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Abstract

Probability field simulation is a fast algorithm that is based on separating the task of calcu-
lating the conditional distribution from the task of drawing a simulated value.

Its main advantage is the speed with which multiple realizations can be generated. Un-
like in sequential methods where each realization requires that the conditional distribution is
calculated anew at every location, p-field requires that the conditional distributions are calcu-
lated only once. A fast algorithm can then be used to generate the unconditional realizations
used as probability fields.

However, two known problems of p-field simulation are the generation of local extrema
at conditioning points and the higher correlation that the final realization has near for short
distances, that is, near the origin of the variogram. In this paper a solution to the second
problem is proposed and several examples are presented to illustrate the correction.

Introduction

Probability field (p-field) simulation dissociates the task of generating the conditional dis-
tributions from the actual drawing of simulated values [2, 5]. The basic idea is to generate
multiple simulated fields of the probabilities that are used to draw from the cumulative
conditional distribution functions (ccdf). These probabilities cannot be random, since this
would not preserve the spatial continuity of the variable. Conditional distributions are built
considering only the sample data and, unlike in sequential methods, no previously simulated
nodes are used to modify these conditional distributions. The probabilities used to draw
from nodes that are close to each other should show some spatial correlation.

The algorithm is applied assuming that the correlation used to generate the p-fields
corresponds to the correlation of the uniform transform of the conditioning data. However,
in reality, the correlation of the probability fields is non-stationary and depends on the
spatial configuration of the conditioning data. This incorrect assumption is the cause for
the bias in the spatial correlation of the final simulated models, as we will discuss in the
next section.

In practice, Gaussian methods are used to generate the unconditional realizations or
p-fields. These Gaussian realizations should be transformed into uniform scores, that is,
values uniformly distributed in [0,1].
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Two approaches are typically used to calculate the conditional distributions from which
the values are drawn using the p-fields: indicator kriging or multi-Gaussian kriging.

Indicator kriging consists of estimating the conditional probability at a number of cut-
offs, by kriging the indicator transform of the original data at different thresholds. This
approach permits integration of secondary and soft information and allows for the differ-
ent characterization of the continuity for every threshold, thus avoiding the randomness at
extreme thresholds implicit with Gaussian methods.

Notwithstanding their drawbacks, Gaussian methods are the most commonly used.
Multi-Gaussian kriging consists simply of kriging the normal scores of the original values.
The conditional distributions are built by back-transforming the non-standard Gaussian dis-
tributions with means and variances given by the kriging estimates and their corresponding
estimation variances, respectively.

Covariance Bias in P-Field Simulation

This paper considers the case in which multi-Gaussian kriging is used to define the con-
ditional distributions and a Gaussian method is used to generate the probability fields.
Similar results are expected in other cases, although these are not explored in this note.

A simulated probability value at location u is denoted by p(l)(u) for the lth realization,
with l = 1, ..., L. The corresponding simulated value is denoted x(l)(u). In this application,
these simulated values can be generated with a matrix method, sequential simulation, or a
spectral method. We can write:

p(l)(u) = G(x(l)(u)) (1)

The simulated values obtained by p-field simulation, y(l)(u), are calculated using the
probability value drawn from the conditional distribution, which in general is not standard
Gaussian:

y(l)(u) = G−1(p(l)(u)) · σ2
SK(u) + mSK(u) (2)

where mSK(u) is the multi-Gaussian kriging estimate at u, given the neighboring informa-
tion (n), and σ2

SK(u) is the corresponding kriging variance.
Notice that we can replace the value of p(l)(u) as given in Equation 1, and rewrite

Equation 2 as:

y(l)(u) = G−1(G(x(l)(u))) · σ2
SK(u) + mSK(u) = x(l)(u) · σ2

SK(u) + mSK(u) (3)

The special case of unconditional simulation is interesting. When no data are available
to modify the local conditional distributions, these result in the marginal distribution of
uncertainty. Thus:

mSK(u) = 0
σ2

SK(u) = 1

}
∀u ∈ A (4)

where A is the domain simulated.
A p-field is generated with a Gaussian method and the normal score variogram. The

covariance between any two simulated Gaussian deviates x(l)(u) and x(l)(u + h) is CY (h),
exactly the covariance of the normal scores. In this case, the simulated y values are:

y(l)(u) = x(l)(u)
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thus, the simulated values y(l)(u) reproduce exactly the target covariance model CY (h). In
this case, there is no bias in covariance reproduction [3, 4].

