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Abstract

This paper discusses several aspects of the inference and use of multiple-point statistics in
geostatistical simulation. We briefly review the problems encountered when integrating this
information with other sources. The issues of stationarity and representativeness of the
high-order statistics are discussed.

Several methods are proposed to integrate multiple-point statistics extracted from a train-
ing image or dense production data to the conventional sequential indicator simulation.
Some exploratory examples are presented and we discuss the problems encountered during
the implementation of these methods. The property of an estimate to be non-convex is
explained and some attempts at comparing the performance of the methods are shown.

Introduction

Integration of multiple-point (MP) statistics into geostatistical models is difficult because
the inference of these statistics is often unreliable and their use in a kriging-like framework
requires the positive semi-definite modelling of covariances between MP events and single-
point events. This modelling would call for the knowledge of the multivariate distribution
of the variable.

One way to overcome these problems is to use a training image deemed representative
of the phenomenon being studied [1, 3, 8, 16, 17]. This raises different problems: the
representativeness of this training image, the scale of the training image, the grid definition
of the simulated model, and the univariate distribution of the training image. One concern
is the amount of information deemed general to the phenomenon and the amount considered
particular to the training image. The goal is not to reproduce the training image, but to
simulate a model that shares some of the multivariate characteristics of the true distribution.

The paradigm of the extended normal equations, really a single normal equation, solves
most of these problems [8, 16]. A conditional distribution function is calculated that con-
siders the MP configuration in a neighborhood. In general, this is done by discretizing
the conditional distribution in the indicator framework. The probability of that particular
location to be below a threshold is given by the frequency of occurrence of that MP configu-
ration in the training image. Therefore, there is no kriging system to solve. The multivariate
distribution is being approximated by the frequencies extracted from the training image. If
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a MP configuration is not found enough times to reliably estimate its frequency, the search
is reduced and a different MP configuration is considered.

The question of the representativeness of the training image remains. The only apparent
way to avoid this problem is to use MP statistics extracted from the actual data [10, 14].
Borrowing the MP information from a training image is equivalent to using the variogram
from a different area, deposit, or reservoir to build a numerical model that reproduces the
spatial continuity of the phenomenon. Expert judgement is used.

In most geostatistical techniques the multivariate distribution is commonly assumed
multivariate Gaussian. Consequently, long range and non-linear connectivity is not repro-
duced in the numerical model. Responses after a transfer function are not well reproduced
[7]. Transfer functions can be sensitive to this high order correlation or connectivity, that
is, continuity of high and low values in the model. In mining, the mine design, mine plan,
and grade control could change as the high order correlation is better reproduced. Better
reproduction of multiple-point statistics at point support may allow block averaged values
to follow more closely the true block distribution, improving grade control and recoverable
reserves. Common practice is to assume that the simulation method provides a realistic
representation of the connectivity.

The commonly used multi-Gaussian approach freezes the connectivity at different thresh-
olds. A novel approach to avoid this assumption and also avoid the use of multiple-point
statistics has been proposed recently. A sequential simulation can be performed considering
calibration parameters that allow choosing the isofactorial family that better approximates
the bivariate law of the data. The connectivity of extremes is then controlled by the
isofactorial family considered [6]. Although this method appears as an improvement in
controlling the connectivity of extremes, it can be considered as a parametric approach to
indicator kriging, where the estimation of the values of the conditional distribution at sev-
eral thresholds is replaced by a distributional assumption (not necessarily multi-Gaussian)
that imparts correlation at extreme thresholds in a controlled manner. However, there is
no explicit control over higher-order statistics.

If the data present a multivariate distribution that departs from multi-Gaussian, multiple-
point statistics have to be explicitly imposed in the simulation algorithm.

A short discussion on the representativeness of the training images follows. Then, the
issue of the scale of the model and statistical inference are presented. Some techniques
to update the conditional probability in an indicator framework are proposed and some
examples are shown. Some attempts are made to compare the performance of the proposed
methods. Finally, the important concept of non-convexity of the estimator of the conditional
probability is discussed.

