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A small and seemingly unimportant question comes up toward the end of a geostatistical study of 
reservoir performance uncertainty: how many realizations do we need?  A small number of 
realizations would require less computer resources.  A large number should lead to a more 
reliable assessment of uncertainty.  A quantitative method is proposed to calculate the required 
number of realizations. 

This first step is to specify the required reliability of the final uncertainty assessment, for 
example, we require to know the P10, P50, and P90 quantiles within 2%, 4 out of 5 times.  The 
number of realizations can be calculated directly with a requirement expressed in these terms.  
The exact shape of the response distribution is not needed because reliability is expressed in 
terms of the cumulative probability.  The sampling distribution of the cumulative probability 
values is Gaussian because the realizations are drawn independently; therefore, we can 
analytically calculate the required number of realizations. 

If the number of realizations is fixed because of computational constraints, it is possible to 
calculate the reliability of the uncertainty predictions.  The background of this approach is 
developed and some examples are presented.  Some examples are presented and implementation 
details are discussed. 

Introduction and Background 
Reservoir management is associated with considerable uncertainty.  This uncertainty is due to 
sparse data and incomplete knowledge of geologic, engineering, and economic factors.  Modern 
decision-making requires an assessment of this uncertainty.  A combination of a scenario-based 
and classical Monte Carlo sampling is used to arrive at probability distributions representing 
uncertainty in the required performance variables. 

The central idea of Monte Carlo sampling is to (1) draw L realizations from a probabilistic model, 
(2) process the L realizations through some performance calculation, and (3) assemble a 
histogram of the L responses to represent a distribution of uncertainty in the output(s).  Classical 
Monte Carlo simulation requires the L realizations to be drawn randomly; therefore, they each go 
into the distribution of uncertainty with equal probability.  The critical questions addressed by 
this short note is: how many realizations (L) are required? 

The technique developed in this report is general; it is not linked to the particular geostatistical 
technique used to model facies, porosity, and permeability.  Nevertheless, an important discussion 
in any practical study should focus on how the geostatistical realizations are created since one of 
the most consequential sources of uncertainty exists in the detailed 3-D distribution of facies and 
petrophysical properties.  Geostatistical techniques are being increasingly used to generate 
alternative heterogeneous 3-D reservoir models that are consistent with the available data.  
Decision analysis techniques are being increasingly used to transfer this uncertainty through to 
reservoir management decision-making. 
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This note does not address the use of multiple realizations to honor data.  There are times when 
certain realizations would be rejected on the basis of geological expertise or data not used in the 
geostatistical modeling such as production-related historical observations.  We only consider 
those realizations that meet all basic requirements of reasonableness. 

Although a large number of stochastic reservoir models or realizations may be available, a small 
number of realizations are considered in practice.  Due to computer limitations, it is only possible 
to visualize and perform fine-scale full-field flow simulation on a limited number of realizations.  
Techniques must be applied to reliably choose realizations for more detailed analysis such as flow 
simulation.  A qualitative choice of low, median, and high realizations provides valuable 
information for reservoir management decision making.  Modern decision-making requires a 
more specific statement of probabilities, e.g., p10, p50, and p90.  We would like to identify these 
limits with as little effort as possible.  A companion short note addresses ranking techniques. 

We now present a standard methodology for specifying the precision of uncertainty statements, 
that is, the “uncertainty in our uncertainty statements.” 

Precision of Uncertainty Statements 
Realizations are drawn for a particular scenario to characterize the uncertainty in reservoir 
performance variables.  There may be multiple scenarios, but we consider one at a time.  How 
many realizations do we need to characterize uncertainty?  Figure 1, below, shows 10 
realizations.  Each realization goes into a histogram of uncertainty with equal probability since 
geostatistical realizations are equally probably or “equally likely to be drawn.” 
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Figure 1: 10 realizations of a performance variable shown as a histogram and a cumulative distribution 
function (cdf).  The dashed line on the cdf is an interpretation. 

