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Grade control requires the speci�cation of dig limits that account for mineral grades, economic
costs, and selectivity of mining equipment. Visual identi�cation of ore rock types is ideal, but this is
not always possible in lower grade disseminated deposits where ore/waste contacts are not visually
discernible. In this case, conventional grade control practice consists of a two-step procedure (1)
create a map of mineral grades at some selective mining unit scale, and (2) determine practical ore-
waste boundaries or dig limits on the basis of the gridded block grades or assay information. This
procedure is laborious, depends on a subjective assessment of where the boundary should be, and may
be economically sub-optimal.

We pose the determination of dig limits as an optimization problem and solve that problem
with the technique of simulated annealing. Simulated annealing has the unique advantage of being
able to combine multiple non-linear constraints into a single objective function. We use maximum
pro�tability and the ability of the equipment to mine the proposed dig limits as constraints in the
determination of optimal dig limits.

A map of expected pro�t for each block is required. Geostatistical techniques are recommended
for mapping expected pro�t. Geostatistics provides a quanti�cation of the uncertainty in the grades
within the rock types using all available blasthole samples and exploration drilling. Some variant
of L-optimal estimation or kriging can be used to determine the block-by-block classi�cation that
is economically optimum. It is unrealistic to assume each block can be extracted independently of
its neighbors. The optimal balance of \accepting dilution" and \wasting ore" must be achieved to
maximize pro�t subject to equipment constraints.

Mining equipment cannot mine isolated ore or waste blocks. The concept of an equipment curve
is proposed as a means to quantify the selectivity and physical limitations of di�erent mining equip-
ment. Economic pro�tability and mining \digability" are simultaneously considered by the simulated
annealing optimization algorithm. These two considerations are balanced by dynamic weighting of
these two component objective functions; this weighting requires a subjective calibration.

Optimal dig limits are presented and these results are compared to a variety of di�erent equipment
curves and mining scenarios. Limitations, future work and other areas of application are identi�ed.

Introduction

Surface mining requires quanti�cation of ore and waste zones. These zones must be realistic for
the mining equipment. The limits should minimize the amount of waste sent to the mill and the
amount of ore sent to the waste dump. Grade control starts with geological mapping and blast hole
sampling. A traditional method is to hand contour the dig limits using the rock types and cuto�
grade.

There are some shortcomings to hand contouring: (1) the uncertainty and variability of the
grades is diÆcult to account for in a quantitative manner, that is, no provision is made for assessing
the impact of uncertainty and errors of classi�cation, (2) grade information from previously mined
benches and exploration drilling is not easy to consider, (3) mining equipment limitations are not
systematically accounted for, that is, the limits may be unrealistically complex or overly simplistic,
and (4) hand contoured dig limits are subjective, that is, there is neither an objective measure
of optimallity nor a reproducable procedure. The �rst progression beyond hand-countouring is to
consider geostatistical tools to quantify the variability and uncertainty in the grades.
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Figure 1: A map showing three synthetic examples. The map on the far left will be labeled as X,
the middle map C data, and the far right map Z data.

Kriging is a key algorithm in geostatistics; it is an estimation technique that minimizes estimation
variance given a prior variogram or covariance model. Kriging estimates should not be plotted on a
map; the values were not calculated to have the correct \joint" variability. A map of kriging estimates
will be too smooth and will not carry a measure of joint uncertainty in the grade estimates.

Simulation is an algorithm that extends kriging to provide a set of realizations have the correct
joint variability and, taken altogether, characterize spatial uncertianty. Early practitioners did not
know how to directly use simulated realizations for decision making; it was easier to make decisions
with just one answer rather than a set of realizations. Decision analysis tools were then customized to
geostatistical applications (Srivastava, 1987; Glacken, 1996). These tools permit optimal ore/waste
classi�cation on a block-by-block basis.