Now, considering the case where conditioning data have modified the conditional distri-
butions, then the covariance between two simulated values is:

C{y(l)(u), y(l)(u + h)} = C{x(l)(u)·σSK(u)+mSK(u), x(l)(u + h)·σSK(u + h)+mSK(u + h)}
which can be expressed in terms of expected values as:

C{y(l)(u), y(l)(u + h)} = E{[x(l)(u) · σSK(u) + mSK(u)] ·
[x(l)(u + h) · σSK(u + h) + mSK(u + h)]} −
E{x(l)(u) · σSK(u) + mSK(u)} ·
E{x(l)(u + h) · σSK(u + h) + mSK(u + h)}

Rearranging the terms and recalling that E{x(l)(u)} = 0 and E{x(l)(u + h)} = 0, we
can write:

C{y(l)(u), y(l)(u + h)} = C{x(l)(u), x(l)(u + h)} · σSK(u) · σSK(u + h) +
mSK(u)) · mSK(u + h)

If a covariance model CY (h) is used to generate the p-field (x values), then the resulting
covariance is different by a multiplicative factor σSK(u) ·σSK(u + h), and an additive factor
mSK(u)) · mSK(u + h) [4]. Furthermore, this difference is location-dependent. The proba-
bility fields are non-stationary, that is, a different covariance function would be required at
every location to yield the correct target covariance in the y simulated values.

Next, we propose a correction that gives the stationary covariance model that yields the
correct target covariance in the y values.

Determining the Corrected Variogram Model for P-Field Sim-
ulation

Clearly, the p-fields must be generated with a covariance different than CY (h). If we
consider that a stationary covariance model CX(h) is going to be used to generate the
Gaussian values x used as probability fields, the resultant covariance model for Y , denoted
C∗

Y (h), is:

C∗
Y (h) = CX(h) · E{σSK(u) · σSK(u + h)} + E{mSK(u) · mSK(u + h)} (5)

That is, the covariance model used to generate the p-fields is modified by two factors:
the first one corresponding to the mean product of kriging standard deviations for points h
apart, and the second one corresponding to the mean of the products of kriging estimates
for points h apart.

Since we are interested in identifying the term C∗
Y (h) with the target covariance model

CY (h), we can infer the model CX(h) that yields this identity:

CX(h) =
CY (h) − E{mSK(u) · mSK(u + h)}

E{σSK(u) · σSK(u + h)} (6)
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Notice that the correction we propose is global and attempts to correct the reproduction
of the variogram when considered over the entire domain A. Due to the non-stationary
character of the covariance of the probabilities required for p-field simulation, locally, there
will be bias in the covariance. Further research is required to devise an algorithm to locally
condition the covariance model. However, this appears as an extremely difficult task, since
the covariance model depends simultaneously on all conditional data, but in a location-
dependent fashion. Imposing non-negative definiteness conditions to the locally modified
covariances is not straightforward.

The covariance values CX(h) must be subtracted from the sill of the corrected covariance
to calculate the corrected variogram, that is:

γX(h) = CX(0) − CX(h) =
CY (0) − E{m2

SK(u)}
E{σ2

SK(u)} − CY (h) − E{mSK(u) · mSK(u + h)}
E{σSK(u) · σSK(u + h)}

(7)
In conclusion, by generating the p-fields with a variogram model γX(h), the simulated

values obtained from drawing from the conditional distributions with these p-fields have a
variogram γY (h), which is the target one.

Applications

The following examples have been prepared using a Fortran program that corrects the
variogram required for obtaining realizations that reproduce the target variogram model.
GAMPFIELD outputs the corrected variogram. This output must be fitted with licit variogram
models prior to re-running the generation of the p-fields. The program is documented in
the Appendix.