We may want the 0.1, 0.5, and 0.9 quantiles of the distribution of uncertainty.  These values can 
be estimated from the cdf of only 10 realizations, but with great uncertainty or imprecision.  It is 
necessary to specify the required precision in the quantile values, that is, the acceptable 
“uncertainty in the uncertainty.”  The 0.1 quantile in Figure 1 would change if 10 different 
realizations were drawn.  There are two different ways of looking at such sampling fluctuations, 
see Figure 2.  The advantages of looking at the performance variable (case A) are that the 
distribution can be built-up as sets of realizations are drawn and units are easy to interpret.  A big 
advantage of looking at the cumulative probabilities (case B) is that the units are dimensionless.  
We consider this advantage to be quite important even though we require the cdf of the 
performance variable (or some reasonable approximation to it).  Dynamic determination is 
considered later. 
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Figure 2: Two ways of looking at the sampling distribution of a quantile (A) uncertainty in the quantile, 
and (B) uncertainty in the real probability associated to the sampled quantile. 

Uncertainty assessment is precise if the distribution of cumulative probabilities is narrow.  The 
narrowness could be measured with variance, interquartile range, or some other statistic.  A 
definition consistent with most probabilistic regulatory requirements is considered here.  There 
are two parameters (see Figure 3 for a schematic illustration): (1) ∆F = reference difference in 
probability, which would likely be about 0.01 for reasonable quantiles in the range of 0.1 to 0.9 
and smaller, e.g., 0.001 for extreme quantiles in the range of 0.01 to 0.05 and 0.95 to 0.99, and (2) 
tF = minimum probability of being within probability ∆F, which would likely be set to 0.8 or 0.9.  
The criteria can be expressed as: 

The estimated F(p)-quantile, p’, must be known within a 1% limit 
(∆F = 0.01) 90% of the time (tF = 0.9). 

Consider two examples.  The first is fairly typical and the second is quite stringent with respect to 
the quantiles and desired precision: 
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Figure 3: Illustration of two parameters (∆F and tF) required to specify required precision of a quantile. 

 

• Require the P10, P50, and P90 of recovery factor with good precision, for example, we 
require the 0.1, 0.5, and 0.9 quantiles within 1%, 80% of the time (∆F = 0.01 and tF = 
0.8). 

• Require the P1 and P99 of net present value with excellent precision, for example, we 
require the 0.01 and 0.99 quantiles within 0.1%, 95% of the time (∆F = 0.001 and tF = 
0.95). 

The red curve on Figure 4 illustrates how the t parameter changes with the number of realizations 
(for random or Monte Carlo samples).  Recall that t is the proportion of times that the actual 
probability falls within the specified limit of ∆F.  There would be a family of such curves for 
different ∆F values.  The more stringent or the smaller ∆F, the more realizations that are required, 
that is, the curve would shift to the right.  Successful use of ranking would reduce the number of 
realizations to achieve a specified ∆F tolerance, that is, the curve would shift to the left (see the 
green curve on Figure 4).  We are left to calculate the exact shape and position of the curves 
illustrated schematically below. 
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Figure 4: Illustration of how precision depends on the number of realizations.  The precision will increase 
more slowly with random realizations than when ranking is used to “target” the realizations toward the 
quantile. 
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Required Number of Realizations 
Precision in uncertainty statements is specified by ∆F and t, that is, a probability tolerance that the 
quantile should fall within (∆F) and the proportion of times the quantile should fall in that 
tolerance (t).  This specification of precision is in the units of probability and not the performance 
variable under consideration.  Thus, the analytical and numerical results we derive in this Section 
are general for all response variables and all applications of Monte Carlo sampling. 