A number of geostatisticians have developed variants of optimal classi�cation schemes considering
geostatistical models and decision analysis (Glacken, 1996; Deutsch, Norrena, and Magri, 1998;
Dimitrakopolous; Isaaks; Srivastava; and Verly). These workers systematically consider free selection
at a �xed block size. The choice of a block size, however, is inadequate to capture the fact that
mining equipment (1) can dig to limits that do not correspond to arbitrary block boundaries, and (2)
cannot freely select a lone ore block in waste or waste block in ore. The assumption of block-by-block
free selection is the most consequential limitation of existing grade control procedures.

Figure 1 shows three maps derived from simulated deposits. These maps show the classi�cation
of each block individually. The ore and waste regions must be \smoothed" into practical dig limits
before staking them in the pit or transmitting them to the GPS-equipped loading equipment.

The key idea of this paper is to take the next step forward from geostatistical modeling of grades
and block-by-block decision making. We want to determine polygonal dig limits that simultaneously
account for optimal decision making and the mining equipment. This problem is posed as an opti-
mization problem. We solve that optimization problem and show some examples. The optimization
technique for dig limit determination could be applied to the results of kriging, simulation, or any
other mapping technique. Limitations and areas of future work are identi�ed.

The Danger of Image Analysis:

Some ideas from image analysis could be used for dig limit determination. Dig limits could be
considered as binary ore and waste, which is particularly well suited to image analysis methods.
Successive application of erosion and dilation is one approach to \smooth" a binary image. This is not
suitable for dig limit determination because the value of the ore is not accounted for. Figure 2 shows
two cases (1) Case A where the top ore block is marginal and should be left because dilution makes it
uneconomic, and (2) Case B where the top ore block is high grade ore and the dilution is acceptable
since the value of the ore outweighs the total dilution. These two cases are indistinguishable from
a binary image cleaning perspective. Moreover, image cleaning typically works with pixels and not
polygons.
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Figure 2: Case A - the top ore block is marginal and should be left because dilution makes it
uneconomic; Case B - the top ore block is high grade ore and dilution is acceptable because the total
of the dilution and ore is still economic.
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Methodology

Our problem is to determine practical mining limits that minimize the amount of waste sent to the
mill and ore sent to the waste dump, that is, maximize pro�t. Dig limits are represented by two
dimensional polygons. The bench height is assumed constant for the purpose of grade control; the
problem of split-benching could be handled as a separate problem. The polygons may enclose areas
of waste or ore. In practice, there are both ore and waste polygons on any particular bench. High
grade areas will consist of waste polygons within a \matrix" or ore; low grade areas will consist of
ore polygons within a \matrix" of waste.

The number of polygons and an initial guess at the polygon geometry can be made manually or
automatically; an automatic procedure is used below. The optimization problem is to modify the
polygon to maximize an objective function that consists of two parts: (1) pro�t, and (2) digability.
Each ore and waste polygon may be modi�ed by changing the number of vertex points and by
changing the vertex coordinates. Pro�t is de�ned from prior geostatistical modeling of the grades.

Digability may not be a word in the English language, but most geologists and mining engineers
will understand our meaning. Digability is a measure of the diÆculty with which an ore or waste
dig limit may be extracted. A large polygon with no sharp boundaries would have high digability.
A small tortuous polygon would have low digability. Clearly, digability depends on both geometry
and the mining equipment. The same polygon would have di�erent measures of digability for a large
cable shovel and a small hydraulic loader. We show one method to quantify digability.

Details of this optimization problem will be developed below; however, we note that this problem
is not a classical optimization problem. There is no evident way to calculate gradients, that is,
derivatives of the objective function with respect to the variables (number of vertices and vertex
coordinates). The combination of pro�t and digability will involve subjective weighting that is not
handled by classical optimization techniques. The solution space is combinatorially large with many
local maxima. Genetic algorithms and simulated annealing are two optimization techniques that
have gained popularity for dealing with these types of optimization problems.

