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Abstract 
 
The spatial distribution of fractures in a reservoir affects 
the displacement of fluids and the prediction of future 
performance. Realistic characterization of fractured 
reservoirs requires quantification and classification of 
fracture patterns on the basis of the underlying 
geological characteristics and developing reservoir 
modeling algorithms that can integrate connectivity 
based (multiple point) statistics related to fracture 
patterns. A methodology for summarizing the 
characteristics of fracture networks based on multiple 
point connectivity functions is presented. The paper also 
presents a stochastic simulation methodology for 
constraining the target reservoir model to the 
connectivity characteristics derived from analog models 
and to all other available reservoir specific data in the 
form of well information and seismic areal proportion 
maps.  

 
Introduction 
 
A natural fracture is a planar discontinuity in reservoir 
rock due to deformation or physical diagenesis1. 
Fractures may have either a positive or negative effect 
on fluid flow depending on whether they are open or 
sealed due to mineralization.  For the purposes of this 
paper, a fractured reservoir is defined as a reservoir in 
which naturally occurring fractures are predicted to have 
a significant effect on fluid flow either in the form of 
increased permeability and/or porosity or increased 
permeability anisotropy. 

 
Natural fracture patterns are frequently interpreted on 
the basis of laboratory-derived fracture patterns 
corresponding to models of paleo-stress fields and strain 
distribution in the reservoir at the time of fracture2. 
Stearns and Friedman3 proposed a genetic classification 
of fracture systems based on stress/strain conditions in 
laboratory samples and features observed in outcrops 
and sub-surface settings.  Based on their work, fractures 
are generically classified into: 
Shear Fractures - exhibit a sense of displacement 
parallel to the fracture plane. Shear fractures form when 
the stresses in the three principal directions are all 
compressive. They form at an acute angle to the 
maximum principal stress direction and at an obtuse 
angle to the minimum compressive stress direction. 
Extension Fractures - exhibit a sense of displacement 
perpendicular to and away from the fracture plane. They 
form perpendicular to the minimum stress direction. 
They too result when the stresses in the three principal 
directions are compressive and can occur in conjunction 
with shear fractures.  
Tension Fractures - Exhibit a sense of displacement 
perpendicular to and away from the fracture plane. 
However, in order to form a tension fracture, at least one 
of the principal stresses has to be tensile. Since rocks 
exhibit significantly reduced strength in tension tests, the 
frequency of fractures under tensile stress conditions is 
more. 
 
The geologic classification of fracture systems is based 
on the assumption that natural fractures depict the 
paleo-stress conditions in the reservoir at the time of 
fracturing. Based on geologic conditions, fractures can 
be classified as: 
Tectonic fractures - The orientation, distribution and 
morphology of these fracture systems are associated 
with local tectonic events. Tectonic fractures form in 
networks with specific spatial relationships to faults and 
folds. Fault-related fracture systems could be shear 
fractures formed either parallel to the fault or at an acute 
angle to the fault or in the case of a fault-wedge, they 
can be extension fractures bisecting the acute angle 
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between the two fault shear directions4,5. The intensity of 
fractures associated with faulting is a function of 
lithology, distance from the fault plane, magnitude of 
fault displacement, total strain in the rock mass and 
depth of burial. 
 
Fold-related fracture systems exhibit complex patterns 
consistent with the complex strain and stress history 
associated with the initiation and growth of a fold 6,7. 
Fracture types in fold-related systems are defined in 
terms of the dip and strike of the beds. 
 
Regional Fractures - These fracture systems are 
characterized by long fractures exhibiting little change in 
orientation over their length. The fractures also show no 
evidence of offset across the fracture plane and are 
always perpendicular to the bedding surfaces8. Regional 
fracture systems can be distinguished from tectonic 
fractures in that they generally exhibit simpler and more 
consistent geometry and have relatively larger spacing. 
 
