
Testing Pseudo-Random Number Generators

Juli�an Ortiz C. and Clayton V. Deutsch
(jmo1@ualberta.ca - cdeutsch@civil.ualberta.ca)

Department of Civil & Environmental Engineering, University of Alberta

Abstract

Random numbers are at the heart of all geostatistical simulation methods. Practitioners

assume that the software they are using uses an appropriate pseudo-random number gener-

ator; however, this may not be true. The history of pseudo-random number generation is

reviewed. Tests for randomness are described and applied to �ve di�erent pseudo random

number generators. Results show that generators that were considered good a few years ago

fail some recent tests. We recommend careful testing and monitoring of the literature.

1 Literature Review

In the early twentieth century people needed random numbers for their scienti�c work.
They started replacing the basic methods of drawing balls of a well stirred urn or rolling
dice with tables of numbers taken from some source or with random numbers generated
by mechanical devices. In 1927 a table of over 40,000 digits taken at random from census
reports was published by L. H. C. Tippett [26]. M. G. Kendall and B. Babington-Smith
[11] presented in 1938 a mechanical device to generate random digits. They proposed 4
di�erent tests that they applied to a sequence of 5,000 digits generated by their machine.
The same tests were applied to two series of 1,000 digits obtained from Tippett's table.
All the sequences passed the tests and were considered locally random. In 1939 a table
with 100,000 digits was published by Kendall and Babington-Smith [12] using the same
randomizing machine. They tested their digits and those published by Fisher and Yates [5]
with satisfactory results. The well-known RAND [21] table of random digits was published
in 1955. It included 1 million digits generated by another machine from electronic noise.
Most of those tables showed undesirable properties when new tests were applied.

The introduction of computers led to other ways to generate random number sequences.
Tables had limited utility because of their size. Instead, arithmetic operations were proposed
to e�ciently generate sequences of random numbers on computers. J. Von Neumann [20]
presented in 1946 the middle square method, which consists in taking the middle digits of
the previous number squared. This method does not generate random sequences [14].

One of the most popular methods to generate sequences of random numbers was the
Linear Congruential Method, which is covered in more detail in the following section. These
generators present some undesirable properties such as lattice structure [18]. In 1965, M.D.
MacLaren and G. Marsaglia presented a procedure to combine two generators to have better
sequences (more random). In 1989, R.S. Wikramaratna proposed the Additive Congruential
Method which has proved to give satisfactory results. More details about the history of
pseudo- random number generators can be found in Knuth [14], Ripley [22], and Kennedy
and Gentle [13].

1

1.1 Linear Congruential Method

D. H. Lehmer [15] introduced in 1948 the idea of generating a random number sequence
using the following formula:

Xn+1 = (aXn + c)modM ; n > 1

where X0 is the starting value or seed of the sequence (X0 � 0), a is called the multiplier
(a � 0), c is the increment (c � 0), and M is the modulus (M � X0, M � a, M � c).

When c is set to zero (as it was in the original sequence proposed by Lehmer) the method
is called Multiplicative Congruential Method, otherwise (i.e. if c 6= 0), it is called Mixed

Congruential Method. The �rst examples of the mixed generator were given independently
by Thomson [25] and Rotenberg [23]. Other applications were presented by Franklin [6]
and Greenberger [9].

1.2 Additive Congruential Method

Additive generators calculate each number as some additive combination of the previous n
numbers in the sequence. R. S. Wikramaratna [28, 29, 30] proposed the kth order ACORN
(additive congruential random number) generator Xk

j , a more general recursive method
than the linear congruential, which combines the previous number in the sequence with a
corresponding number from the (k � 1)th order sequence. Xk

j is de�ned recursively from
a seed X0

0 (0 < X0
0 < 1) and a set of k initial values Xm

0 , m=1, ..., k each satisfying
0 � Xm

0 � 1 by:

X0
n = X0

n�1; n � 1
Xm
n = (Xm�1

n +Xm
n�1)mod1; n � 1; m = 1; :::; k

This generator has three features: it is faster to compute (the algorithm is very simple), the
period length can be set arbitrarily large, and it gives the same sequence in any machine
(di�ering only in the number of signi�cant digits).

Figure 1 presents a schematic of this method. The user has to choose the numbers in
the �rst column. All the numbers in the Zero Order row are the same (the seed number
X0
0). The arrows show which previous numbers are used to calculate the current one.

The numbers generated in the row of the kth order are considered to be pseudo-random
numbers. One should not take the �rst few numbers, since for seed numbers close to each
other they may be similar. It is recommended to initialize the sequence not considering the
�rst thousands.

1.3 Other Methods

Many other methods to generate sequences of random numbers may be cited. R. R. Coveyou
created a quadratic method (which is, in fact, a double precision middle square method).
The seed has to be chosen such that:

X0mod4 = 2

2

Zero Order : X0

0
! X0

1
! X0

2
! � � � ! X0

N

#

1
st Order : X1

0
! X1

1
! X1

2
! � � � ! X1

N

#

2
nd Order : X2

0
! X2

1
! X2

2
! � � � ! X2

N

#
.
.
.

.

.

.
.
.
.