Simulated annealing is used in this paper. There are a number of reasons for this choice: (1)
genetic algorithms require a \population" of solutions to be maintained, which can become CPU
demanding with a large number of variables, (2) simulated annealing is simpler to code, and (3)
recent developments in simulated annealing have made it extremely fast and robust.

Metropolis and coworkers published a paper in 1953 outlining a numerical technique to determine
molecular structure of alloys. The Metropolis algorithm was extended by Kirkpatrick and coworkers
in 1983 to address combinatorial problems in computer design; they called their solution method
simulated annealing or SA. These combinatorial problems are typi�ed by the famous traveling sales-
man problem, that is, \what is the shortest path through n cities returning to the starting city
and visiting each city only once?" The SA algorithm starts with an initial path through all of the
cities. Random changes or perturbations to the path are proposed. Random changes that lead to a
shorter path are accepted. Changes that result in longer paths are sometimes accepted. The path
is perturbed until the path length has stopped decreasing. Conditional acceptance of perturbations
that increase the path length is the key to the technique; these changes are sometimes accepted
because they make it possible to avoid local minima and �nd the global minima.

One can easily imagine application of the SA algorithm to the problem of dig limit determina-
tion: initial dig limits are iteratively perturbed until convergence to optimality, that is, maximum
pro�tability and digability. Two issues need to be addressed: (1) we need an objective function that
simultaneously accounts for pro�tability and digability, and (2) we need to resolve implementation
details of SA such as the perturbation mechanism and the annealing schedule.

The Starting Point

A regular 2-D grid of expected pro�t is the required starting point. This block model of pro�t could
come from kriging or expected pro�t calculation using a set of simulated realizations (Deutsch,
Magri, Norrena, 1998). The expected pro�t depends on the mineral commodities present, prices
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Figure 3: Illustration of 2-D grid with polygon with �ve vertices covering 19 grid blocks with di�erent
fractions. The exact fraction in each polygon can be calculated analytically.

(p), recoveries (r), ore mining costs (co), waste mining costs (cw), and treatment costs (ct). For
simplicity, we show examples with a single metal and constant recovery; however, it is no problem
whatsoever to consider multiple metals, recovery curves as a function or grade, and confounding
factors such as variable work index and contaminants.

The expected pro�t in a barren or low grade area is negative and is as low as the cost of treating
barren material. In high grade areas, the expected pro�t is positive and variable depending on grade,
e.g., profit = p � r � Z � co � ct. The grades, or Z-values, may be modeled by a set of realizations
fz(l)(u); l = 1; : : : ; L;u 2 Ag, where L is the number of realizations and u is a location vector in the
area A. The expected value of pro�t would be an average over the uncertainty in grades, which is
quanti�ed by geostatistical simulation.

The expected pro�t is modeled by a 2-D block model for a particular region of a particular bench.
The resolution of this block model should be about 1/2 to 1/3 of the blasthole spacing. A larger
resolution would make it diÆcult to capture irregular-spaced information from the bench above and
rapid changes in the grade. A smaller resolution could not be justi�ed from the available data. The
resolution of this block model does not have to reect any particular \selective mining unit" or SMU
volume since the dig limits de�ne the mining unit and the dig limits will reect both pro�tability
and digability.

A dig limit is a closed polygon that encloses ore or waste. Each polygon is de�ned by a number
of vertices and vertex coordinates. Computing the fractional area of grid blocks that fall within such
a polygon is straightforward (see published code in Deutsch, 1990).

The Initial Polygons

The geologist or engineer in charge of grade control could digitize initial polygons on the computer
or on manually. An automatic algorithm could be used to outline the ore and waste zones. We use
an ad-hoc automatic algorithm for initial polygon determination: (1) the ore / waste map is eroded
then dilated to remove \noise", that is, remove lone blocks of either ore or waste, (2) a set of possible
vertices is determined as the grid line intersections where there is an ore to waste transition, and (3)
a rule-based algorithm is used to trace around polygons. The initial polygon lines are not allowed
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Figure 4: Illustration of the region within which a grid node could be moved for a candidate per-
turbation.

to cross or be too far apart, which means a particular bench is initially divided into a number of ore
and/or waste polygons.