Regional fractures are commonly developed as 
orthogonal sets with the two orthogonal orientations 
parallel to the long and short axis of the basin in which 
the fractures are formed9. Many theories have been 
proposed for the origin of natural fractures, ranging from 
plate tectonics to cyclic loading/unloading of rocks 
associated with earth tides. As in the case of tectonic 
fractures, small-scale variations in regional fracture 
orientation of up to can result due to strength 
anisotropies in reservoir rocks due to sedimentary 
features such as cross-bedding. 

o20±

 
Contractional Fracture - These are fractures that result 
due to bulk volume reduction of the rock. Desiccation 
fractures may result due to shrinkage upon loss of water 
in sub-aerial drying. Mud cracks are the most common 
fractures of this type10. Synerisis fractures result from 
bulk volume reduction within sediments by sub-aqueous 
or subsurface dewatering. Dewatering and volume 
reduction of clays or of a gel or of colloidal suspension 
can result in synerisis fractures. Desiccation and 
syneresis fractures can be either tensile or extension 
fractures and are initiated by internal body forces. The 
fractures tend to be closely spaced and regular and 
isotropically distributed in three dimensions. Syneresis 
fractures have been observed in limestones, dolomites, 
shales and sandstones11. 
 
Thermal contractional fractures may result due to 
contraction of hot rock as it cools. Depending on the 
depth of burial they may be either tensile or extension 
fractures. The generation of thermal fractures is 
predicated on the existence of thermal gradient within 
the reservoir rock material. A classic example of 
thermally induce fracture is the columnar jointing 

observed in igneous rocks12.  Fractures may also result 
due to mineral phase change in carbonates and clay 
constituents in sedimentary rocks. Phase changes such 
as the chemical change from calcite to dolomite result in 
changes in bulk volume and this leads to complex 
fracture patterns. 
 
As seen from the above discussion, complex stress and 
strain distributions in reservoir rocks result in complex 
fracture patterns. Fracture patterns corresponding to 
different geological systems have key characteristics 
that can be used to classify and index fracture networks 
observed in outcrops and subsurface samples.  
 
Problem Statement 
 
In order to develop a robust reservoir model 
representative of the target reservoir, it is necessary to 
first understand the geological conditions leading to the 
development of fractures in the reservoir rock. Once the 
geological context for the origin and propagation of 
fractures is understood, the fracture pattern 
corresponding to that geological scenario can be 
postulated from analogs such as outcrops, laboratory 
models etc. These spatial fracture patterns have to be 
imposed on models for the target reservoir while at the 
same time honoring conditioning data in the form of well 
samples, dipmeter surveys, seismic maps and 
production data. 
 
The development of a set of tools that facilitate the 
development of constrained fractured reservoir models is 
the primary objective of this paper. Fracture patterns 
corresponding to key geological fracture types are 
recognized using spatial connectivity measures. These 
patterns are imposed on a reservoir model while at the 
same time honoring conditioning data using a stochastic 
simulation algorithm.  
 
Recognition of fracture patterns 
 
Fracture patterns are generally characterized by 
statistics such as fracture spacing, density, orientation 
and statistical distributions of width. Differences in 
variation of fracture orientations and spacing are 
important for distinguishing between different fracture 
types as discussed previously. Data for inferring 
distributions of orientation, spacing and density are 
generally obtained after detailed outcrop 
characterization. Figure 1 depicts the regional fracture 
patterns found in Jurassic Navajo sandstone, Lake 
Powell, southeastern Utah13. The dominant fracture 
orientation can be gauged visually in that figure. Figure 2 
depicts a set of conjugate shear fractures in an outcrop 
from Wyoming. This set is reflective of tectonic fractures. 
Figure 3 is a photograph of desiccation cracks observed 
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in mud14. It is evident that the three fracture systems 
exhibit widely different pattern characteristics. These 
characteristics are explored in terms of spatial 
connectivity measures. 
 
Indicator Variograms 
 
Two-point statistics computed using indicator variables 
are an effective tool for visualizing the spatial 
connectivity of fractures. Defining an indicator as: 
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The indicator variogram is a measure of the proportion of 
pairs in which and or vice-versa. In 
other words, the indicator variogram is a measure of the 
probability of transition from the rock matrix to fracture 
and vice-versa. Figure 4 shows the indicator variogram 
corresponding to regional, tectonic and contractional 
fractures computed in the x and y directions. Figure 5 
shows rose diagrams summarizing the variation in 
variogram ranges in different directions. The 
predominance of regional fractures in the North-South 
and East-West directions is emphasized. Shear fractures 
show maximum continuity in the 45o and 135o 
directions. Desiccation fractures exhibit isotropy and the 
maximum range of continuity is smaller than that for the 
other two systems. 
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Multiple point connectivity function 
 
