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Abstract

The conventional correction of order relations in sequential indicator simulation introduces
a bias for extreme thresholds; the resulting cdf values are closer to the median. A dynamic
order relations correction is proposed to make the estimator unbiased after order relation
corrections.

Sequential Indicator Simulation

Sequential indicator simulation allows the characterization of a regionalized variable by a
set of thresholds z1, ..., zK . The sample data are coded as indicators at every threshold and
the conditional probability at unsampled locations is estimated by simple indicator kriging.
The stationary simple kriging estimate of the indicator at a given threshold is written:

[i(u; zk)]∗SK = [Prob{Z(u) ≤ zk|(n(u))}]∗SK

=
∑n(u)

α=1 λSK
α (u; zk) · i(uα; zk) + [1 − ∑n(u)

α=1 λSK
α (u; zk)] · F (zk)

where the weights λSK
α (u; zk) are the unique solution of the simple kriging system:

∑n(u)
β=1 λSK

β (u; zk) · CI(uβ − uα; zk) = CI(u − uα; zk) α = 1, ..., n(u)

Notice that a stationary indicator covariance function CI(h; zk) must be inferred for
each threshold.

Order Relation Deviations

The estimated probabilities [i(u; zk)]∗SK , k = 1, ...,K generated through indicator kriging
must satisfy the conditions of a cumulative distribution: they have to be non-decreasing
between 0 and 1 [1, 2, 3, 4].

The kriged indicator value can lie outside the interval [0,1] because the kriged estimate
may be a non-convex linear combination of the conditioning data. Lack of data in some
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classes and differences in the variogram models from one threshold to the next are important
factors that may produce a non-increasing function [2, 5].

The a posteriori upward and downward correction of the conditional cumulative distri-
bution function works well in general, as documented by Deutsch and Journel [2] (Figure
1). Another more difficult solution is to constrain the kriging system, so that it satisfies
the order relations by construction [3].
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Figure 1: Upward and downward correction for order relation deviations. The corrected
cumulative conditional distribution is the thick line.

Bias in the Estimator

The kriging estimate [i(u; zk)]∗SK is unbiased. However, since corrections are required to
ensure that a valid conditional distribution is built prior to simulating a value, the estimator
is no longer unbiased.

The corrected estimator can be written:

[i(u; zk)]corrected
SK = [i(u; zk)]∗SK + ∆upward(zk) − ∆downward(zk)

where the expected value of the corrected estimate is no longer unbiased:

E{[I(u; zk)]corrected
SK } �= E{[I(u; zk)]∗SK}

because for high thresholds, such that F (zk) > 0.5, E{∆downward(zk)} > E{∆upward(zk)},
and for low thresholds with F (zk) < 0.5, E{∆downward(zk)} < E{∆upward(zk)}.

The bias introduced by order relation corrections depends on the threshold that is being
estimated.

Considering a binary realization, that is, when only one threshold is being used, say
the ninetieth percentile, the bias is introduced by correcting more often deviations due to
having an estimate greater than one, than deviations due to the estimate being less than
zero. Overall, the estimated values are no longer unbiased.
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Figure 2 shows the histogram of corrections required during a run of sequential indica-
tor simulation with a threshold at the 90th percentile. Overall, corrections are biased, giving
a non-zero average. Furthermore, when inspecting the histograms of positive and negative
corrections, we note that positive corrections are made in more than 95% of the cases where
a correction is required and the average of the positive corrections is much smaller than the
average of the negative corrections. However, negative corrections are fewer than positive
corrections, and despite their larger magnitude, they are not enough to counterbalance the
positive corrections. This leaves an overall positive bias in the estimation of the proba-
bilities. A similar problem can be seen when considering different thresholds. When the
median is used, the corrections for values above one and below zero are similar, cancelling
each other and generating no bias.

A Possible Fix

One way to overcome this problem is to dynamically correct for the bias introduced, every
time a correction is made. This has been implemented with favorable results. The idea is
to keep track of the last order relation correction made, and to adjust the next estimate by
that amount, in order to generate overall unbiased realizations. Consider that the node at
location u0 has been simulated. The simple indicator kriging estimate at that location is:

[i(u0; zk)]∗SK =
n(u0)∑

α=1

λSK
α (u0; zk) · i(uα; zk) + [1 −

n(u0)∑

α=1

λSK
α (u0; zk)] · F (zk)

where n(u0) is the number of sample data and previously simulated nodes found in a search
neighborhood around u0.

If a correction is required for this node at the threshold zk, then the corrected estimate
is:

[i(u0; zk)]corrected
SK =

n(u0)∑

α=1

λSK
α (u0; zk) · i(uα; zk) + [1 −

n(u0)∑

α=1

λSK
α (u0; zk)] · F (zk) + ∆0

The value ∆0 can be positive or negative, depending if the correction increases or de-
creases the estimated cdf value. This value is kept in memory for the subsequent node
simulated. This node is randomly picked among all uninformed nodes in the domain. Say
the next node to simulate is located at u1. The dynamically corrected estimate is:

[i(u1; zk)]∗∗SK =
n(u1)∑

α=1

λSK
α (u1; zk) · i(uα; zk) + [1 −

n(u1)∑

α=1

λSK
α (u1; zk)] · F (zk) + ∆0

where the superscript ∗∗ denotes the dynamically corrected estimate.
Again, this estimate may require correction for order relation deviations:

[i(u1; zk)]corrected
SK = [i(u1; zk)]∗∗SK + ∆1

The new correction factor ∆1 is kept to correct the next node in the random path.
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Figure 2: Histograms of order relation corrections in SIS. The top histogram shows all
corrections together, the middle one shows the negative corrections and the bottom one
shows the positive order relation corrections.
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Figure 3: Experimental indicator variogram before (continuous line) and after dynamically
correcting for the bias introduced by order relation corrections (dashed line) in SIS.

This dynamic correction generates a slight increase in the nugget effect, which is seen
as a shift in the experimental variogram of the realization. The change is not significant if
the corrections are small (Figure 3).

A histogram showing the distribution of output proportions from 100 realizations gen-
erated through sequential indicator simulation is presented in Figure 4. The histogram
after correcting for the bias is also shown. The realizations were aimed at generating a
proportion of 10% below the threshold. Notice the slight inflation in the variance of the
distribution after the correction.

The magnitude of the order relation corrections will dictate if a dynamic correction for
SIS is required. However, it is known that SIS performs well without that correction, if the
following conditions are met:

• Enough conditioning information is available.

• The size of the simulated domain is large with respect to the range of correlation of
the variogram.

• Multiple grid search is used to simulate.

Conclusions

Sequential indicator simulation generates a bias in the output proportions at extreme thresh-
olds. A dynamic correction is proposed that shows satisfactory results. The correction
consists on keeping track of the last correction for order relations deviations and correcting
the estimate at the subsequent node in the random path.
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Figure 4: Histogram of output proportions before (left) and after (right) applying the
dynamic correction in sequential indicator simulation.
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