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A common problem is uncertainty estimation and calculation of a best estimate in presence of 
related secondary data.  The multiGaussian distribution provides a simple and powerful model to 
predict uncertainty in this context.  This short note provides documentation and implementation 
details. 

Setting of the Problem 
Consider N variables that are related to each other: Zi, i=1,…,N, where a superscript i is used 
because these are N different variables and not N different observations of the same variable.  
These variables could be anything including petrophysical properties, economic quantities, fluid 
characteristics, or the same variable at different spatial locations.  Multiple measurements of the 
different variables must be available to inform the N histograms.  Either data or expert knowledge 
must also be available to determine the correlation between each pair of variables.  The problem 
is to predict the uncertainty in 1 (or more) variables values given knowledge of some subset of 
the other N-1 variables. 

Zi*    and    Fi(zi|available data) 

The multiGaussian probability distribution and the well established normal equations provide a 
convenient model for prediction in this context.  The steps required are to (1) transform each 
variable one-at-a-time to a Gaussian histogram, (2) establish the correlation coefficients that 
define the multivariate Gaussian distribution, (3) use the normal equations for prediction of the 
mean and variance of the Gaussian transforms, and (4) back transformation to original variable 
units and calculation of statistics such as the mean. 

Normal Score Transform 
The normal scores transformation takes data following any arbitrary probability distribution and 
transforms them to have the standard normal distribution.  The standard normal probability 
distribution is the well known bell shaped distribution following: 
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Figure 1 illustrates the normal scores (a.k.a. quantile or graphical) transformation procedure of a 
set of core porosity data to the standard normal distribution.  Note that although the cumulative 
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distribution for the standard normal distribution has no closed form analytical solution, there are 
excellent numerical approximations.  The nscore program in GSLIB implements normal scores 
transformation.  In mathematical notation the transform of the Zi, i=1,…,N, variables is written: 
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where yi
j is the normal score transform of the jth observation of the ith variable, G-1(•) is the 

inverse of the cumulative Gaussian distribution, Fi(•) is the cumulative distribution of the ith 
variable, zi

j is the jth observation of the ith variable, N is the number of variables, and ni is the 
number of observations of the ith variable 

Each variable is independently transformed to a normal distribution.  The transformation can be 
reversed at any time by matching quantiles (see the bottom of Figure 1 and the backtr program 
in GSLIB).  The back transformation of any particular normal score value yi

j is accomplished by: 
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This transformation / back transformation is straightforward and could be performed by any 
number of different procedures.  The normal score transformation is general and widely used 
except when there are very few data.  In presence of few data, the distributions Fi, i=1,…,N could 
be fit by an appropriate parametric distribution model. 

Cross Correlation Coefficients 
A multivariate Gaussian probability distribution can be adopted for the Yi, i=1,…,N,  variables 
that are each univariate Gaussian or normal.  There are a number of tests for multiGaussianity.  
These are recommended; however, rarely used in practice since there is no simple alternative if 
the multiGaussian model is rejected.  These tests will be documented in another short note.  Let’s 
proceed under the multiGaussian model. 

An important feature of the multiGaussian distribution model for N variables is that the full 
distribution is defined by the N by N matrix of correlation coefficients: 
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This matrix of correlation coefficients is symmetric, that is, ρij=ρji.  The diagonal elements are 
ρii=1 for standard Gaussian variables.  Thus, there are N(N-1)/2 required correlation coefficients.  
These values can be calculated directly from available data or inferred from an understanding of 
the variables (for example, porosity and permeability are expected to have a positive correlation 
of, say, 0.7). 

The N(N-1)/2 correlation coefficients cannot be set independently; they must be jointly positive 
definite.  Mathematically, the determinant of matrix (4) must be non-zero.  Positive definiteness 
is not restrictive; it is quite reasonable.  Consider a three variable example that would not be 
positive definite: ρ1,2=0.85, ρ2,3=0.90, and ρ3,1=-0.5.  Variables 3 and 1 simply cannot be 
negatively correlated if 1 and 2 are positively correlated and 2 and 3 are positively correlated? 

The N by N matrix (4) must be established by calculations from data (see Figure 2 for two 
example normal score cross plots) or from expert judgment.  Then, the matrix of coefficients 
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must be checked for positive definiteness.  An iterative procedure is normally considered to 
modify the correlation coefficients to ensure positive definiteness if the determinant does not 
come out to be positive. 

Prediction of Uncertainty 
Recall the original problem: predict the uncertainty in 1 (or more) variables values given 
knowledge of some subset of the other N-1 variables.  The prediction of uncertainty under the 
multiGaussian model is exact.  For the sake of simple notation, let’s make the variable number we 
are predicting 0 and order the data variables 1 through n, where n <N.  The estimate of the normal 
scores mean is given by a weighted linear estimator: 
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The weights λ j, j=1,…,n are given by the well-known normal equations: 
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The n-by-n system of linear equations must be solved to determine the weights, which are used to 
calculate the estimate (4) and the estimation variance: 
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The uncertainty in the estimate y* is completely defined in “Gaussian space;” the uncertainty 
follows a normal distribution with mean of and variance of σ2

E.  This distribution of uncertainty 
must be transformed back to real Z units. 

The back transformation of the non-standard normal distribution N(y*,σ2
E) is accomplished using 

the back transformation equation (3) to transform a large number of quantiles.  Note that we 
cannot back transform the mean y* by equation 3; the back transformed z value would not be a 
biased estimate of the mean of Z since the transformation is non-linear.  Quantiles can be back 
transformed with no bias; therefore, the following procedure is used to establish the distribution 
of uncertainty in z-units. 