#

kth Order : Xk
0

! Xk
1

! Xk
2

! � � � ! Xk

N

Figure 1: Schematic showing how acorn generates random numbers.

and the sequence is then de�ned by:

Xn+1 = Xn � (Xn + 1)mod2e ; n > 0

The well-known Fibonacci sequence (originated in the early 1950's) present a long period
(longer than M), but it is not satisfactorily random. It is de�ned by:

Xn+1 = (Xn +Xn�1)modM

Variations such as the one presented by Green, Smith and Klem [8], do not improve the
randomness of the sequences considerably:

Xn+1 = (Xn +Xn�k)modM

An interesting approach was presented by MacLaren and Marsaglia [17] and consists in
combining two sequences to get another \even more random". This approach has been
accepted by some authors and rejected by others [3, 22]. In any case, the algorithm proposed
by MacLaren and Marsaglia seems to work well, as shown by F. Gebhardt [7].

A di�erent method to combine two sequences was proposed by W. J. Westlake [27],
based on circular shifting and exclusive \or" on a binary computer.

2 Statistical Tests

The sequences generated by any algorithm must be tested in order to know quantitatively
its randomness. The statistical tests applied to pseudo- random number sequences can be
grouped as:

Empirical tests : Non-parametric test of a sample sequence of numbers. The evaluation
is based on \goodness of �t" of observed distributions with respect to expected ones
(predicted theoretically).

Theoretical tests : Based on theoretical properties of the generators that may be deduced
without a sample sequence. Generators such as the congruential ones are predictable
in the sense that knowing the values a, c, M , and X0, the period of the generator may
be predicted, as well as other properties.

3

2.1 Empirical Tests

Many di�erent tests have been used to test sequences of pseudo-random numbers. Most
of them are based in a comparison between observed and expected frequencies. A �2

test or a Kolmogorov-Smirnov test can be applied to quantify the mismatch between both
distributions, based on probability at some level of signi�cance [1, 2]. A brief description
of those tests is given below:

1. �2 Test: The following statistic is used:

Q =
nX
i=1

(xi �mi)
2

mi
� �2n�1

where xi is the experimental frequency in interval i andmi is the expected (theoretical)
frequency in the same interval. The quadratic form Q follows a �2 distribution with
n � 1 degrees of freedom [1]. Once the value of Q has been calculated, the user can
refer to tables to �nd the percentile for a �2 distribution with n�1 degrees of freedom.
One should expect to be between the �fth and ninety �fth percentiles.

2. Kolmogorov-Smirnov Test: The statistic D may be compared with the critical
value for a given signi�cancy level:

D =MaxjFi � Sij

where Fi denotes the cumulative relative frequency for each category of the theoretical
distribution and Si is the value from the observed data.

Tables of critical values of D for di�erent probability values may be found in most
statistics books [10, 14].

The following are considered the most powerful tests for randomness [3, 11, 14, 24].

� Frequency test (uniformity or equidistribution test): in a sequence of random
digits the observed frequency can be compared with the expected frequency (each
digit should appear n

10
times, where n is the total number of digits in the series).

A �2 test can be applied to quantify the departure between observed and expected
results. In a sequence of numbers, the interval can be divided into n subsets (e.g.
U � 0:01; 0:01 < U � 0:02; :::), the observed and expected frequencies are calculated
and a �2 test is applied. Srivastava [24] proposed to check uniformity over extreme
intervals close to 0 and close to 1 (for applications of random numbers in mining
simulations, where extreme values will be critical when transformed to actual grades).

� Serial test (k-dimensional uniformity): Given that numbers in the sequence
should be independent, a good random number generator should produce pairs of
numbers that uniformly �ll the unit square, triplets that uniformly �ll the unit cube,
etc. The frequency of k-tuples fUi; Ui+1; :::; Ui+k�1g is calculated and compared with
the expected frequency. We expect to have the same number of observations in each
one of the nk equal-sized cells, where n is the number of cells in which each dimension
is divided and k is the dimension or size of the k-tuple.

4

� Poker test (partition test): This test was originally proposed by Kendall and
Babington-Smith [11] for sequences of digits. When digits are arranged in blocks of
�ve, there will be certain expectation of the numbers in which the �ve digits are all
the same, the numbers in which there are four of one kind, and so on. Knuth [14]
explains the \classical" poker test in the following manner: The numbers are arranged
in n groups of �ve successive integers, (Y5j ; Y5j+1; :::; Y5j+4), 0 � j < n. We observe
which of the following seven patterns each quintuple matches:

All di�erent: abcde Full house: aaabb
One pair: aabcd Four of a kind: aaaab
Two pairs: aabbc Five of a kind: aaaaa

Three of a kind: aaabc

A �2 test is based on the number of quintuples in each category. A simpler version is
proposed by Knuth. The test can also be applied using only four digits [12].

� Gap test (Runs above and below the median): We can consider the gaps
occurring between the same digit in the series. For example, one digit will be followed
immediately by the same digit in about one-tenth of the cases (in this case, there will
be no gap). There will be one digit (di�erent) between two equal digits in about nine-
hundredths of the cases. In about eighty-one-thousandths of the cases there will be a
gap of two between a repeated digit, and so on.

A generalization for a series of numbers (not just digits) would be to examine the
length of gaps between occurrences of Uj in a certain range. Let 0 � � < � � 1,
we consider the length of consecutive subsequences Uj ; Uj+1; :::; Uj+r�1 in which Uj�1
and Uj+r lies between � and � but the elements in the subsequence do not. This
subsequence represents a gap of length r.

