 5 in step 4. Back transform twice more by using the inverted
factor rotation matrix in step 3 and the PCA factor extraction matrix in step 2 to
get results in terms of the original standardized data.

Application of FA

Factor analysis was performed on the nickel laterite data. Principal components analysis was
used to extract the initial loadings from the standardized data. A table of the eigenvalues
and the percentage of the variance explained by each component is given in Table 1.

Principal Component Eigenvalue % of Variance Cumulative
PC1 2.755 68.87 68.87
PC2 0.958 23.96 92.83
PC3 0.232 5.79 98.62
PC4 0.055 1.38 100.00

Table 1: Initial Loadings to be used for Factor Analysis

The initial eigenvalues show that in order to account for at least 95% of the deposit's
variability, 3 common factors are required (i.e. m = 3). The corresponding factor extraction
matrix (AE) obtained from PCA and the communalities for each variable are shown in Table
2.

Variable Factor 1 Factor 2 Factor 3 Communality
Ni -0.253 0.967 -0.003 1.000
Fe -0.977 -0.083 0.052 0.965

SiO2 0.923 0.091 0.367 0.994
MgO 0.940 0.085 -0.307 0.985

Variance 2.7548 0.9583 0.2317 3.9448
% Variance 0.689 0.240 0.058 0.986

Table 2: Factor Extraction Matrix

All the communalities are very high, so most of the variance for each variable is accounted
for by using 3 factors. In fact, 98.6% of the total variance is represented by the common
factors. An examination of the magnitude of the factor loadings on each factor (ignoring
the signs), we see that Factor 2 explains almost all of the variance of Ni, and that Factor
1 explains most of the variance of Fe, SiO2 and MgO. The fact that 3 of 4 variables are
explained by only 1 of the factors suggests that a factor rotation may simplify the factors
(and hence interpretation of the results). Varimax rotation was performed and the resulting
factor rotation matrix and corresponding communalities are given:
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Variable Factor 1 Factor 2 Factor 3 Communality
Ni -0.068 -0.053 0.996 1.000
Fe -0.805 -0.557 0.082 0.965

SiO2 0.507 0.856 -0.067 0.994
MgO 0.932 0.333 -0.074 0.985

Variance 1.7781 1.1574 1.0093 3.9448
% Variance 0.445 0.289 0.252 0.986

Table 3: Factor Rotation Matrix Obtained from Varimax Rotation
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Figure 4: Variance contribution of each factor before and after varimax rotation

From Table 3, we see that the same variance proportion is explained after factor rotation,
but now interpretation of the factors is simpler: Factor 3 is strongly related to Ni, while
Factors 1 and 2 explain the variability of Fe and SiO2, and Factor 1 explains most of variance
of MgO.

Figure 4 summarizes the variance contribution of each factor before and after rotation.
Overall, the importance of the factors are more balanced after rotation. Cross plots of
the three factors are shown in Figure 5 to illustrate the independence of the rotated factors
after varimax rotation. Note that an oblique transformation would have produced correlated
factors. However, the use of varimax rotation in this example and the resulting uncorrelated
factors will greatly simplify the geostatistical simulation of this deposit.

General Comments on Dimension Reducing Techniques

From the previous sections, we note that PCA is a variance-oriented technique while FA is
covariance-oriented. There exists a very speci�c statistical model within the FA approach,
while PCA is not dependent on any particular model. The solution obtained from PCA
is unique and exact; while FA produces several possible solutions, owing to the available
options in factor extraction and rotation methods. This makes PCA a more attractive

10



F
2 

   

F1    

F1 vs. F2

-10.0 -6.0 -2.0 2.0

-5.0

.0

5.0

10.0

15.0

ρ = .000

F
3 

   
  

F1    

F1 vs. F3

-10.0 -6.0 -2.0 2.0

-5.0

-1.0

3.0

7.0

ρ = .000

F
3 

   
  

F2    

F2 vs. F3

-5.0 .0 5.0 10.0 15.0

-5.0

-1.0

3.0

7.0

ρ = .000

Figure 5: Cross plots of rotated factors
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technique to most statisticians. Furthermore, Seber (1984) notes that factor analysis is not
suitable for categorical data [15].