The indicator variogram/covariance concept can be 
extended to more than 2 points. An N-order connectivity 
function that measures the frequency of N connected 
voxels jointly within a fracture is a multiple-point statistic. 
Mathematically, a spatial connectivity measure 
associated to N-points separated by the same lag 
separation vector h can be defined as follows16,17: 
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For N=2, Equation 3 reduces to the non-centered 
indicator covariance15. In general for an N-point 
template, the multiple point product is non-zero only if all 
N points on the template are jointly within the fracture. 
Figure 6 shows the connectivity functions corresponding 
to the three fracture systems calculated in different 

directions. The connectivity function for the regional 
fracture case decreases more gradually in the 90o (y) 
direction indicating maximum continuity in that direction. 
The difference in continuity in different directions is 
illustrated more clearly in Figure 7. These figures plot the 
template size corresponding to which the connectivity 
function value decreases to 10% of the value 
corresponding to N=1 (which is the proportion of pixels 
classified as fracture). Thus based on Figure 7 it can be 
concluded that the regional fracture system has a 
predominant North-South orientation, but there is 
connectivity in the East-West direction also. The shear 
fracture system shows two dominant orientations, in the 
45o and 150o directions. The desiccation fractures do not 
exhibit any dominant orientation.  
 
Multiple point Histograms 
 
The concept of multi-point histograms17 can be used to 
summarize the multi-point characteristics exhibited by 
the geological system. Consider a categorical variable 
that takes outcomes k . The multi-point 
histogram corresponding to an N-point geometric 
template, measures the frequency of occurence of each 
configuration of K categories within the template. Thus, 
given an N-point template with lag  between 
the origin and all other nodes within the template and 
given K categories such that each node in the template 
has one of the K categories, the multipoint histogram 
denoted by: 

K,....,1=

h1 Nh,......,

),....,;,.....,( 11 NN kkf hh  
is the frequency of observing the particular combination 
of k categories at the N nodes. Nkk ,,..., 21
 
The multiple point histogram is a complete measure of 
multiple point spatial connectivity. The previously defined 
indicator variogram and spatial connectivity function are 
simply multiple point histograms corresponding to 
specific spatial templates. The indicator variogram 
measures the frequency of an indicator category 1 at 
one node and 0 at the other node of a two point spatial 
template.  
 
The multiple-point histogram for fracture systems can be 
computed for various geometric template configurations. 
Thus, if the data are indicator coded as either within a 
fracture or outside, there are 2 categories. Considering 
an N-point spatial template, each node of the template 
can have one of 2 categories, either 0 or 1. There are 

possible combinations of indicator values within the 
N point configuration. When the N-point template is 
translated over the reference fracture image, the spatial 
configuration of fracture on the template has to be one of 

the  possible combinations. 

N2

N2
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An indexing scheme can be devised to systematically 
account for all possible combination of categories within 
the N-point template.  Such an indexing scheme would 
be: 
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K is the number of categories, 2 in this case. Thus, any 
configuration of data corresponds to one of the indices 
defined above. The frequency of a particular pattern 
recurring in the fracture model is computed by 
translating the N-point template over the reference 
fracture image and keeping track of the frequency 
corresponding to each index. Figures 9 shows the 
multiple point histogram corresponding to the three 
fracture systems using the spatial template shown in 
Figure 8. The histograms exhibit significantly different 
characteristics. All three histograms exhibit a peak at the 
index value of 1. This is simply the peak corresponding 
to the single-point statistic that is the proportion of 
fractures in the model. The histogram corresponding to 
the regional fracture system shows a strong second 
peak that indicates the predominance of patterns 
corresponding to that index. The histogram 
corresponding to the shear fracture system has a mean 
index of 2350. The histogram corresponding to the 
desiccation fracture also has a weak second peak and 
the mean index is close to 9000.  
 
In order to understand the significance of these 
histograms and to relate them to the spatial patterns 
observed in the images, the pattern of fracture 
corresponding to the mean index for each histogram is 
plotted in Figure 10 a-c. The spatial pattern represented 
in Figure 10a represents the mean index (28870) for the 
first system. The predominance of North-South and 
East-West patterns of the regional fracture system is 
correctly reflected. Similarly, Figure 10b represents the 
pattern corresponding to the shear fracture system. The 
pattern corresponding to a pair of fractures oriented at 
an acute angle to each other is indicated. That would 
indicate a fracture system attributed to a normal fault. 
Desiccation fractures generally do not have a dominant 
orientation. The network of fractures exhibit a range of 
orientations and this is correctly captured in Figure 10c. 
 