The Perturbation Mechanism

The perturbations must not be too drastic or most perturbations will not be accepted and conver-
gence will be slow. The perturbations must not be too minor or many perturbations will be required
to achieve convergence. Standard practice is to choose a reasonable mechanism and any ineÆciencies
will be revealed in slow convergence. The algorithm coded here only rarely takes more than one
minute on a PC for convergence; thus, the algorithm is eÆcient or the ineÆciencies translate to
acceptable CPU time.

The mechanism chosen here is to (1) randomly pick a polygon and vertex, and (2) choose to
move that vertex with uniform probability within a speci�ed distance (about 20% of the grid block
dimension). Figure 4 shows the region for perturbation for one vertex of a polygon. This simple
perturbation mechanism must be supplemented by a series of rules including (1) an additional vertex
is added at the midpoint between the distant vertices if the vertices get too far apart, (2) vertices
are merged if they get too close, (3) a candidate perturbation is rejected if the polygon lines cross,
and (4) polygons are merged if they get close or split if they become narrow in a particular region.
The rules related to polygon merging and splitting are particularly sensitive; ideally, the number of
polygons is determined by the grade control expert in advance. The goal of the optimization is to
re�ne the exact location of the boundaries.

Pro�tability

Ore and waste polygons must be identi�ed and handled di�erently. The pro�t of an ore polygon is
the sum of all fractional blocks within the polygon. The pro�t for ore polygon i is calculated:

P i =

nxX

ix=1

nyX

ny=1

fraci(ix;iy) � P(ix;iy) (1)

where fraciix;iy is the fractional area of the block indexed at location (ix; iy) within polygon i and
P(ix;iy) is the pro�t for location (ix; iy). The \pro�t" of waste polygons multiplied by -1 to ensure
that the units and the sign are the same as for ore polygons, e.g., the pro�t of waste polygon j is
calculated:

P j = �
nxX

ix=1

nyX

ny=1

fraci(ix;iy) � P(ix;iy) (2)
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Figure 5: An example equipment curve: the ordinate axis is the penalty and the abscissa is the
angle of operation.

The objective is to maximize pro�tability, that is, to ensure that no pro�table material is assigned
to the waste polygons unless the digability of the polygon is adversely a�ected. A highly pro�table
block can not be included in waste because it will have a large adverse a�ect on pro�tability.

Pro�tability is de�ned as the sum over all np polygons of the pro�tability of each:

Pprofitability =

npX

ip=1

P i (3)

where the pro�t of each polygon is de�ned depending on the polygonal classi�cation of ore and
waste.

The fractional area routines of Deutsch, 1990 are implemented in the code and used for input to
equations (1) and (2). An alternative is to use some kind of fast point-in-polygon routines, but that
is less exact and there is no need for such approximations since the CPU speed is acceptable.

Digability

Digability is an intuitive concept, but more ambiguous to calculate. The concept of a penalty
function is introduced as a method to measure digability of tortuous and smooth polygons. An
example penalty function is shown in Figure 5. The penalty curve is for a hypothetical cable shovel.
The ordinate axis is the normalized penalty and the abscissa axis is the angle de�ned by three
consecutive vertices. In this example, angles less than 40o are penalized signi�cantly. Digability is
de�ned as -1 multiplied by the sum over all polygons and all vertices of the angle penalty coming
from the equipment curve:

pdigability = �

npX

ip=1

nv(ip)X

iv=1

penivip (4)

where penivip is the penatlty at vertex iv of polygon ip. There are np polygons and nv(ip) vertices
for polygon ip; ip = 1; : : : ; np.

The examples presented later in this paper will attest to the eÆcacy of this de�nition of digability;
however, we admit that experience is needed to accurately de�ne the equipment curve for di�erent
equipment. It is our expectation that experts from a particular mine could calibrate the equipment
curve to the equipment, the operators, the operating conditions, and visual geological control.