Attempts at non-linear FA has resulted in some theoretical and practical diÆculties [10].
Due to these slight di�erences, there is considerable confusion between the techniques in the
literature. Overall though, PCA is more commonly applied while factor analysis seems to
remain popular in its founding discipline of psychology. Regardless of the current popular
areas of application, considerable potential exists for the application of these dimension-
reducing techniques in geostatistics.

Data Transformation Methods

This chapter focuses on the transformation of one set of variables to another set that
simpli�es both analysis and simulation. Although the techniques discussed in the previous
chapter are technically data transformation techniques, the distinction is made in that this
group of methods does not strive to reduce the dimension of the problem. Two methods -
stepwise conditional transformation and alternating conditional expectation - are discussed.
Neither are common to geostatistics, but the following sections will show why they are
attractive for future applications in multivariate geostatistical analysis.

Stepwise Conditional Transformation

This technique, �rst introduced by Rosenblatt in 1952, bears resemblance to the normal
transformation technique. In the univariate case, the stepwise-conditional technique is iden-
tical to the normal score transform, that is, the variable is transformed using the Gaussian
distribution.

In a bivariate problem, the normal transformation of the second variable is conditional
to the probability class of the �rst variable. Correspondingly, for k-variate problems, the
kth variable is conditionally transformed based on the (k � 1)th variable [14].

Y1 = G�1[Prob(Z1 � z1)]
Y2j1 = G�1[Prob(Z2 � z2 j Y1 = y1)]

Y3j21 = G�1[Prob(Z3 � z3 j Y2 = y2; Y1 = y1)]

The result of this transformation are uncorrelated transformed variables. Since each
class of Y2 data is independently transformed to a normal distribution, any correlation
between Y2 and Y1 is essentially removed (i.e. � = 0). Consequently, the simulation
of a multivariate problem will not require cosimulation due to the independence of the
transformed variables. This is the primary motivation for transforming multiple variables
in a step-wise conditional fashion.

Limitations of the Stepwise Conditional Transformation

There are several limitations to this transformation method. The modeler should recog-
nize that the variable Y2 (and all other conditionally transformed variables) are not \real"

12



variables. Direct back transformation of the Y2 variable using an inverse Gaussian trans-
formation will not yield correct results. Each variable must be back transformed using the
appropriate conditional distribution used in the forward transformation.

The main limitation of the stepwise conditional transformation lies in the need for a
large data set. In order to classify data and transform each class, there must be suÆ-
cient data to identify a conditional distribution. If there is sparse data in one class, the
conditional distribution will not be representative of the \true" distribution for that class.
Transformation may not remove the correlation between Y1 and Y2 data.

In addition, transformation of classi�ed data may lead to artifacts in the classes. The
classi�cation of data is based on partitioning the standard normal distribution according
to the number of classes speci�ed. The calculated probability thresholds correspond to
equal probability intervals. Two identical secondary data values should have the same
transformed values (Y2) if their paired primary data values are the same; however, if the
corresponding primary variables just happen to fall into di�erent probability intervals, then
transformation may produce signi�cant di�erences in the secondary variable Y2.

In the presence of non-paired data, two particular scenarios are of interest: (1) di�erent
sampling density, and (2) partially overlapping samples. In the �rst case, if one variable
is more highly sampled than all others, then the more densely sampled variable should be
chosen as the primary sample. All other variables should be conditionally transformed in
an order corresponding to the number of available data (highest to lowest). Unlike the �rst
case where a possible ordering sequence may be applicable, the second scenario presents
a bigger limitation to the transformation algorithm. If only a fraction of the primary and
secondary data are paired (i.e. overlapping sampling areas), then transformation of the
remaining non-paired data cannot be obtained using this technique.

Application of Stepwise Conditional Transformation

Without loss of generality, data transformation was performed on only two of the four data
variables from the nickel laterite data. Nickel was chosen as the primary variable and iron
was arbitrarily chosen as the second variable.

Cross plots are shown for the original data and the stepwise conditionally transformed
variables in Figure 6. The cross plot of the original data clearly shows the non-linear rela-
tionship between nickel and iron. After transformation, not only is non-linearity removed
but the transformed data are virtually uncorrelated, allowing for simpli�ed simulation of
the model variables.

Alternating Conditional Expectation (ACE)

The alternating conditional expectation (ACE) algorithm was �rst introduced by Brieman
and Friedman (1985) [2], as a exible and powerful non-parametric transformation that re-
quires no assumption to be made about the functional form of the multivariate distribution.