About Training Images

Representativeness

Training images are deemed representative of the multivariate spatial characteristics of the
phenomenon under study. This assertion is required to use the statistics extracted from
the training image into the geostatistical model. There is, however, little chance to check
this assumption, and the decision of using or not a training image is left to the expert’s
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judgement.
In general, the training image shares some aspects with the variable of interest, although

the final goal is to extract from it, through statistical inference, some of the key features.
The goal of using a training image is not to reproduce exactly its features, but to extract
its essence. Which features are key and which are not? There is not a clear answer to this
question and the answer is left again to the expert judgement of the modeler. In general,
the objective of using a training image is to obtain models that lead to better decision
making. This cannot be directly expressed as a set of mathematical constraints during the
process of inferring multiple-point statistics from the training image, so heuristic methods
are used.

In practice, not all the features of the training image are captured mainly because of
the method used to define the conditional probabilities. For example, in the single normal
equation simulation (snesim) [16] locations are visited in random order and at every point,
the conditioning data (sample data and previously simulated nodes) are defined within
a search neighborhood. The configuration of the conditioning data is used to scan the
training image. If not enough replications of the geometric arrangement of the conditioning
points are available for reliable statistical inference, then the farthest point is dropped
and the training image is scanned for a reduced multiple-point configuration. Because the
simulation path is random and the conditioning information is changed for inference, there
is no specific set of multiple-point statistics explicitly honored at the end of the simulation.
Each realization will have used a different set of statistics to condition the simulated points.
For an infinitely large (ergodic) domain, the simulated models will tend to honor the same
statistics, but these are not necessarily the same as the training image. Discrepancies may
come from the fact that some configurations are absent in the training image.

Another approach to extracting the essential features of the training image has been
proposed in a neural network context [2], where a validation is performed that permits to
define an error function. The training image is split into a training and a validation set. The
coefficients calculated to train the neural network are also checked against the validation
set. If the neural network starts over fitting the training data, the error in the validation
set increases and the training process is stopped. This procedure still seems questionable,
since the validation is performed with more training data. One possible solution to this
problem would be to validate the training image considering the sample data (if available)
that will condition the simulated models. A cross-validation could be devised where each
conditioning data is taken out of the data set in turn and the conditional distribution at
that data location is estimated from the training image. This would require a fair amount
of data to reliably compute the accuracy in the frequency of the conditional probabilities
from the training image as compared with the data. Training images representing the same
type of deposition environment could be tested to find the one that better fits the data. The
construction of a MP statistics library is seen as a step towards improving the understanding
of these statistics and to allow further research in this field [15].

Extracting multiple-point information from production data in a mining context is possi-
ble [10, 14]. This permits the construction of a data-driven model, where all the information
is extracted from the data available and the use of a training image is avoided. Abundance
of data is required and, realistically, petroleum applications will not benefit from this ap-
proach.
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MP Information and Modelling Scale

When multiple-point information is available and used to infer high-order statistics, the
scale at which the models are built must correspond to the resolution of this available
information. If the simulated model required is denser that the resolution of the data or
the training image used to infer the multiple-point statistics, then some assumption about
the behavior of these statistics at distances smaller than their spacing must be considered.
This poses another problem: positive semi-definiteness of the statistics is required and this
implies some type of modelling of the multiple-point statistics. To clarify this idea, the
problem is similar to inferring the variogram near the origin and its nugget effect in a
mathematically consistent manner, in order to have variogram values for short distances
(actually, the variogram values are needed only up to the resolution of the simulated grid).
In the case of the variogram, there are known models that are licit in the sense that their
positive semi-definiteness has been already proven. Linear combinations of licit variogram
models are also licit, and this provides the flexibility to model almost any experimental
variogram. There is no similar set of functions in the case of multiple-point statistics.

Statistical Inference and Stationarity

Statistical inference is a problem when dealing with multiple-point configurations, since the
estimation of any statistic that simultaneously considers several points in space requires a
large number of replications of that spatial configuration of points and values.

If enough data are available, frequencies are used for inference. The expected value of a
given combination of values and locations is estimated by the frequency of that arrangement
of values and locations found in some training set. This training set can be a training image
or a data set. However, this does not ensure positive semi-definiteness.

As the size of the data sets become larger to allow inference, the issue of stationarity
becomes more critical. We must assume all data belong to the same population and have a
consistent behavior throughout the field, to perform statistical inference. This problem is
also found when dealing with training images.

Updating Techniques to Account for Multiple-Point Informa-
tion

Bayes’ Law

If the information is to be integrated in cokriging, cross-covariances are required between
the single-point data and the multiple-point information. Furthermore, direct covariances
between different multiple-point configurations are also required. This makes the use of MP
statistics unappealing. Some simplifications are required to allow easier integration.