All the p-fields are generated using the program LUSIM from GSLIB [1]. Drawing from
the conditional distributions given the p-fields has been done with PFSIM, also from GSLIB.

First Example in One Dimension

A first example is presented where a string of 1000 nodes is simulated. Conditioning data
are available every 10 nodes in Gaussian units and kriging is performed to obtain the mean
and variance of the normal scores at every location.

LUSIM is used to generate 1000 realizations of the 1000 nodes of the string of interest.
A variogram model with 0.2 of nugget effect and a spherical model with sill contribution of
0.8 and a range of 10 nodes is used to impose spatial continuity.

PFSIM is used to draw from the conditional distributions using the p-fields generated
unconditionally with LUSIM.

The artifact of p-field simulation is shown in Figure 1. PFSIM imparts a higher spatial
correlation for short distances. Notice that the unconditional realizations to be used as
p-fields (from LUSIM) reproduce very well the target variogram, but after drawing from
the conditional distributions, the final realizations (from PFSIM) show the bias due to the
conditioning information.

A new variogram is calculated to unbias the p-fields. The experimental variogram
obtained has to be modelled prior to repeating the simulation with LUSIM. It is shown in
Figure 2. Notice that the sill is higher than the original target variogram.
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Figure 1: Performance of p-field simulation prior to correcting the variogram model to
generate the p-fields. Top left: variograms of 100 LUSIM realizations used to generate
the p-fields. Top right: average variogram from 1000 realizations with LUSIM. The match
is perfect. Bottom left: variograms of 100 PFSIM realizations calculated with the LUSIM
realizations as p-fields. Bottom right: average variogram from 1000 realizations with PFSIM.
Notice the bias in variogram reproduction.
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Figure 2: The calculated variogram to correct the bias generated by p-field simulation
(dotted line with bullets). The original model is shown as a solid line (the sill is 1.0).
The modelled variogram required to obtain unbiased realizations with PFSIM is shown as a
dashed line (the sill is greater than 1.0).

The corrected model consists of a nugget effect of 0.21 plus a spherical model with a sill
contribution of 0.90 and a range slightly shorter than the target: 9 nodes.

Finally, LUSIM is re-run with the corrected model and the p-fields are used to draw from
the conditional distributions using PFSIM. The p-fields generated with LUSIM reproduce
accurately the corrected model and the final models after running PFSIM on these corrected
p-fields match the target variogram extremely well (Figure 3).

Second Example in One Dimension

An interesting challenge is to see the performance when there is only a change in the local
variances. This was done with the same setting used in the previous example, but assigning
a value of 0 to all the sample data. Since the work is done in Gaussian units, this means
that the entire field is estimated as 0, but the kriging variances from multi-Gaussian kriging
change depending on the configuration of the local data.

The average kriging variance is around 0.66, which, because there is no change in the lo-
cal means, is reflected as a change in the sill of the output variograms from p-field simulation
(Figure 4).

The corrected variogram is calculated and modelled (Figure 5). The same target
variogram as in the previous example was used. The corrected model has a nugget effect of
0.16 and a spherical model with sill contribution of 1.36 and range 10 nodes. The total sill
is 1.52. Notice that this represents a scaling factor to get the correct target sill:

Target Sill
Biased PFSIM Sill

=
Corrected Variogram Sill

Target Sill
1.00
0.66

=
1.52
1.00

Again, re-running the generation of p-fields with LUSIM and the corrected variogram
yielded the target variogram after drawing the simulated values from the conditional dis-
tributions (Figure 6).
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Figure 3: Performance of p-field simulation after correcting the variogram model to generate
the p-fields. Top left: variograms of 100 LUSIM realizations with the corrected variogram.
Top right: average variogram from 1000 corrected realizations with LUSIM. The match
with the corrected model is perfect. Bottom left: variograms of 100 PFSIM realizations
calculated with the LUSIM realizations as p-fields. Bottom right: average variogram from
1000 realizations with PFSIM. The matching is now excellent. Notice that in the top two
figures the variogram model is the corrected one (to obtain the p-fields), but in the bottom
two figures, the variogram model is the target one.