The special cases (�; �) = (0; 1
2) or (

1
2 ; 1) originated the so called tests of runs above

and below the mean (or the median). In order to implement this test, we have to
produce another sequence from the sequence being tested, by counting the length of
successive runs above and/or below the median. For example, the sequence:

0.35, 0.56, 0.12, 0.11, 0.84, 0.76, 0.77, 0.45, 0.61, 0.51, ...

would generate the following sequence of above/below the median observations:

below, above, below, below, above, above, above, below, above, above, ...

and the sequence of lengths of runs above/below the median would be:

1, 1, 2, 3, 1, 2,...

5

The same procedure can be applied for any threshold (not only the median). De-
pending on the proportion of values above and below the threshold, the total number
of runs above and below the threshold should follow a normal distribution with the
following mean and variance [19]:

E[r] = 2 � n � pA � pB

�2r = 4 � n � pA � pB � (1� 3 � pA � pB)

where pA and pB represent the proportion (probability) of values above and below
some threshold respectively, and n is the total number of values in the sequence.

When the threshold is the median (or the mean) of a uniform distribution then, the
parameters are simply:

E[r] = n
2

�2r =
n
4

A �2 test can be applied to the observed values in order to determine if there is any
signi�cant di�erence with the expected value.

� Runs up and down: This test examines the length of monotone subsequences of
the original sequence, i.e. segments which are increasing or decreasing.

Again, to implement this test, we have to produce another sequence from the sequence
being tested, by counting the length of successive runs up and down. For example,
the sequence:

0.35, 0.56, 0.12, 0.11, 0.84, 0.76, 0.77, 0.45, 0.61, 0.51, ...

would generate the following sequence of runs up and down:

up, down, down, up, down, up, down, up, down, ...

and the sequence of lengths of runs up and down would be:

1, 2, 1, 1, 1, 1, 1, 1, ...

For an independent and uniform sequence of numbers, the number of runs up and
down should come from a normal distribution with the following mean and variance:

E[r] =
2 � n� 1

3

�2r =

r
16 � n� 29

90

In this case, the conventional �2 test has to be modi�ed to take into account the
fact that the number of runs of various lengths are negatively correlated [13, 14, 16]
(covariances are used to make this correction).

6

� Extreme values (maximum of k): Given that in most applications extreme values
are important (e.g. in mining simulations), a test over the extreme values of the
sequence is required. If we group the sequence into k-tuples, and we extract, for each
k-tuple, the maximum value, then the distribution of maximums from k-tuples should
show no serial correlation and should have a cumulative distribution that follows a
power law: Fk(x) = xk. Now, we must show that the distribution of maximums
follows a power law. The probability of max(U1; U2; :::; Uk) � x is the probability
that U1 � x and U2 � x and ... and Uk � x, and this is the product of the individual
probabilities, x � x � ::: � x = xk. The closeness of the observed distribution to the
expected can be checked comparing the distribution of (max(U1; U2; :::; Uk))

k with
the uniform distribution, using a �2 test. The serial correlation can be calculated.
This test can also be applied with the minimum of k.

� Coupon collector's test: This test consists in calculate the length of segments
required to get at least one observation per cell, when the interval [0,1] is divided in
some equally sized number of classes d. A �2 test can be applied to the observed
counting of length r. The corresponding probabilities are:

pr =
d!
dr

(
r � 1
d� 1

)
; d � r < t pt = 1� d!

dt�1

(
t� 1
d

)

where r is the length of the segment, d is the number of classes and t is some length
such that all the segments longer than t are put together.

� Permutation test: If we divide the sequence in k-tuples, then each k-tuple can have
t! possible relative orderings. The number of times each ordering appears is counted
and a �2 test is applied with k = t! classes and with probability 1=t! for each ordering.

� Test on subsequences: All the tests previously presented can be applied to a subset
of the sequence, so we can verify if these subsets behave equally random than the whole
sequence.

2.2 Theoretical Tests

Some random number generators are suitable for analysis a priori, so that the parameters
needed to generate a sequence can be understood and chosen properly. Linear congruential
generators have been thoroughly studied [9, 13, 14, 18, 22]. Some other generators, as the
additive method presented by Green, Smith and Klem [8] allows some theoretical analysis
as well. Wikramaratna [28] shows some theoretical results for his additive congruential
generator. The interested reader can check those references for further explanations of the
tests.

Some authors recommend against methods that do not allow those analysis [22], such
as the one proposed by MacLaren and Marsaglia [17];however those generators have shown
to perform well for many applications [3].

7

3 Testing �ve random number generators

This section contains the results of testing �ve di�erent random number generators. The
tests presented here are only those which have proven to be the more e�ective to detect
poor pseudo-random number generators [14, 24].

The following methods were tested:

� Linear Congruential Method (lcorn): the parameters of this generator are: m =
216 + 1, a = 75, c = 1. Three seed numbers were used: 69069, 112063, and 76715.

� Mixed Congruential Method (mcorn): this is the generator proposed by MacLaren
and Marsaglia [17].The seeds used are the same than those for lcorn.