The results in this section indicate that the patterns 
corresponding to different classes of fracture systems 
can be described quantitatively using spatial connectivity 
measures. Two-point connectivity measures are 
adequate for capturing the general orientation of 
fractures. Details of the fracture pattern are better 
represented through multiple point connectivity functions 
such as the multiple point histogram. Thus, given the 
geological setting for a target reservoir, the connectivity 

measures relevant for that setting can be retrieved and 
utilized to construct an analog model for the target 
reservoir. This analog model can be further adjusted to 
suit the geologist’s prior view of the fracture system in 
the reservoir by making subtle adjustments to the 
connectivity measures. 
 
Stochastic simulation 
 
The analog reservoir model represents the geologist's 
prior vision of the fracture system that typifies the target 
reservoir. The prior model has to be subsequently 
conditioned to the available reservoir specific 
information. That information may be in the form of core 
measurements of fracture density, wireline logs 
indicative of changes in lithology, borehole images and 
sophisticated tools such as Formation MicroImager etc.  
Auxiliary information in the form of coarse resolution 
seismic images and well test data may also be available 
for the target reservoir. The next step in reservoir 
modeling is therefore to utilize the prior model for 
fracture patterns and constrain it to all the available 
information.  
 
Since in most cases the data available to model the 
fractured reservoir is sparse and information such as 
seismic maps and production response are related 
imprecisely to the fracture pattern characteristics, a 
probabilistic approach to fracture characterization is 
necessary. In the object-based modeling approaches, 
fractures are represented as objects defined by their 
centroid, shape, size and orientation. In "Random Disk" 
models18, fractures are represented as two-dimensional 
convex circular disks located randomly in space. The 
radii of the disks are drawn from a lognormal distribution 
whose parameters are inferred from the fracture trace-
length distributions observed in outcrops. The 
orientations of the disks are also drawn from a lognormal 
distribution and the disk locations, radii and orientation 
are assumed uncorrelated from one disk to the next. It is 
difficult to model the clustering of fractures accurately 
assuming random placement of disks. A spatial density 
function )(uλ  can be utilized to represent such 
clustering of fractures19. Seed locations for fractures are 
drawn based on this spatial density function and fracture 
sets are simulated over a pre-defined volume around the 
seed location. The resultant parent-daughter fracture 
sets exhibit clustering.  
 
The conditioning of object-based fracture models to 
available well data is achieved by simply freezing the 
fractures at the well intersections, with the correct 
orientation and arbitrary fracture length. Although object-
based models are easy to implement, their application is 
limited due to the assumed independence of the model 
paramaters such as radii, orientation etc. In addition, 
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fractures are assumed to be planar and convex and 
consequently realistic depiction of undulations and 
distortions of fractures due to the presence of faults and 
variations in lithology is not possible. A viable alternative 
is to employ pixel-based algorithms. Well established 
geostatistical algorithms such as sequential indicator 
simulation (sisim)15 ensure reproduction of the two-point 
indicator variogram and can be used to classify nodes 
within the reservoir into fractures or matrix. However, it is 
evident from previous discussions that fracture patterns 
and connectivity are best represented through multiple 
point connectivity functions. Models constrained only to 
two-point statistics are generally noisy and consequently 
inadequate for capturing clean-cut shapes such as 
fractures.  
 