Figure 4 presents a functional relationship that appears reasonable, that is, the number of 
realizations increases as the required precision in our uncertainty specification becomes more 
stringent.  We can establish that relationship by a brute force numerical approach.  Consider the 
following procedure to calculate the value t for a specified L, ∆F, and F values: 

1. Draw L realizations or values from a uniform distribution between 0 and 1 (the cdf values 
on the vertical axes of Figures 2 and 3). 

2. Sort those values in ascending order and create a sample cdf.  Determine the F-quantile 
of the sample distribution, F*.  See if the sample quantile value F* is within the required 
tolerance, i.e., F* ∈  [F-∆F,F+∆F[. 

3. Repeat steps 1 and 2 many times (say, N=10000) and calculate t as the proportion of 
times that the sample quantile meets the precision criterion. 

This procedure can be repeated for many L, ∆F, and F values to build a family of curves that tell 
us how many realizations are required for a precision specification.  A small program get_t was 
written for this purpose.  This program was also customized to report the sampling distribution 
for the cdf, that is, the distribution of the cdf value (see the distributions on the vertical axes of 
Figures 2 and 3). 

The sampling distributions for the cdf values were found to be normal.  This is not surprising 
since the cdf value is the sum of a large number of values (the indicator transform at the correct 
threshold) that are independent (the realizations are random) and identically distributed.  The 
central limit theorem tells us that the sampling distribution in this case tends toward a normal 
distribution as the number increases.  The number we are considering (L)  is very large by central 
limit theorem standards; therefore, it is expected that the distribution will be normal.  Figure 5 
shows the sampling distributions for three quantiles and L=400.  The histograms and probability 
plot shows that the distribution is normal. 

The mean and variance of these distributions can be determined theoretically.  The sampled cdf 
value F* is the average of an indicator value: 
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where the indicator function is 1 if random drawing ul is less than or equal to the value F and 0 
otherwise.  The mean or expected value of F* is the true underlying cdf value, that is, F.  The 
variance of F* is calculated as: 
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These analytical results are verified by the numerical results on Figure 5 and other calculations.  
The simplicity of these results makes it straightforward to calculate the t statistic for specified L, 
∆F, and F values.  Recall the definition of the t statistic: 
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The probability distribution of F* is known to be normal with a mean of F and a variance of (F(1-
F))/L; therefore, we can calculate t as a function of the standard normal cumulative distribution 
function G(y): 
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There are numerous “G(y)” functions available, e.g., the gcum and ginv functions in GSLIB.  
This is an important result.  The precision for a given number of realizations can be directly 
calculated.  We can invert this relationship to get an equation that gives us the number of 
realizations L to achieve a certain precision specification: 
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This is another important result.  The number of realizations for a specified precision can be 
calculated directly.  Figure 6 shows curves of t versus the number of realizations L for ∆F = 0.1, 
0.2, 0.3, 0.4, and 0.5.  These five curves were also calculated numerically and the results match.  
These curves relate to 0.5 quantile, which requires the greatest number of realizations (F(1-F) is 
maximum).  Figure 7 shows how the number of realizations changes with quantile; the three 
curves correspond to F = 0.1, 0.25, and 0.5. 

Conclusion 
These relations could be implemented in a little calculator-like utility to help people answer 
questions related to “how many realizations do I need?” and “how good is this P10 value?”.  A 
little program numreal has been written for this purpose.  The program is interactive – just run it. 

There are no references for this short note; however, workers in statistics must have addressed 
this problem with similar methods. 
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Figure 5: Sampling distributions for the 0.1, 0.5, and 0.9 quantile for 400 realizations.  The 
probability plot is shown beside the 0.5 quantile; the straight line indicates a normal distribution. 
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Figure 6: Illustration of how the number of realizations changes with tolerance parameters.  The 
four curves correspond to ∆F = 0.1, 0.2, 0.3, 0.4, and 0.5. 
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Figure 7: Illustration of how the number of realizations changes with quantile.  The three curves 
correspond to F = 0.1, 0.25, and 0.5. 