The indicator framework works in terms of probabilities to be below a threshold. Con-
sider the case where the probability of a variable Z to be below a threshold zk at location
u is of interest. We denote this event A. Let all single point information be event B, which
includes the sample data and previously simulated nodes used to calculate the conditional
probability at u (event A) as in indicator kriging. If multiple-point information is available
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(event C), we seek a method to integrate these diverse sources of information to infer the
conditional probability of A given B and C.

Of course, this approach can be generalized to any number of events of different type
(support, dimension, precision) [10].

Bayes’ law gives a formalism to calculate this conditional probability, but it requires the
knowledge of the joint probability of A, B and C:

P (A|B,C) =
P (A,B,C)
P (B,C)

(1)

The multivariate distributions P (A,B,C) and P (B,C) are difficult to infer, thus their
use is avoided in practice. Three simplifying assumptions can be considered:

• Independence between B and C.

• Conditional independence between B and C given A, which leads to the permanence
of ratios or Naive-Bayes assumption [11, 14].

• A multi-Gaussian approximation to find the conditional probability P (A|B,C) as a
linear combination of the two independent conditionals P (A|B) and P (A|C) [10].

Assumption of Independence Between Multiple Events

The assumption of independence between B and C permits the calculation of the joint
probability P (B,C) as the product of the independent probabilities:

P (B,C) = P (B) · P (C)

The expression for the conditional probability of A given B and C is simplified to (see
Appendix for derivation):

P (A|B,C) =
P (A|B)
P (A)

· P (A|C)
P (A)

· P (A) (2)

The assumption of independence between the events B and C can be relaxed and condi-
tional independence can be assumed instead.

Permanence of Ratios Assumption or Naive-Bayes Model

Assuming conditional independence between B and C, we can write the following expres-
sions:

P (B|A,C) = P (B|A)
P (C|A,B) = P (C|A)

The expression for the conditional probability of A given B and C is simplified:

P (A|B,C) =
P (A,B,C)
P (B,C)

=
P (A) · P (B|A) · P (C|A,B)

P (B,C)
=

P (A) · P (B|A) · P (C|A)
P (B,C)
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To get rid of the term for the joint probability of B and C without assuming independence
between them, we can write the same expression, but now for the conditional probability
of A not occurring, that is, of Ā, the complement of A:

P (Ā|B,C) =
P (Ā) · P (B|Ā) · P (C|Ā)

P (B,C)

Now, taking the ratio between these two expressions and after some algebra (see Ap-
pendix), we obtain the permanence of ratios assumption [9]:

P (A|B,C) =
1−P (A)

P (A)

1−P (A)
P (A) + 1−P (A|B)

P (A|B) · 1−P (A|C)
P (A|C)

(3)

This expression does not require a prior knowledge of the relationships between B and C,
that is, all conditional relationships are built based on the assumption that the incremental
information provided by the event B regarding the event A is constant regardless of the
conditioning event C.

Multi-Gaussian Assumption

The redundancy between the sources of information can be calculated if the multivariate
spatial distribution of the variable is known. This is not the case in general; however, the
full multivariate distribution is known in the multi-Gaussian case.

Under the multi-Gaussian assumption, a multiple-point covariance can be fully described
as combinations of second-order covariances (see for example, [13]). Simple indicator kriging
can be used to estimate the conditional expectation of the indicator variable. A multiple-
point event can be expressed as the set of all the single-point events that constitute it.
There is no need to work with multiple-point events in the multi-Gaussian case. Single
points can be used and the conditional expectation can be estimated by simple kriging.

Although variables are not multi-Gaussian, this model can be used to approximate the
redundancy term. In the context of integrating MP information, building an estimator
that combines the estimate of the conditional probability at an unsampled location given
different events could be considered. These events could be the indicator kriging (IK)
estimate of the probability at u, and MP probabilities for different configurations. These
conditioning events are noted as B and C, respectively. Notice that because the assumption
of multi-Gaussianity is used, the events must be disjoint, in the sense that no one single
point should belong to more than one event. Otherwise, the simple indicator kriging system
of equations will be singular.