The fundamental notion in pixel-based stochastic 
simulation is to derive the conditional probability 
distribution (ccdf) at each location within the reservoir 
given the surrounding data. That ccdf is written as: 
 

{ } { )(|1)(I)(|1)(IProb nSEnS === uu }  (5) 
 
u  is the simulation node and S(n) is the surrounding 
data. Clasification of the simulated node into fracture or 
matrix follows by drawing randomly from that ccdf. In the 
case of two-point statistics based algorithms that 
probability is calculated on the basis of two-point 
interaction between pairs of data and between each data 
and the unknown. In multiple point statistics based 
algorithms20,21 that conditional probability derived based 
on the entire data configuration, including the multi-point 
interactions among the data and between the data and 
the unknown. Supposing there are n neighboring data 
events nA ,...,1, =αα

A

. An additional variable  

can be defined such that t . Then  

only if all the elementary data events occur 
simultaneously i.e. 
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Ao is the unknown data event at the unsampled location. 
In the case when the unknown data event is simply the 
indicator , then the expression (6) will simply be 
equal to the probability that the location u will belong to 
category 1 (or fracture), given the multiple point 
configuration of data represented by the template t . 
Using Bayes’ rule, the conditional probability in 
expression (6) can be written as: 

1)(I =u
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This implies that in order to derive the multiple point 
conditional probability expression (6), we need to know 
the joint probability of observing the spatial pattern 

 as well as the prior probability of 
the occurrence of the template pattern . These 
probabilities can be retrieved from the analog fracture 
model by scanning a template over the analog model.  
The joint frequency of events such that 

 as well as the prior probability of 
the event  can be retrieved. The ratio of the two 
yields the multiple point conditional probability 
corresponding to different events A

1)(and1 == ntAo

1)(and1 == ntAo
1)( =nt

1)( =nt

o. The simulated data 
event Ao* is obtained by simply sampling from the 
conditional probability distribution. 
 
Several researchers have utilized the notion of multiple 
point statistics to generate models of reservoirs with 
complex geometries. In most approaches20,17,22, the 
simulation starts with a full grid of randomly distributed 
values drawn from a prior probability distribution. These 
values are iteratively perturbed, with the criteria for 
accepting the perturbation based on the conditional 
probabilities scanned from the analog model. In the case 
of optimization based approaches20,17 the criteria for 
stopping the iterations is based on the departure of the 
multiple point statistics computed on the simulated 
realization from the target statistics. An alternate multiple 
point approach starting from an empty grid and 
subsequently visiting each node sequentially along a 
random path is also possible23. In that approach the 
multiple-point conditional probability distribution is 
scanned from the training image for all possible 
combination of conditioning events and stored. Then 
during the simulation phase, the configuration of data 
surrounding the simulation node is checked and the 
corresponding conditional probability is retreived from 
the stored data. The simulated event (fracture or not) is 
obtained by sampling from the conditional probability 
distribution.  
 
In contrast to all the above multiple point approaches, 
the proposed algorithm selects seed fracture locations 
based on areal proportion maps and subsequently grows 
a fracture from each seed location using the multiple 
point conditional probability inferred from analog fracture 
models as a criteria for growth. Such a growth algorithm 
has the advantage that it is computationally efficient and 
permits integration of other physical parameters such as 
fracture growth corresponding to variations in rock 
strength into the simulation. 
 
Simulation Algorithm 
 
The simulation commences from an empty grid. Then 
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each well location with recorded fracture data is visited 
sequentially. The data configuration on a 27-point 
template (Figure 11) surrounding the fracture location is 
examined. The location of neighbourhood points that are 
also in fractures is recorded.  The analog fracture model 
is then scanned for the occurrence of that data 
configuration. Thus, if for example as in Figure 11, at the 
current stage of simulation, there are 23 points 
surrounding the central node that are in fracture, then 
the analog model is scanned for the occurrence of that 
24-point (23 + 1 central node) data configuration. This 
represents the prior probability . The data 
event Ao can then be one of the following: 

{ 1)(Prob =nt }

• 

• 

• 

• 

}

None of the remaining three points on the template 
is a fracture 
One of the remaining three locations is a fracture. 
That location could be any one of the remaining 
nodes 
Two of the remaining three locations are fractures. 
There are three possible combinations. 
All three of the remaining three locations are also 
fractures. 

The probability associated with all such multiple point 
data events Ao is retreived by scanning the analog 
model. This is the joint probability 

corresponding to each data 
event A . The conditional probability: 

 is then derived as the ratio of the 
joint probability and the prior probability. A random value 
is drawn from the conditional probability distribution and 
this yields the set of nodes corresponding to the 
outcome A

}1)(,1{Prob == ntAo
o

{ 1)(|1Prob == ntAo

o* that are marked as fractures for the next 
step of the simulation algorithm.  
 