� Additive Congruential Method (acorn): This is the generator proposed by Wikrama-
ratna [28] in real arithmetic. The seeds used must be real values between 0 and 1. In
this application the initial values are: 0.10, 0.81, and 0.12.

� Additive Congruential Method (acorni): This is the generator proposed by Wikra-
maratna [30] in integer arithmetic. Again, the seeds used are those for lcorn.

� excel: this generator comes with the commercial software Microsoft Excel. The
pseudo-random sequences are generated without specifying a seed number.

For each generator, nine sequences of numbers have been created. Three sequences of 10,000
values, three of 30,000, and three of 90,000 values between 0 and 1.

3.1 Serial Correlation Test

The serial correlation was calculated using the routine gam of the public domain software
GSLIB [4]. Results are presented in Table 1. Correlations greater than 0.02 in absolute
value were highlighted. lcorn presents four of those high values for sequences of 10,000
numbers, however they are still not signi�cant. excel also has one sequence with correla-
tion greater than 0.02. All the random number generators passed this test, since all the
correlations are acceptably close to zero.

3.2 Uniformity Test

The uniformity of the sequences was tested dividing the interval [0,1] into 100 subintervals
([0,0.01), [0.01,0.02), ..., [0.99,1]). A �2 test was applied to the observed frequencies. The
results are presented in Table 2. All the �2 percentiles outside of the 90% central con�-
dence interval were highlighted. lcorn failed this test when sequences of 30,000 and 90,000
numbers were used. mcorn and acorn seem to perform the best in this test.

3.3 K-dimensional Uniformity Test

After partitioning the space of 3, 4, and 5 dimensions regularly, the frequency of observed
values in each subset should be approximately the same if the numbers are random. In 3-D
the space was divided into 153 = 3375 cells, in 4-D it was divided into 84 = 4096 cells, and

8

10000 Data

Algorithm Seed h = 1 h = 2 h = 3 h = 4 h = 5

LCORN 69069 0.01241 0.00501 -0.01182 0.02127 0.00371

112063 0.01217 -0.00515 0.00106 0.00048 -0.02291

76715 0.02587 0.00015 -0.00788 0.00931 0.02054

MCORN 69069 0.00415 0.00214 0.01294 -0.00814 0.01826

112063 0.01501 -0.01339 0.00885 0.00631 -0.00444

76715 -0.01881 -0.00113 0.00805 0.00106 0.00052

ACORN 0.10 -0.00323 0.00461 -0.00661 0.00579 0.00957

0.81 0.01117 -0.00783 0.00027 -0.00634 0.00761

0.12 0.00106 0.01729 0.00602 -0.00205 -0.00486

ACORNI 69069 -0.00318 -0.00831 -0.00647 0.00002 0.01980

112063 0.01048 0.00654 0.00904 0.00217 0.01222

76715 -0.00810 -0.00755 0.00938 -0.01783 0.00373

EXCEL | 0.00140 -0.00602 0.00419 -0.00220 -0.01285

| 0.00053 -0.01690 -0.00025 -0.00903 0.02864

| -0.01667 0.00894 0.01240 -0.00189 0.00137

30000 Data

Algorithm Seed h = 1 h = 2 h = 3 h = 4 h = 5

LCORN 69069 0.01407 -0.00198 -0.00580 0.00700 -0.00875

112063 0.01490 -0.00093 0.00497 -0.00486 -0.00137

76715 0.01271 -0.00278 -0.00719 0.00513 -0.00495

MCORN 69069 0.00287 0.00656 0.00737 0.00176 0.01153

112063 0.00381 -0.00892 0.00192 0.00185 0.00234

76715 0.00750 -0.00119 0.01183 0.01169 -0.00305

ACORN 0.10 -0.01548 -0.00196 0.00473 0.00011 0.00683

0.81 -0.00086 -0.00071 0.00155 -0.00761 -0.00681

0.12 -0.00124 0.01308 -0.00241 0.00494 0.00354

ACORNI 69069 0.00059 -0.01027 -0.00921 0.00255 0.01482

112063 0.00676 0.00775 0.01339 -0.00249 0.00221

76715 0.00112 -0.00593 0.00509 -0.01035 -0.00144

EXCEL | 0.00670 0.00648 -0.00099 -0.00416 0.00308

| -0.00762 0.00476 0.00342 -0.00472 0.00165

| 0.00140 0.00038 -0.00897 0.00318 -0.00352

90000 Data

Algorithm Seed h = 1 h = 2 h = 3 h = 4 h = 5

LCORN 69069 0.01243 0.00017 -0.00173 0.00183 -0.00309

112063 0.01292 0.00139 0.00140 -0.00179 -0.00167

76715 0.01454 -0.00013 -0.00205 0.00116 -0.00167

MCORN 69069 0.00345 0.00552 0.00289 -0.00112 0.00471

112063 0.00154 -0.00329 -0.00122 0.00077 0.00068

76715 0.00297 -0.00136 0.00255 0.00958 0.00109

ACORN 0.10 -0.00726 0.00494 -0.00331 -0.00377 0.00019

0.81 0.00509 -0.00195 -0.00065 -0.00388 -0.00622

0.12 0.00076 0.00376 0.00073 0.00437 0.00008

ACORNI 69069 -0.00177 -0.00184 -0.00487 -0.00057 0.00174

112063 0.00354 0.00328 0.00482 -0.00270 0.00163

76715 0.00171 -0.00427 0.00036 -0.00178 0.00024

EXCEL | -0.00062 -0.00570 0.00039 0.00339 0.00538

| -0.00721 0.00331 -0.00560 0.00153 0.00066

| -0.00487 0.00319 0.00007 0.00010 0.00163

Table 1: Results of serial correlation test for 5 pseudo-random number generators and
sequences of length 10000, 30000 and 90000.