We begin by de�ning random variables (RVs), Y;X1; : : : ;Xp, where Y is a response vari-
able and X1; : : : ;Xp are the predictor variables. Arbitrary functions �(Y ); �(X1); : : : ; �(Xp)
with zero mean corresponding to these variables are also de�ned. The theoretical basis of
the algorithm assumes the distributions for RVs Y;X1; : : : ;Xp are known, and E�

2(Y ) = 1.
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Figure 6: Cross plots of the original data and the stepwise conditionally transformed data for Nickel

and Iron from the Nickel Laterite data.

Regression of �(Y ) is performed using
Pp

i=1 �i(Xi). The fraction of the variance not ex-
plained by regression is quanti�ed as:

e2(�(Y ); �(X1); : : : ; �(Xp)) =
Ef[�(Y )�

Pp
i=1 �i(Xi)]

2g

E�2(Y )
(6)

Optimal transformations are chosen as those which minimize 6 with respect to all the
random functions �(Y ); �(X1); : : : ; �(Xp).

Basic Algorithm

The ACE algorithm is an iterative procedure that is used to �nd the optimal transformations
��; ��1; : : : ; �

�
p. Without loss of generality, consider the bivariate case where p=1. The

optimal transformations, �� and ��1, minimize:

e2(�(Y ); �(X)) = E[�(Y )� �(X)]2 (7)

The algorithm is carried out in the following steps:

1. Set �(Y ) = Y � kY k where k � k =
p
(
P
(�)2)

2. Repeat until equation 7 is a minimum:

Calculate �1(X):
�1(X) = E[�(Y )jX]

Set �(X) = �1(X)

Calculate �1(X):

�1(Y ) =
E[�(X)jY ]

kE[�(X)jY ]k

Set �(X) = �1(X)

Calculate �e2.
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3. � and � are solutions to �� and ��

In the bivariate case, the optimal transformations not only minimizes e2, but they also
satisfy:

��(X;Y ) = �(��; ��) = max�[�(Y ); �(X)] (8)

where ��(X;Y ) is the maximal correlation between X and Y. Essentially, the method is
aimed at �nding the optimal transformations for the functions that make the relationship
between �(Y ); �(X1); : : : ; �(Xp) as linear as possible. This allows for the application of
conventional geostatistical techniques (which assume a linear relationship between the model
variables).

One of the most important assumptions implicit in ACE is that the RVs Y;X1; : : : ; Xp

have a multivariate distribution [3]. As well, unlike its theoretical basis the distributions of
the RVs Y;X1; : : : ;Xp are not known in practice. Instead, we typically have limited samples
from which a distribution is usually assumed or �tted. In this respect, the goals of ACE are
modi�ed so that the optimal transformations ��; ��1; : : : ; �

�
p are now estimated from the data

themselves, rather than based on assumed distributions [2]. ACE, in its practical form, is an
iterative algorithm. It uses a smoothing algorithm to estimate the conditional expectation.
There are many smoothing techniques that can be used, however, Friedman uses his own
developed algorithm - the supersmoother.

Application of ACE

For illustrative purposes, the �rst example is based on 200 data values generated using the
model y = exp(1 + 2x) + ", where x is U(0,2) and " is N(0,10). Figure 7 shows the cross
plots between the original data, the predictor variable and its transform, the response and
its transform, and the transformed response vs. the transformed predictor.
Clearly, the bivariate distribution of the transformed variables is more linear than that
of the original variables. Non-linearity between the original variables has been removed
without assuming the form of the data distribution.

ACE was then performed on the nickel laterite data, again looking only at two variables:
nickel and iron. The bivariate relation between the original and transformed variables are
shown in Figure 8.

Again, the cross plot of the transformed variables shows an increase in the correlation
coeÆcient between the transformed variables. In this instance, ACE has indeed made the
transformed variables more correlated, however the resulting distribution shows evidence of
some constraint in the transformed Fe (all values lie below 1.0). Some other transformation
should be applied in order to remove this constraint, for example a data re-expression algo-
rithm could be applied [11, 12]. Overall, linearity of the transformed bivariate distribution
is not apparent, and so the assumptions of linear correlation inherent in conventional geo-
statistical analysis may still not be adequately satis�ed after applying the ACE transform.
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Figure 7: Tranformation of y = exp(1 + 2x) + ", where x is U(0,2) and " is N(0,10)

Classi�cation Techniques

Up to now all the techniques have been concerned with �nding an alternate set of variables
that can be used to simplify geostatistical modeling. In this section, we shift to methods
that may be useful from an exploratory data analysis perspective.