Combined Objective Function

The Combined Objective Function is a weighted sum of pro�tability and digability:

O = � � Pprofitability + (1� �)Pdigability (5)
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Figure 6: An illustration of the probability of accepting perturbations in simulated annealing (SA).
The probability of accepting unfavorable changes is very small at low temperature.

where � 2 [0; 1] is a weight that balances pro�tability and digability and serves as a \tuning" pa-
rameter. As � approaches 0, the emphasis is on mining equipment constraints. As � approaches 1,
the emphasis is on pro�tability. This parameter cannot be chosen arbitrarily. If set to one maximum
pro�tability would be assured, but the equipment constraints would be ignored. Equipment con-
straints are \real" and must be considered. In practice, � can be determined automatically to ensure
that both pro�tability and digability play an equally important role (see Deutsch and Cockerham,
1994).

The Acceptance Rule

All perturbations that decrease the objective function O � Onew = �O � 0 are accepted; how-
ever, some perturbations that increase the objective function �O > 0 are accepted. Conditional
acceptance of perturbations that increase O should theoretically follow the Boltmann distribution.
The Boltzmann distribution summarizes the notion that sometimes molecules move to higher energy
states, but less often at low temperature. The Boltzmann distribution:

p = e
��O
T

where p is the probability of acceptance, �O is the positive increase in objective function, and T

is the \temperature," which must be determined by well established empirical rules. The annealing
schedule is shown on Figure 6. There is a small probability of accepting unfavorable changes at low
temperature. The idea is to start the \temperature" parameter quite high and reduce it to zero (see
the literature on the well established rules of how to reduce the temperature parameter).

As mentioned, the T parameter controls the decision mechanism. Initially the T parameter starts
at a high value; virtually all perturbations are accepted. As the algorithm proceeds the T parameter
is reduced and the probability for accepting unfavorable perturbations is reduced. At the limit, only
perturbations lowering the objective function are accepted. Large scale changes are made at high
temperature and �ne-tuning of the limits takes place at low temperatures.

Examples

The vertices of the initial dig limit polygon are iteratively perturbed to conform to optimal dig
limits that yield maximum pro�t. The initial pro�t is calculated by summing the pro�t earned by
the fraction of ore blocks falling within the dig limits. To show this, three synthetic examples of
pro�t have been prepared and are shown in Figure refsynexam. The map on the far left will be
identi�ed as X Data, the middle map C Data, and the far right map Z Data.
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Figure 7: A map showing three synthetic examples. The map on the far left will be labeled as X,
the middle map C data, and the far right map Z data.

Each example has 25 by 25 blocks. The pro�t values will be expressed as fractions of the total
available pro�t. Three penalty functions are considered (1) no penalty, (2) moderate penalty, (3)
and strict penalty.

Comparison of Di�erent Penalty Functions

Dig limits are shown for di�erent weight to digability: the � parameter in the objective function.
Also, the minimum and maximum segment lengths are set to small values when no equiment con-
straints are used to mimic high selectivity, moderate values for moderate equipment constraints, and
large for strict equipment constraints. The pro�t results are shown on the following table and in
Figures 8, 9, and 10:

Fract. of Pro�t: X Data C Data Z Data
No Penalty 0.99 0.99 0.98

Moderate Penalty 0.96 0.98 0.93
Strict Penalty 0.87 0.92 0.81

These pro�t numbers are calculated from the underlying true grades and the pro�t derived from
milling the fraction of block within the dig limits. Thus, blocks having no mineral of interest have
negative pro�t. As expected, the pro�t is highest when no equipment constraints are used, and
lowest when strict equipment constraints are used. Figures 8, 9, and 10 show an intersting feature
of the program. Blocks having almost no pro�t do not have clear dig limits. This is because there
is little impact on pro�t when these blocks are considered; the program is indi�erent about these
blocks.