9

10000 Data

Algorithm Seed 0.0 - 1.0 0.0 - 0.1 0.9 - 1.0

LCORN 69069 56 42 63

112063 1 14 67

76715 37 50 14

MCORN 69069 27 40 39

112063 80 62 66

76715 86 62 9

ACORN .10 24 72 95

.81 63 48 11

.12 6 47 27

ACORNI 69069 74 94 66

112063 14 2 97

76715 41 20 93

EXCEL | 6 68 49

| 41 84 14

| 71 95 14

30000 Data

Algorithm Seed 0.0 - 1.0 0.0 - 0.1 0.9 - 1.0

LCORN 69069 0 0 0

112063 0 0 0

76715 0 0 0

MCORN 69069 38 31 40

112063 60 73 16

76715 24 40 25

ACORN .10 9 66 86

.81 92 80 7

.12 16 76 24

ACORNI 69069 54 65 96

112063 47 81 45

76715 64 60 98

EXCEL | 98 64 85

| 72 98 88

| 6 8 22

90000 Data

Algorithm Seed 0.0 - 1.0 0.0 - 0.1 0.9 - 1.0

LCORN 69069 0 0 0

112063 0 0 0

76715 0 0 0

MCORN 69069 31 12 0

112063 5 48 87

76715 44 40 76

ACORN .10 23 99 60

.81 96 35 8

.12 44 79 11

ACORNI 69069 60 80 56

112063 30 14 15

76715 32 60 51

EXCEL | 37 70 46

| 33 11 94

| 42 33 60

Table 2: Results of uniformity test for 5 pseudo-random number generators and sequences
of length 10000, 30000 and 90000.

10

in 5-D it was divided into 55 = 3125 cells. Table 3 presents the �2 percentiles for this test.
lcorn failed this test for all the sequences tested. Again, mcorn seems to perform the best.
excel also gives good results. acorn and acorni give acceptable results.

3.4 Runs Up and Down

The total number of runs up and down and the number of runs for each length were
calculated and are shown in Table 4. The total number of runs should fall between the
5th and 95th percentile of the expected distribution. For 10,000 numbers, the acceptable
interval is (6598,6736), for 30,000 it is (19880,20120), and for 90,000 the con�dence interval
is (59793,60207).

lcorn gives too few runs in most of the sequences, while mcorn failed in one sequence,
which is acceptable. acorn and acorni failed in two cases. excel performed excellent in
this test. In summary, we can say that lcorn failed and excel gave the best results, and
the other generators gave acceptable results.

3.5 Runs Above and Below the Median

Table 5 presents the total number of runs above and below the mean, and the detailed list of
number of runs of di�erent lengths. According to the limit distribution of the total number
of runs, the observed number of runs should be into the interval [m�1:645 ��;m+1:645 ��]
. That means that for the sequences of 10,000 values, they should be within (4918,5082).
In the case of 30,000 numbers, the number of runs should be into (14858,15142),and �nally,
for 90,000 numbers, it should be in (44753,45247).

The results again show that lcorn gives bad results for most of the sequences. The
other generators only have minor problems with this test.

3.6 Extreme Values

Generators were tested for maximum values in a k-tuple. The distribution of maximums
should follow a power law. A �2 test was applied to compare the observed frequencies with
the expected ones. Table 6 presents the percentile of the �2 test for each sequence.

lcorn failed the test for uniformity (k = 1) (see Table 1) and for higher values of k.
All the other generator presented some problems, however in general they seemed to pass
this test. mcorn gave the best results.

4 Discussion

Pseudo-random generators are required for geostatistical simulation. Since truly random
numbers cannot be generated by computer, we need to quantify the randomness of the
pseudo-random sequences generated by di�erent algorithms. Many di�erent tests have been
proposed to measure randomness, however, only a few of them are able to detect important
departures from randomness.

Some powerful tests have been applied to �ve commonly used generators. They have
shown that the widely used lcorn generator does not give satisfactory results. Many ap-
plications that required random numbers a few years ago used this generator. We should

11

10000 Data

Algorithm Seed k = 3 k = 4 k = 5

LCORN 69069 4 1 30

112063 0 3 11

76715 1 2 4

MCORN 69069 47 70 28

112063 51 5 6

76715 34 82 60

ACORN .10 55 83 35

.81 6 96 20

.12 41 18 90

ACORNI 69069 27 71 26

112063 69 49 75

76715 93 99 26

EXCEL | 7 19 6

| 10 33 78

| 35 62 83

30000 Data

Algorithm Seed k = 3 k = 4 k = 5

LCORN 69069 0 0 0

112063 0 0 0

76715 0 0 0

MCORN 69069 14 57 92

112063 14 19 6

76715 62 35 63

ACORN .10 86 49 98

.81 8 55 60

.12 35 22 85

ACORNI 69069 12 82 41

112063 54 55 89

76715 98 20 56

EXCEL | 41 82 61

| 57 87 47

| 87 41 55

90000 Data

Algorithm Seed k = 3 k = 4 k = 5

LCORN 69069 0 100 0

112063 0 100 0

76715 0 100 0

MCORN 69069 47 63 59

112063 11 53 7

76715 65 41 83

ACORN .10 13 28 57

.81 69 59 76

.12 78 1 21

ACORNI 69069 58 52 67

112063 81 68 65

76715 91 76 99

EXCEL | 97 36 68

| 66 71 62

| 89 15 20

Table 3: Results of k-dimensional uniformity test for 5 pseudo-random number generators
and sequences of length 10000, 30000 and 90000.