1. Choose L equally spaced quantiles for back transformation, for example, the L=99 
equally spaced percentiles p1=0.01, p2=0.02,…,p99=0.99. 

2. Calculate the Gaussian or normal deviate for each probability value: 

( ) LlpGyy Ell ,...,11* =⋅+= − σ  

3. Back transform each normal deviate using equation 4, that is: 
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4. Assemble the distribution of uncertainty and expected value of the Z values, the variance 
of the Z values and any other desired statistic. 

[ ]∑∑
==

−==
L

l
lz

L

l
l zz

L
z

L
z

1

2*2

1

* 11 σ  



 4 

The L back transformed values are equally probably because the probability values pl,l=1,…,L are 
equally spaced.  The software to perform these calculations is straightforward.  The building 
blocks exist in the GSLIB programs nscore and backtr. 

It is important to realize that a multiGaussian probability distribution is assumed after normal 
score or Gaussian transformation; however, that does not mean that the resulting distributions of 
uncertainty are Gaussian.  Figure 3 attempts to illustrate this point.  The distributions are non-
standard Gaussian, N(y*,σ2

E), in transformed Gaussian space, but account for the correct 
histogram in original data units. 

An Example 
Consider four variables v1, v2, v3, and v4 with arbitrary non-Gaussian distributions of uncertainty; 
see Figure 4.  The matrix of correlation coefficients in these variables after normal score 
transform is given below: 
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There are four situations where we could be estimating one of the variables from the other three 
(no missing data of the other three).  The weights assigned to the other three data are given below.  
These weights are calculated by solving equation (6) with three data. 

Estimating v1 Estimating v2 Estimating v3 Estimating v4 

v2 0.552 v1 0.590 v1 0.617 v1 -0.143 

v3 0.350 v3 0.105 v2 0.173 v2 -0.572 

v4 -0.064 v4 -0.274 v4 0.113 v3 0.143 

The combinatorial of all possible subsets will not be considered.  The equations for any specific 
subset can be solved as needed. 

Consider the task of estimating variable 1 with data on variables 2, 3, and 4 of 3.00, 1.50, and 
6.00.  The following steps are followed to get the distribution of uncertainty, mean, and variance 
for variable 1: 

1. Determine the normal score transforms of the three data values: (3.00 → 1.745, 1.5 → 
0.648, and 6.0 → -2.108). 

2. Calculate the mean and variance in normal space:  

y* = 0.552 •  1.745 + 0.350 •  0.648 -0.064 •  -2.108 = 1.325 

σ2
E = 1 – 0.552 •  0.8 + 0.350 •  0.7 -0.064 •  -0.5 = 0.281 

3. Back transform quantiles of the non-standard normal distribution (1.325/0.281) to get the 
uncertainty in variable 1 (see Figure 6) and calculate the mean (7.0), standard deviation 
(0.8), and other needed statistics. 

This procedure is easily automated. 
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Conclusion 
Given N correlated variables, a procedure has been shown to calculate the uncertainty in 
estimating one or more of them from a subset of the remaining known variables.  This classic 
Gaussian model has wide applicability in simplified Monte Carlo analysis where there are 
inadequate data to inform the probability law more completely. 
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• Deutsch C.V., Journel A.G. (1998) GSLIB: Geostatistical Software Library: and User’s 
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• Any classic statistics book that covers regression and probability distributions. 
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Figure 1: the normal score transform.  The upper figures show an arbitrary histogram of core porosity 
values and the target normal distribution.  The lower figures show the corresponding cumulative 
distributions and the transformation procedure, which consists of matching quantiles (values with the same 
cumulative probability. 

 

 

   

Figure 2: two cross plots of normal score transformed variables with correlation coefficients of 0.661 and –
0.883.  There are an unusually large number of points on these cross plots. 
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Figure 3: illustration of uncertainty in normal space (right side) and in real data units (left side).  The top 
row shows (in green) an original z-histogram f(z) and corresponding normal distribution g(y).  The 
cumulative distributions F(z) and G(y) are shown (in green) on the second row from the top.  The two-sided 
arrow from z-space to y-space illustrates that this is the link between real data units and Gaussian data units.  
The four conditional cumulative distributions (multicolored) on the third row from the top are different 
distributions with different mean and variance values.  The shapes of these distributions are Gaussian on 
the right and some other shape, determined by the back transformation, on the right.  The bottom row 
shows the distributions as histograms of probability density functions. 
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Figure 4: histograms of four variables for example.  Aside from the first variable, none of the histograms 
are Gaussian. 

 

 

 

Figure 5: scatterplots between the Gaussian transforms of the first and second and first and fourth 
variables. 
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Figure 6: conditional distribution of variable 1.  The distribution in Gaussian space has a conditional mean 
of 1.325 and a conditional variance of 0.281.  This distribution is determined by back transformation. 

 