Discriminant Analysis

Discriminant analysis involves two types of multivariate data: 1) a set of groups with known
distribution, and 2) a set of data with unavailable a priori information on the group that
it belongs [7]. The objective of discriminant analysis is to reconcile the second type of
data with the �rst type based on the di�erent observations on each sample. In a geological
context, this technique may be useful to determine the properties that characterize the
di�erent facies types. Based on these properties, samples taken from unidenti�ed facies can
be classi�ed based on di�erent observations on that sample to determine the facies group
to which it likely belongs.
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Figure 8: Cross plots for ACE transformation of Nickel Laterite Data

The �rst step in discriminant analysis is to represent the observations that clearly fall
within the di�erent G groups. Once done, this set of data then becomes the measure by
which the groups are characterized. For example, data known to be sampled within a certain
sedimentary layer, say sandstone, would belong to the sandstone group. Likewise, samples
taken within shale would be grouped and identi�ed as the shale facies group. Based on the
grouped samples, a representation of the di�erent measurements would show the separation
between the groups. This is usually done in a spatial context and is typically referred to as
the discriminant space [7].

The second step is to determine the variables that best discriminates between the two or
more groups. The focus is now shifted to �nding the right measure to classify the unknown
data. Many techniques exist that classify the data based on di�erent criteria; these include
two-group linear discriminant analysis, heterogeneous covariance matrices, classi�cation by
nearest neighbor methods, classi�cation into one of several groups and classi�cation using
Mahalanobis distances. Seber [1984] provides a schematic illustration of the linear and
quadratic discriminant analysis techniques, which is reproduced here in Figure 9 [15].

The cost of misclassifying the data is another fundamentally important concept central
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Figure 9: Use of (a) linear and (b) quadratic discriminant analysis to separate groups of
data. Source: Seber (1984)

to discriminant analysis. The determination of the right classi�cation measure is an op-
timization problem wherein the cost associated to classifying the ith sample to the wrong
group must be minimized. The result of this optimization is the following misallocation
rule where x is assigned to group G1 if :

f1(x)

f2(x)
�
�2C(1j2)

�1C(2j1)
(9)

where fi is the probability density function of the ith group, �i is the prior probability that
x belongs to the ith group, and C(ijj) is the cost of misclassifying a sample from group j
to group i. If equation 9 is not satis�ed, then assign x to group G2 [1, 4, 15].

Linear Discriminant Functions

Due to its simplicity and optimal properties, linear discriminant analysis is the most com-
mon method used in practice [17]. The concept of a linear discriminant function was �rst
introduced by Fisher in 1936. The idea is based on the de�nition of a variable Y that max-
imally separates the G groups and is a linear combination of the variables Xi, i = 1; : : : ; p:

Y = a1X1 + a2X2 + � � � + apXp

Y =
pX
i=1

aiXi

In order to maximize the separation between the groups, the coeÆcients, ai, are determined
by solving the following matrix system:

C �A = M

A = C�1M (10)
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where:
M = column matrix of di�erence in means between groups, e.g. G1 �G2

C = covariance matrix between the di�erent groups, and
A = matrix of coeÆcients
If the two populations are normally distributed with equal covariance matrices, then the

best classi�cation rule is to classify sample x into the group G1 if

� = MT � C�1
�
X �

1

2
(G1 +G2)

�
� c (11)

where c = ln(�2=�1). Otherwise, classify sample x into group G2 [7].
There are many other classi�cation rules, the suitability of which depends on the data

distributions, the cost associated to misclassi�cation, and the goals of the classi�cation rules
(ranging from minimizing the number of samples misclassi�ed to reducing the actual error
rate for classifying future samples).

Perhaps the most important thing to keep in mind is that discriminant analysis is
concerned with assigning samples to pre-established groups [4]. Unfortunately, in the geo-
sciences these groups are rarely pre-determined and analysis is mainly concerned with iden-
tifying the di�erent groups.