12

10000 Data

Algorithm Seed Runs l=1 l=2 l=3 l=4 l=5 l=6 l=7 l=8

LCORN 69069 6638 4137 1809 549 121 19 3 0 0

112063 6568 4053 1794 566 122 27 5 1 0

76715 6582 4033 1861 539 122 23 4 0 0

MCORN 69069 6624 4115 1838 507 138 21 5 0 0

112063 6642 4132 1827 543 119 18 3 0 0

76715 6701 4219 1844 496 112 24 6 0 0

ACORN .10 6702 4222 1829 508 121 21 1 0 0

.81 6657 4166 1807 549 110 20 4 0 1

.12 6691 4222 1798 528 120 22 0 1 0

ACORNI 69069 6630 4099 1879 502 119 27 3 1 0

112063 6679 4176 1844 527 108 22 2 0 0

76715 6590 4058 1847 530 123 28 3 1 0

EXCEL | 6618 4103 1821 549 121 21 3 0 0

| 6611 4087 1822 557 130 13 2 0 0

| 6716 4235 1837 514 108 16 6 0 0

30000 Data

Algorithm Seed Runs l=1 l=2 l=3 l=4 l=5 l=6 l=7 l=8

LCORN 69069 19817 12305 5401 1656 371 67 15 1 1

112063 19863 12307 5516 1592 371 65 10 1 1

76715 19834 12307 5428 1660 355 69 14 1 0

MCORN 69069 19935 12399 5553 1534 372 62 11 4 0

112063 19884 12319 5516 1634 341 63 10 1 0

76715 19975 12443 5546 1569 341 63 13 0 0

ACORN .10 20157 12707 5556 1467 362 60 4 1 0

.81 20073 12612 5480 1578 335 58 8 1 1

.12 20054 12616 5419 1615 327 71 5 1 0

ACORNI 69069 19905 12360 5548 1543 369 73 11 1 0

112063 20047 12512 5606 1526 335 55 9 4 0

76715 19842 12294 5482 1620 360 77 7 2 0

EXCEL | 20036 12622 5408 1560 368 64 10 3 1

| 20056 12533 5575 1545 342 54 6 1 0

| 19946 12434 5500 1586 338 75 12 0 1

90000 Data

Algorithm Seed Runs l=1 l=2 l=3 l=4 l=5 l=6 l=7 l=8

LCORN 69069 59580 37010 16347 4892 1083 206 38 3 1

112063 59601 37019 16399 4845 1092 204 37 3 2

76715 59512 36887 16390 4908 1076 207 40 3 1

MCORN 69069 59783 37222 16498 4719 1137 172 29 6 0

112063 59838 37274 16492 4799 1052 193 25 3 0

76715 59989 37469 16543 4702 1070 173 31 1 0

ACORN .10 60387 38167 16320 4652 1044 170 28 6 0

.81 59954 37392 16620 4670 1040 201 26 4 1

.12 59975 37504 16425 4814 990 215 21 6 0

ACORNI 69069 60045 37528 16565 4725 1006 187 31 3 0

112063 59925 37383 16555 4696 1072 191 22 5 1

76715 59816 37194 16548 4824 1037 193 16 4 0

EXCEL | 59904 37277 16625 4770 1032 173 21 5 1

| 60162 37850 16276 4820 995 176 38 7 0

| 60060 37579 16559 4663 1027 192 35 5 0

Table 4: Results of runs up and down test for 5 pseudo-random number generators and
sequences of length 10000, 30000 and 90000.