7



γ

Distance

LUSIM output variograms

.0 4.0 8.0 12.0 16.0 20.0

.00

.20

.40

.60

.80

1.00

1.20

γ

Distance

P-field average variogram

.0 4.0 8.0 12.0 16.0 20.0

.00

.20

.40

.60

.80

1.00

1.20

γ

Distance

PFSIM output variograms

.0 4.0 8.0 12.0 16.0 20.0

.00

.20

.40

.60

.80

1.00

1.20

γ

Distance

P-field average variogram

.0 4.0 8.0 12.0 16.0 20.0

.00

.20

.40

.60

.80

1.00

1.20

Figure 4: Performance of p-field simulation prior to correcting the variogram model to
generate the p-fields. Top left: variograms of 100 LUSIM realizations used to generate
the p-fields. Top right: average variogram from 1000 realizations with LUSIM. The match
is perfect. Bottom left: variograms of 100 PFSIM realizations calculated with the LUSIM
realizations as p-fields. Bottom right: average variogram from 1000 realizations with PFSIM.
Notice the bias in variogram reproduction.
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Figure 5: The calculated variogram to correct the bias generated by p-field simulation
(dotted line with bullets). The original model is shown as a solid line (the sill is 1.0).
The modelled variogram required to obtain unbiased realizations with PFSIM is shown as a
dashed line (the sill is greater than 1.0).

First Example in Two Dimensions

A two-dimensional example similar to the previous one, that is, with mean values all equal
to 0, is presented. A 25 by 25 grid nodes is simulated using the same variogram model as
before.

Running p-field without any corrections yields realizations with biased variograms, as
seen in Figure 7. The corrected variogram and model is shown in Figure 8. In this case,
the nugget effect is 0.25, and the spherical structure has a sill contribution of 1.22 with the
same range as the target variogram: 10 nodes.

Figure 9 shows again that the corrected variogram provides the correct variogram in
the final simulated models.

Second Example in Two Dimensions

Six samples are available for this example. Figure 10 shows the locations on a 10 by
10 units domain. An anisotropic variogram is used to calculate the kriging estimates and
variances of the local distributions for all 100 nodes in the domain. The variogram has a
20% of nugget effect and a spherical structure with the remaining 80% of sill contribution
and a Y range of 10 units and a X range of 6 units.

The means and variances of the conditional distributions are shown in Figure 11.
10000 unconditional realizations are generated with LUSIM. Variograms are calculated

for each realization and the average is plotted against the model in Figure 12. These
realizations are used as probability fields to draw from the conditional distributions defined
previously with multi-Gaussian kriging, using the program PFSIM. The resulting variogram
of the simulated models is biased, as shown in Figure 13. The model is corrected to
account for the conditioning information and the realizations are generated again with
LUSIM (Figure 14). The simulated values calculated using the LUSIM realizations as p-
fields and the conditioning information provided by the Gaussian conditional distributions
obtained previously, reproduce the correct target variogram model Figure 15.

An interesting additional experiment consists of calculating the block average over the
entire domain for every realization and plotting the distribution of this average. This is
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Figure 6: Performance of p-field simulation after correcting the variogram model to generate
the p-fields. Top left: variograms of 100 LUSIM realizations with the corrected variogram.
Top right: average variogram from 1000 corrected realizations with LUSIM. The match
with the corrected model is perfect. Bottom left: variograms of 100 PFSIM realizations
calculated with the LUSIM realizations as p-fields. Bottom right: average variogram from
1000 realizations with PFSIM. The matching is now excellent. Notice that in the top two
figures the variogram model is the corrected one (to obtain the p-fields), but in the bottom
two figures, the variogram model is the target one.
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Figure 7: Performance of p-field simulation prior to correcting the variogram model to
generate the p-fields. Top left: variograms of 100 LUSIM realizations used to generate
the p-fields. Top right: average variogram from 1000 realizations with LUSIM. The match
is perfect. Bottom left: variograms of 100 PFSIM realizations calculated with the LUSIM
realizations as p-fields. Bottom right: average variogram from 1000 realizations with PFSIM.
Notice the bias in variogram reproduction.
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Figure 8: The calculated variogram to correct the bias generated by p-field simulation
(dotted line with bullets). The original model is shown as a solid line (the sill is 1.0).
The modelled variogram required to obtain unbiased realizations with PFSIM is shown as a
dashed line (the sill is greater than 1.0).