Cluster Analysis

At the start of any study, little is known about the data much less the population(s) from
which they came. The main objective of cluster analysis is to identify groups within a set
of data with n samples on which there are p-variate observations. Essentially the groupings
will identify samples that are similar based on the p-variate observations and distinguish
them from those that are dissimilar. Each sample then can only be assigned to one group
only and is considered dissimilar to samples belonging to other groups.

Cluster analysis is not limited to the separation of data samples, we could also cluster
variables so that highly correlated variables are grouped together so that some average of
the variables could be used in analysis [4]. We have already seen this type of clustering in
the dimension reducing methods shown above, and so the following discussion will focus on
the clustering of samples.

Clustering of data samples can be achieved via several di�erent approaches: process
of agglomeration or division [13]. The process of agglomeration requires that at the start
of analysis, each sample forms its own group of one. Groups that are close to each other
are then combined to form a group, this is done until all the individual samples are placed
into the m groups (where m < n). Alternatively, we could begin with only one group,
to which all samples belong. Samples that are far apart are then divided, this continues
until the required number of groups are formed and all samples have been accounted for.
Chat�eld & Collins (1980) provides schematic illustrations of clustering of samples based
on two variables, x1 and x2, and is shown here as Figure 10.

If we continued to perform cluster analysis within the �rst set of groups and identify
sub-groups within the groups and so on, then the result is a hierarchical clustering scheme.
This scheme essentially breaks down the primary groups into secondary groupings, until
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Figure 10: Clustering Data into Groups. Source: Chat�eld & Collins(1980)

Figure 11: Hierarchical Clustering: Dendrogram or Hierarchical Tree. Source: Chat�eld &
Collins(1980)
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eventually each sample is its own group which essentially amounts to clustering by division.
Figure 11 shows a schematic illustration of a hierarchical tree (commonly referred to as a
dendrogram), also taken from Chat�eld & Collins (1980).

The decision to combine or divide groups is based on distance measures between the data
and the group centres, which may be dependent on the means, variances and covariances
of the two di�erent populations. Metric distance measures are those which are strictly
positive. The Euclidean metric distance function is a common measure and is given by:

dij =
pX

k=1

(Xik �Xjk)
2 (12)

where dij is the distance between group i and group j, p is the number of variables, Xik is
the value of variable k for group i.

Another common distance measure is the Mahalanobis distance which accounts for cor-
relations between the p variables, written in matrix form below:

d2ij = (mi �mj)
TC�1(mi �mj) (13)

where mi is the p � 1 column vector of means for group i, and C is the p � p covariance
matrix between the groups. The Mahalanobis distance has often been referred to as the
generalized Euclidean distance [5]. Other distance measures include squared Euclidean,
Chebyshev, Penrose, nearest neighbour and Minkowski distance [5, 6, 13, 16].

The main di�erences in the large number of cluster analysis algorithms lies in the choice
of 1) the clustering process and 2) the distance measure applied.

General Comments on Classi�cation Algorithms

Use of both discriminant and cluster analysis in geostatistics are likely limited to exploratory
analysis tools applied prior to geostatistical simulation. They should provide insight into
the potentially di�erent populations found within the data set. Decisions of stationarity
may be applicable to only the clusters or classes identi�ed using these techniques.

Final Comments

In geostatistics, we frequently work with multivariate data sets. Conventional geostatistical
tools make assumptions regarding data distributions, stationarity of population statistics,
and linear correlation between variables. Unfortunately, the sample data rarely conform
to all these assumptions and must be transformed in such a manner to allow for use of
conventional geostatistics.

There are a multitude of multivariate statistical tools that can be useful in geostatistics,
however in the past their application has been fairly limited. During the exploratory data
analysis phase of a study, the group of classi�cation techniques could be e�ective in distin-
guishing between di�erent populations. Once the decision to use only a certain number of
samples is made, we may wish to try to reduce the number of di�erent variables for simula-
tion. In this instance, the dimension reducing techniques would be most e�ective. However,
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in the case where dimension reduction is not an issue, but non-linearity and/or mineralogi-
cal constraints limit the applicability of typical geostatistical tools, the data transformation
methods may prove particularly useful.

The objective of this paper was to provide an overview of some of the available tech-
niques, and is by no means meant to be an exhaustive list. The e�ective use of any of
these statistical tools (and others not mentioned here) is completely dependent on the un-
derstanding of the objectives and the correct application of each method.
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