13

10000 Data

Algorithm Seed Runs l=1 l=2 l=3 l=4 l=5 l=6 l=7 l=8 l=9 l=10 l=11 l=12

Theory 5000 2500 1250 625 313 156 78 39 20 10 5 2 1

LCORN 69069 4938 2450 1198 662 309 143 92 44 24 5 5 3 2

112063 4913 2389 1249 644 292 179 81 39 21 10 4 1 3

76715 4904 2408 1203 646 338 145 79 37 28 7 3 3 3

MCORN 69069 4970 2479 1266 576 310 169 93 40 17 8 4 6 2

112063 4937 2413 1252 654 311 151 74 47 13 6 5 3 3

76715 5061 2549 1309 591 293 167 72 46 20 5 6 2 1

ACORN .10 5032 2543 1242 633 305 159 80 34 12 12 3 4 2

.81 4981 2472 1243 638 335 135 77 34 31 6 4 2 3

.12 5038 2548 1255 608 304 167 84 44 10 12 1 3 2

ACORNI 69069 5043 2513 1286 619 327 149 81 41 16 8 1 2 0

112063 4937 2425 1251 615 337 142 84 50 8 10 9 4 0

76715 5038 2558 1265 592 300 154 87 43 19 13 4 2 1

EXCEL | 5038 2546 1265 582 334 163 87 28 14 8 3 3 4

| 4980 2442 1320 585 318 165 71 36 21 11 7 1 0

| 5067 2604 1229 623 309 144 81 32 21 12 8 2 1

30000 Data

Algorithm Seed Runs l=1 l=2 l=3 l=4 l=5 l=6 l=7 l=8 l=9 l=10 l=11 l=12

Theory 15000 7500 3750 1875 938 469 234 117 59 29 15 7 4

LCORN 69069 14750 7225 3688 1933 905 491 264 123 67 26 12 5 9

112063 14816 7317 3706 1851 940 518 247 120 60 33 10 4 7

76715 14803 7275 3697 1941 926 468 253 117 69 29 12 4 7

MCORN 69069 14859 7428 3646 1848 936 494 270 122 52 28 16 12 4

112063 15049 7506 3828 1870 920 466 226 130 53 18 13 8 4

76715 14936 7440 3813 1789 904 492 255 121 54 33 18 10 4

ACORN .10 15236 7719 3799 1917 937 442 207 104 54 30 10 7 5

.81 15046 7542 3789 1824 995 429 236 104 72 23 12 9 6

.12 15077 7608 3724 1859 944 473 255 114 49 29 6 10 5

ACORNI 69069 15017 7419 3811 1941 943 455 246 104 46 29 8 8 3

112063 15019 7540 3740 1867 924 469 242 134 40 28 23 4 4

76715 14974 7481 3786 1829 938 424 261 125 68 37 15 3 5

EXCEL | 15077 7610 3780 1805 942 482 217 119 62 26 16 8 8

| 15017 7561 3743 1816 949 457 253 121 54 32 14 11 4

| 14905 7404 3683 1914 961 474 223 134 57 29 13 7 5

90000 Data

Algorithm Seed Runs l=1 l=2 l=3 l=4 l=5 l=6 l=7 l=8 l=9 l=10 l=11 l=12

Theory 45000 22500 11250 5625 2813 1406 703 352 176 88 44 22 11

LCORN 69069 44409 21890 11067 5703 2813 1455 748 363 201 83 39 16 19

112063 44414 21927 11073 5618 2829 1495 741 369 187 91 36 16 20

76715 44357 21845 11052 5680 2853 1443 745 365 201 84 39 16 19

MCORN 69069 44727 22324 11087 5621 2783 1425 761 355 185 92 48 26 9

112063 44901 22332 11351 5617 2772 1422 678 370 172 83 56 25 11

76715 44942 22416 11326 5593 2772 1403 700 378 174 85 48 22 15

ACORN .10 45147 22740 11163 5638 2829 1353 705 368 179 93 39 24 7

.81 44779 22293 11173 5635 2824 1406 748 338 187 80 31 30 24

.12 45138 22635 11360 5511 2774 1431 752 353 167 86 28 19 14

ACORNI 69069 45132 22577 11280 5688 2783 1442 701 340 160 98 23 20 10

112063 45095 22675 11234 5595 2769 1377 730 364 162 87 62 15 14

76715 44967 22365 11388 5627 2834 1308 716 371 175 103 39 17 15

EXCEL | 44924 22321 11309 5729 2786 1391 691 345 171 87 40 21 19

| 45227 22762 11211 5696 2780 1398 690 365 161 88 36 14 19

| 45256 22760 11343 5607 2770 1375 704 348 177 93 40 22 7

Table 5: Results of runs above and below the median test for 5 pseudo-random number
generators and sequences of length 10000, 30000 and 90000.

14

10000 Data

Algorithm Seed k = 1 k = 2 k = 3 k = 4 k = 5

LCORN 69069 56 100 98 98 98

112063 1 99 100 100 95

76715 37 100 85 100 99

MCORN 69069 27 54 73 37 2

112063 80 29 78 85 8

76715 86 78 70 85 66

ACORN .10 24 18 39 44 83

.81 63 91 94 1 10

.12 6 19 64 93 71

ACORNI 69069 74 19 6 16 46

112063 14 30 76 76 94

76715 41 12 50 40 40

EXCEL | 6 24 15 28 5

| 41 48 14 70 68

| 71 72 96 63 46

30000 Data

Algorithm Seed k = 1 k = 2 k = 3 k = 4 k = 5

LCORN 69069 0 100 100 100 100

112063 0 100 100 100 100

76715 0 100 100 100 100

MCORN 69069 38 37 67 11 0

112063 60 73 16 58 8

76715 24 69 20 76 24

ACORN .10 9 64 15 15 34

.81 92 83 42 22 67

.12 16 15 81 85 96

ACORNI 69069 54 4 73 24 60

112063 47 81 91 99 99

76715 64 26 41 9 57

EXCEL | 98 67 55 90 27

| 72 87 76 86 99

| 6 0 22 43 18

90000 Data

Algorithm Seed k = 1 k= 2 k = 3 k = 4 k = 5

LCORN 69069 0 100 100 100 100

112063 0 100 100 100 100

76715 0 100 100 100 100

MCORN 69069 31 18 28 7 24

112063 5 38 2 22 28

76715 44 93 20 57 11

ACORN .10 23 72 11 3 4

.81 96 66 25 19 62

.12 44 79 88 55 29

ACORNI 69069 60 10 39 56 32

112063 30 14 68 9 52

76715 32 42 28 73 55

EXCEL | 37 75 56 71 60

| 33 86 86 79 82

| 42 63 50 53 82

Table 6: Results of maximum values test for 5 pseudo-random number generators and
sequences of length 10000, 30000 and 90000.