Figures 11, 12, and 13 show the fraction of total revenue versus the number of perturbations
for X data, C data, and Z data and each of the equipment condtraints. In all cases only 20000
perturbatiosn were attempted. More could have easily been applied, however, the aim of these
�gures is to show that increasing the importance of equipment limitations results in lower recovered
pro�t. The results are noisier with increasing equipment constraints. This is a result of having
increased the line segment length; small perutrbations over a long segment length results in increased
uctions in pro�t over small line segments. Using short line segments is not good solution as it is
more realistic to use line segments appropriate the equipment limitations; large equipment cannot
selectively mine dig limits consisting of short line segments. One solution is to increase the number
of perturbations.
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Figure 8: Proposed dig limits for X data using no equipment constraints, moderate equipment
constraints, and strict equipment constraints.
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Figure 9: Proposed dig limits for C data using no equipment constraints, moderate equipment
constraints, and strict equipment constraints.

Z   Data

0 25
0

25
Z   Data

0 25
0

25
Z   Data

0 25
0

25

Figure 10: Proposed dig limits for Z data using no equipment constraints, moderate equipment
constraints, and strict equipment constraints.
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Figure 11: Fraction of total revenue versus number of perturbations using X data for three equipment
constraints
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Figure 12: Fraction of total revenue versus number of perturbations using C data for three equipment
constraints
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Figure 13: Fraction of total revenue versus number of perturbations using Z data for three equipment
constraints

Real Example

Optimal selection of dig limits using the program diglim. The example data are taken from a copper
mine in Chile. An area of one bench is considered. A grid of 20 x 20 10m x 10m blocks is used. The
cost of milling is $10/t, the cost of shipping is $0.6/t for ore and waste, the matel price is $1760/t
and the recovery is 80%. The expected pro�t for this example is derived from the MPS procedure
discussed in Deutsch, Norrena, Magri, 1998. The diglim program can be used for di�erent methods
used to establish block-by-block estimates. Figure 14 shows ore / waste indicator and pro�t maps
for the example bench.

Dig limits were proposed with no equipment constraints, moderate equipment constraints, and
strict equipment constraints for both the pro�t only and the ore / waste cases. The segment length
were kept the same for all proposed dig limits, only the weight for the penalty function was altered.
Figure 15 and the table below summarize the results using only pro�t to propose dig limits.

Pro�t Penalty
No Penalty 1504 1898

Moderate Penalty 1498 261
Strict Penalty 1487 71

The pro�t and global penalty decrease with increasing equipment constraints. Notice that low
pro�t blocks are not completely included in the dig limits. Blocks high in pro�t are almost always
completely included in the dig limits. In the case of moderate equipment constraints, whole blocks
of waste are included in the dig limits.

Figure 16 and the table below summarize the results using only ore / waste indicators to propose
dig limits:
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Figure 14: A map of pro�t and the ore / waste indicator for the real example.
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Figure 15: Dig limits with no equipment constraints, moderate equipment constraints, and strict
equipment constraints using ore / waste indicators.
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Figure 16: Dig limits with no equipment constraints, moderate equipment constraints, and strict
equipment constraints using pro�t data.

Pro�t Penalty
No Penalty 1516 2704

Moderate Penalty 1496 229
Strict Penalty 1494 190

The DIGLIM Challenge

The concept of proposing optimal dig limits that are constrained to geostatistical, economic and
equipment limitations is sound. We have shown that the results are what one would expect from
optiaml dig limits. But can diglim outperform hand drawn dig limits? The DIGLIM challenge
compares the results calculated by diglim to hand drawn dig limits. Four mining engineers were
given a map of grades, shown in Figure 17, and asked to propose dig limits. The dig limits were
digitized. From the digitized coordinates the minimum, maximum and average line segments were
determined. Also, a penalty curve was constructed from the cdf of the angles. The penalty is
calculated as 100 � (1 � qbin). The minimum and maximum line segment and the penalty function
for each contestant was used as parameters for the diglim program. Table shows the results of the
challenge with fully automatic diglimits, and Table shows results for dig limits constrained by each
contestant's penalty. Figure 18 presents the fully automatic dig limit results for the challenge.