also done by directly simulating the point values with LUSIM (notice that in this case, the
realizations are conditional to the data values and are not used as p-fields). LUSIM is a multi-
Gaussian simulation method, hence it generates models with maximum entropy. Because
of this feature, the average over the entire domain tends to average more quickly towards
the mean, generating lower uncertainty in the average than when p-field is used (Figure
16). It must be emphasized that p-field simulation is not a multi-Gaussian method. One
realization using p-field simulation and one using LUSIM are shown for visual comparison in
Figure 17.

Conclusions

In this paper, we revisited the p-field algorithm for the case in which the probability fields
and the conditional distributions are calculated under the multi-Gaussian assumption. We
showed the origin for the bias in the variogram reproduction in p-field simulation and we
proposed a procedure to correct the variogram used to generate the unconditional proba-
bility fields.

Performance of the proposed approach was illustrated with several examples and the
difference of p-field simulation with a conventional Gaussian simulation method was demon-
strated with a simple example. P-field simulation does not suffer from the maximum entropy
character of Gaussian methods.
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Appendix: Program GAMPFIELD

A Fortran program has been prepared to calculate the corrected variogram model for prob-
ability field simulation, given a target variogram model and the conditional means and
variances obtained by multi-Gaussian kriging. The program requires the following input:

• DATAFL: Name of file with multi-Gaussian kriging output.

• COLM,COLV: Column numbers for means and variances of local distributions of
uncertainty.

• TMIN,TMAX: Trimming limits.

• NX,XMN,XSIZ,NY,YMN,YSIZ,NZ,ZMN,ZSIZ: Grid definition of the multi-Gaussian
kriging input. The number of nodes NX, NY, and NZ, coordinates of the first point
in the grid XMN, YMN, and ZMN, and spacing of the three-dimensional grid XSIZ,
YSIZ, and ZSIZ are required. These values follow the convention of all the GSLIB
programs.

• OUTFL: Name of the output file generated. The file contains the variogram values
corrected with the factors calculated from the means and standard deviations of the
conditional distributions in the domain. This variogram must be modelled prior to
re-simulation. It outputs the corrected variogram in the X, Y, and Z directions defined
by the orientation of the grid.

• NLAGC: Specifies the number of lags to correct.

• NST(1),C0(1),IT(i),CC(i),ANG1(i),ANG2(i),ANG3(i),AA(i),AA1,AA2: The normal
scores variogram model parameters. As with all programs in GSLIB, NST(1) corre-
sponds to the number of structures, C0(1) is the nugget effect, IT(i) is the variogram
type for the structure i, CC(i) is its sill contribution, ANG1(i), ANG2(i), and ANG3(i)
are the rotation angles for the principal directions of anisotropy, AA(1), AA1, and
AA2 are the ranges in the directions of maximum continuity (hmax), minimum conti-
nuity (hmin), and perpendicular to both (vert).

18



Parameters for GAMPFIELD
************************

START OF PARAMETERS:
kt3d.out -file MG kriging values
1 2 - columns for mean and variance
-1.0e21 1.0e21 - trimming limits
100 0.5 1.0 -nx,xmn,xsiz
100 0.5 1.0 -ny,ymn,ysiz

1 0.5 1.0 -nz,zmn,zsiz
gampfield.out -file for output
20 - number of lags to correct
1 0.1 - nscores variogram: nst, nugget effect
1 0.9 0.0 0.0 0.0 - it,cc,ang1,ang2,ang3

10.0 10.0 10.0 - a_hmax, a_hmin, a_vert

Figure 18: Parameter file for program POSTMG.
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