15

test our pseudo- random number generators whenever a new powerful test is proposed. For
the generators tested in this paper, acorni and mcorn performed the best, so they may be
recommended as artifact-free pseudo- random number generators. acorn and the generator
provided in excel, gave satisfactory results, but presented abnormal results more often
than the previous two.

References

[1] W. G. Cochran. The �2 test of goodness of �t. Annals of Mathematical Statistics,
23:315{345, September 1952.

[2] D. A. Darling. The Kolmogorov-Smirnov, Cramer-von Mises tests. Annals of Mathe-

matical Statistics, 28:823{838, December 1957.

[3] C. V. Deutsch. A comparative study of pseudo-random number generators. In Report

5, Stanford, CA, March 1992. Stanford Center for Reservoir Forecasting.

[4] C. V. Deutsch and A. G. Journel. GSLIB: Geostatistical Software Library and User's

Guide. Oxford University Press, New York, 2nd edition, 1998.

[5] R. A. Fisher and F. Yates. Statistical Tables for Biological, Agricultural and Medical

Research. Edinburg, 1938.

[6] J. N. Franklin. On the equidistribution of pseudo-random numbers. Quarterly of

Applied Mathematics, 16:183{188, 1958.

[7] F. Gebhardt. Generating pseudo-random numbers by shu�ing a Fibonacci sequence.
Mathematics of Computation, 21:708{709, October 1967.

[8] B. F. Green, J. E. Keith Smith, and L. Klem. Empirical tests of an additive random
number generator. Journal of the ACM (Association for Computing Machinery), 6:527{
537, October 1959.

[9] M. Greenberger. Notes on a new pseudo-random number generator. Journal of the

ACM (Association for Computing Machinery), 8:163{167, 1961.

[10] D. L. Harnett. Statistical Methods. Addison-Wesley, third edition edition, 1982.

[11] M. G. Kendall and B. B. Smith. Randomness and random sampling numbers. Journal
of the Royal Statistical Society, 101:147{166, 1938.

[12] M. G. Kendall and B. B. Smith. Second paper on random sampling numbers. Supple-
ment to the Journal of the Royal Statistical Society, 6:51{61, 1939.

[13] W. J. Kennedy Jr. and J. E. Gentle. Statistical Computing. Marcel Dekker, Inc., New
York, 1980.

[14] D. E. Knuth. The Art of Computer Programming, volume 2, Seminumerical Algorithms.
Addison-Wesley, 1969.

16

[15] D. H. Lehmer. Mathematical methods in large scale computing units. In Proceedings of
the Second Symposium on Large Scale Digital Computing Machinery, pages 141{146,
Cammbridge, 1951. Harvard University Press.

[16] H. Levene and J. Wolfowitz. The covariance matrix of runs up and down. Annals of

Mathematical Statistics, 15:58{69, March 1944.

[17] M. D. MacLaren and G. Marsaglia. Uniform random number generators. Journal of

the ACM (Association for Computing Machinery), 12:83{89, January 1965.

[18] G. Marsaglia. The structure of linear congruential sequences. In S. K. Zaremba, editor,
Applications of Number Theory to Numerical Analysis, pages 249{285. Academic Press,
London, 1972.

[19] A. M. Mood. The distribution theory of runs. Annals of Mathematical Statistics,
11:367{392, December 1940.

[20] J. V. Neumann. Various techniques used in connection with random digits. In National

Bureau of Standards symposium, NBS Applied Mathematics Series 12, Washington, D.
C., 1951. National Bureau of Standards.

[21] RAND Corporation. A Million Random Digits with 100,000 Normal Deviates. Free
Press, Glencoe, IL, 1955.

[22] B. D. Ripley. Stochastic Simulation. John Wiley & Sons, New York, 1987.

[23] A. Rotenberg. A new pseudo-random number generator. Journal of the ACM (Asso-

ciation for Computing Machinery), 7:75{77, January 1960.

[24] R. M. Srivastava. Testing of sequential indicator simulation. Personal communication,
November 1991.

[25] W. E. Thomson. A modi�ed congruence method of generating pseudo-random numbers.
Computer Journal, 1:83,86, July 1958.

[26] L. H. C. Tippett. Random sampling numbers. Tracts for Computers, XV, 1927.

[27] W. J. Westlake. A uniform random number generator based on the combination of two
congruential generators. Journal of the ACM (Association for Computing Machinery),
14:337{340, April 1967.

[28] R. S. Wikramaratna. ACORN - a new method for generating sequences of uniformly
distributed pseudo-random numbers. Journal of Computational Physics, 83:16{31,
1989.

[29] R. S. Wikramaratna. Acorn random number generator user documentation. User
Documentation, October 1990.

[30] R. S. Wikramaratna. Theoretical analysis of the acorn random number generator,
1990. SIAM Conference on Applied Probability in Science and Engineering.

17