Remark 
 
The treatment of Ao as an multiple point data event is an 
important departure from multiple point statistics based 
algorithms proposed earlier. In most algorithms 
proposed till date, the probability that the central node in 
an N-point template belongs to a certain category given 
the surrounding multiple point data event is inferred from 
the training image. This is equivalent to Ao being a single 
point data event i.e.  or 0. 1)(I =u
 
Out of the n nodes corressponding to the n-point event, 
the node that has the smallest number of surrounding 
nodes that are fractures is chosen as the next node for 
growing the fracture. The algorithm proceeds with the 
growth process until a data event Ao with no additional 
nodes in fractures (corresponding to the first 
configuration above) is drawn as an outcome from the 
conditional probability distribution. The areal proportion 
map corresponding to the current stage of the simulation 
is computed. The conditional probabilities for the 

simulation of the next fracture are multiplied by the ratio: 

target

sim
prop
prop1−=ratio  

This ratio ensures that the simulation honors the target 
proportion. In case the areal proportion map is avaliable, 
the ratio is updated for each region using the target areal 
proportion and the simulation fracture proportion for that 
region. The next well conditioning data if available is 
used to seed the next fracture. In case no additional 
conditioning data are available and the simulated 
proportions are still lower than the target proportions, 
fracture seed locations are drawn based on the areal 
proportion map. The simulation is continued until the 
target proportions are matched in an ergodic sense. 
 
Results 
 
The simulation algorithm described above was 
implemented in 3-D. Since the analog fractured reservoir 
images in Figures 1-3 are in 2-D, a synthetic analog 
model mimicing a regional fracture system in 3-D was 
generated and used as a training model for the 
stochastic simulation. Sections through that 3-D training 
model in the X-Y, X-Z and Y-Z planes are shown in 
Figure 12. The analog model has dimensions of 50 x 50 
x 10. The proportion of fractures in the model is 0.5 and 
the fractures were simulated using unconditional, 
Boolean simulation.  
 
The simulation grid dimension was 100x100x10 and 
each block was 50mx50mx1m. Conditioning data for the 
simulation consisted of information along 20 wells. The 
wells were assumed to be vertical and cored over the 
entire interval.  The template shown in Figure 11 was 
used to scan the training image and retreive the multiple 
point conditional probabilities. The target global 
proportion of fractures was specified to be 20%.  
 
Figure 13 shows slices through one simulated realization 
of fractures. The fracture patterns appear consistent with 
those observed in the training model. The vertical 
continuity of fracture planes observed in the training 
models is captured correctly in the simulated model. The 
simulation was repeated, this time with the areal 
proportion map shown in Figure 14.  The resultant 
simulated model, also shown in Figure 14, reflects the 
increased density of fractures in areas consistent with 
the areal proportion map. The simulation algorithm also 
has the capability of integrating coarser resolution 3-D 
information such as 3-D seismic data. 
 
Remarks 
 
1. Gringarten24 presented a growth-based algorithm for 

geometric modeling of fracture networks.  That rule-
based algorithm commences with an initial simulation 
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of fracture density on a coarse grid. Fractures are 
propogated between scan lines drawn on the coarse 
grid. If the number of fracture intersections with any 
scan line exceed the fracture density for that coarse 
block, fractures are terminated mid-way between the 
scan lines. Fractures are also terminated when 
unfavourable lithologies such as shale are 
encountered. That algorithm yields predominantly 
rectilinear fracture patterns and is difficult to 
implement in 3-D. 

2. Wang25 presented another growth-based algorithm. 
That algorithm based on the multiple point histogram 
(mph) commences from conditioning data locations. 
Candidate neighbouring locations for propagating the 
fracture on a spatial template are evaluated. A 
location is picked based on minimizing the deviation 
from the target mph. The neighbors of that new 
location together with the remaining eligible locations 
for the previous fracture node become candidate 
locations for the next phase of fracture growth. This 
accretion process continues until no significant 
reduction to the deviation from the target mph is 
observed. That algorithm differs from the one 
proposed for this research in that it is iterative and the 
simulation data event is still a single point event. 