Proposed Limits diglim Limits Di�erence
Pro�t Penalty Pro�t Penalty Pro�t Penalty

1 1196888 14529 1210401 11372 13513 3157
2 1204202 16347 1210873 10801 6671 5546
3 1197635 14487 1212118 7991 14483 6496
4 1168998 12111 1209424 12432 40426 321

Proposed Limits diglim Limits Di�erence
Pro�t Penalty Pro�t Penalty Pro�t Penalty

1 1196888 14529 1214297 14556 17409 27
2 1204202 16347 1216690 16342 12488 5
3 1197635 14487 1216118 14494 18483 7
4 1168998 12111 1210911 12123 41913 13

In every case the diglim program prevails. For each case pro�t was increased and global penalty
was decreased. The diglim solution appears very similar for each case. This is good; one would
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Figure 17: The map of pro�t used in the Dig Limit Challenge.

not expect large deviations in the dig limits. Contestants 1, 2, 3 all have similar results except that
contestant 3 used longer line segments than constestant 1 and 2. The result is fewer vertices and
lower penalty. Contestant 4 used very smooth dig limits.

Future Work

Few examples are shown here. There are many areas of outstanding work that require more complete
development. The most critical outstanding work is to apply the method at an operating mine and
see if it is possible to (1) calibrate a reasonable equipment curve, (2) compare the results to existing
grade control, and (3) re�ne the procedure for practical considerations that have not been used in
this academic exercise.

Multiple ore and waste polygons must be handled. There is no theoretical problem; however,
there are a number of programming considerations to simultaneously handle waste polygons in ore
and and ore polygons in waste. There are polygons inside other polygons, there is a need to consider
splitting and merging of polygons, and the optimization must simultaneously consider all polygons.

The problem of classi�cation is not limited to the mining industry. There are applications in
the environmental industry where areas to remidiate must be identi�ed and those areas cannot be
agged independently of surrounding areas. There are applications in the medical industry where
images and zones must be classi�ed and this classi�cation cannot proceed pixel-by-pixel; there is a
larger scale structure that must be observed.

It is easy to imagine an equipment selection technique using the procedure for automatic dig
limit determination. The proposed method could be used with di�erent equipment penalty curves
to consider di�erent mining equipment. The capital cost of the mining equipment, the operating
cost, and the di�erent ore grade and tonnes are then used in an economic calculator. These results
can be used to support other decision making considerations.
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Figure 18: The contestant dig limits and the dig limits prposed by diglim.
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Conclusion

Free selection has been the single most important limiting assumption of geostatistics-based grade
control. Optimal mapping of block grades and classi�cation of blocks is well established. This
paper presents an important extension to those well known grade-control procedures: a technique
to determine optimal grade control polygons that account for maximum pro�tability and digability.

Pro�tability is de�ned from the expected pro�t within ore polygons and outside waste polygons.
A geostatistical model of grades provides the basis to calculate the expected pro�t. The fractional
area of each block inside the limits is calculated analytically using public code. The polygon vertices
are constrained so that the boundaries do not cross. Digability is de�ned as the ease of mining
a particular polygon. Sharp angles over short distances lead to a penalty. The magnitude of the
penalties comes from an equipment curve that is calibrated for each piece of mining equipment.

We have shown that the program diglim does propose optimal dig limits subject to equipment
constraints. The program shows that despite the random number seed the same result is arrived at.
We have also shown that the algorithm can be applied to real world problems, and that it performs
well when compared to hand drawn dig limits.

There are many areas of future work required to sort out all of the implementation details.
Nevertheless, this automatic procedure for optimal determination of dig limits accounts for many
considerations that are awkward to account for by hand-smoothing of block-by-block values. It is
easy to imagine an interactive software that would allow the grade control geologist or engineer to
semi-automatically map dig limits with intervention in areas of great complexity or unusual mining
limitations.
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