 
Discussion and Conclusions 
 
This paper presents a methodology for generating 
stochastic models of fracture systems in reservoirs. The 
methodology hinges on the availability of trainng models 
of analogous fracture systems. It is demonstrated in this 
paper that salient characteristics of the patterns 
corresponding to different classes of fracture systems 
can be reliably detected using multiple point statistical 
measures. The proposal is therefore to perform detailed 
geological characterization of fracture outcrops. The 
essence of the fracture patterns depicted in those 
outcrop exposures can then be captured through 
multiple point statistical measures. Then, when modeling 
a target reservoir the analog model suitable for that 
reservoir can be constructed knowing the multiple-point 
statistical measures characteristic for that system. These 
patterns can then be imposed on the model for the target 
reservoir using a growth-based stochastic simulation 
technique proposed in this paper. These stochastic 
models can be constrained to all available information in 
the form of conditoning well data, seismic maps, rock 
mechanical strength data etc. 
 
Although the general framework for fracture 
classification and simulation has been presented, many 
specific issues pertaining to fracture characterization 
remain unresolved. Variations in connectivity measures 
corresponding to subtle variations in lithology have to be 
further studied. The issue of 3-D analog model 
construction from multiple 2-D outcrop exposures is a 

challenging one and requires considerable effort as 
evidenced in another paper26 in this proceeding. Finally, 
physical parameters that control fracture propogation 
such as variations in rock strength, proximity to a fault 
have to be quantified in terms of their impact on the 
conditional probability distribution controlling fracture 
growth. Further research on integration of such 
information is needed. 
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Figure 1: Regional fracture patterns found in Jurassic Navajo 
sandstone, Lake Powell, southeastern Utah13 

 

 
 

Figure 2: Conjugate shear fractures corresponding to a 
tectonic fracture system found in an outcrop from Wyoming. 
 

 
 
Figure 3: Example of desiccation cracks observed in mud.  
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Indicator variagram in different directions - Regional 
Fractures
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Indicator variagram in different directions -  Tectonic 

fractures
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Indicator variagram in different directions -

Dessication fracture
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Figure 4: Indicator variograms in different directions 
computed on the three types of fracture models shown in 
Figures 1-3. 
 
 
 
 
 

Rose diagram of indicator variagram ranges -
Regional Fractures
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Rose diagram of indicator variagram ranges -
Tectonic Fractures
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Rose diagram of indicator variagram ranges -
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Figure 5: Rose diagram summarizing the indicator variogram 
ranges in different directions. 
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Connectivity function in different directions - Regional 
fractures
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Connectivity function in different directions - 
Tectonic fractures
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Connectivity function  - Dessication fractures
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Figure 6: Connectivity function calculated on the three types 
of fracture models in different directions. 

Rose diagram of connectivity in different 
directions - Regional fractures
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Rose diagram of connectivity in different directions - 
Tectonic fractures
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Rose diagram of connectivity in different directions - 
Desiccation fractures
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Figure 7: Rose diagram of range of connectivity function in 
different directions computed for the three types of fractures. 
The range is defined as the size of the lag template over which 
the connectivity value drops to 10% of the initial connectivity 
value. 
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Figure 8:  Spatial 2-D template used for computing multiple 

point histograms. 
 
 

 

 

 
Figure 9:  Multi-point histogram corresponding to the three 

different fracture systems. 
 

 
 
 
 
 
 
 
 
 

(a) 
 
 
 
 
 
 
 
 
 
 
 

(b) 
 
 
 
 
 
 
 
 
 
 
 

(c) 
 

Figure 10: Pattern corresponding to the mean of the multiple 
point histogram for each fracture system. (a) Pattern detected 
for regional fracture system consistent with the predominantly 
N-S and E-W orientation of fracture  (b) Pattern detected for 
shear fracture system consistent with pattern expected for 
fractures associated with normal faults    (c) Pattern 
corresponding to desiccation cracks, fracture exhibit no 
predominant orientation. 
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Figure 11: A 27-point 3-D spatial template with 24 nodes 
identified as fractures. The various possible combinations of 
events that are possible at the remaining 3 nodes are portrayed. 
 

 

 

 
Figure 12: Slices through the training fracture model used 
to retrieve multiple-point conditional probabilities. 
Proportion of fractures in the training model is 50%. 
 

 

 

 
Figure 13: Slices through one simulated realization. The 
simulated model is constrained to well data and global 
proportion of fractures equal to 20%.  

 

 
Figure 14: Spatial variation of fracture density and a 
horizontal slice through simulation constrained to the 
areal proportion. 
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