Assume P (A|B) is known from indicator kriging and P (A|C) can be obtained from
a training image or from production data. We are interested in finding the weights ωB

and ωC such that, if the variable were multi-Gaussian, the linear combination of P (A|B)
and P (A|C) would yield the conditional probability P (A|B,C) (known under multivariate
Gaussianity).

The conditional probability of A can be written as a linear combination of the con-
ditional probabilities calculated with each one of the conditioning events separately (see
Appendix for further explanation):
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P (A|B,C) − P (A) = ωB · (P (A|B) − P (A)) + ωC · (P (A|C) − P (A)) (4)

If event B is made of nB single points and event C is a multiple-point configuration of
nC points, then, under the multi-Gaussian assumption, the joint distribution of both events
can be calculated. The distribution is multivariate Gaussian of order 1 + nB + nC with
mean and variance-covariance matrix:

µ(1+nB+nC)×1 =




P (A)
...

P (A)




Σ(1+nB+nC)×(1+nB+nC) =


 ΣA,A ΣA,B ΣA,C

ΣB,A ΣB,B ΣB,C

ΣC,A ΣC,B ΣC,C




Each sub-matrix corresponds to the covariance matrix between the single point events
that constitute each event, for example:

ΣB,C =




Cov(uB
1 ,uC

1 ) Cov(uB
1 ,uC

2 ) · · · Cov(uB
1 ,uC

nC
)

Cov(uB
2 ,uC

1 ) Cov(uB
2 ,uC

2 ) · · · Cov(uB
2 ,uC

nC
)

...
...

. . .
...

Cov(uB
nB

,uC
1 ) Cov(uB

nB
,uC

2 ) · · · Cov(uB
nB

,uC
nC

)




where uB
i , i =, ..., nB are the locations of the nB single-point events used to obtain the indi-

cator kriging estimate P (A|B), and uC
j , j = 1, ..., nC are the locations of the nC points that

constitute the multiple-point event C and that allow inferring the conditional probability
P (A|C).

When considering the event C, the conditional probability of A given C is calculated
as the simple indicator kriging estimate at location u given the nC samples that constitute
the multiple-point event C.

The weights ωB and ωC in Equation 4 can be seen as a measure of closeness and
redundancy between the events B and C.

Notice that the goal is to use the conditional probabilities P (A|B) and P (A|C) obtained
from different sources. The use of simple indicator kriging is meant to solve for the weights
that yield the right conditional probability, if the variable was multivariate Gaussian and
all the conditional probabilities were calculated by simple indicator kriging.

We calculate the conditional probability of A given a single event B. This conditional
probability can be seen as the indicator kriging estimate of u, given the vector iB of indi-
cator values iB(uB

α ), α = 1, ..., nB, or equivalently, as the linear regression estimate of the
probability of A given B :

P (A|B) − P (A) = ΣA,B · Σ−1
B,B · (iB − P (A)) (5)

Now, expressing the conditional probability of A given both events, that is, accounting
for the redundancy between them, under the multi-Gaussian assumption:
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P (A|B,C) − P (A) =
(

ΣA,B ΣA,C

) ·
(

ΣB,B ΣB,C

ΣC,B ΣC,C

)−1

·
(

iB − P (A)
iC − P (A)

)

The inverse of the covariance matrix can be written as:
(

ΣB,B ΣB,C

ΣC,B ΣC,C

)−1

=
(

D1 D0

DT
0 D2

)

with

D1 = (ΣB,B − ΣB,C · Σ−1
C,C · ΣC,B)−1

D0 = −(ΣB,B − ΣB,C · Σ−1
C,C · ΣC,B)−1 · ΣB,C · Σ−1

C,C

D2 = Σ−1
C,C +

(
(ΣB,B − ΣB,C · Σ−1

C,C · ΣC,B)−1 · ΣB,C · Σ−1
C,C

)T

· ΣB,C · Σ−1
C,C

That is,

P (A|B,C) − P (A) =
(
ΣA,B · D1 + ΣA,C · DT

0

) · (iB − P (A))+
(ΣA,B · D0 + ΣA,C · D2) · (iC − P (A)) (6)

In order to determine the weights assigned to the conditional probabilities P (A|B) and
P (A|C), we can rewrite the conditional probability on Equation 4 using Equation 5:

P (A|B,C) − P (A) = ωB ·
(
ΣA,B · Σ−1

B,B · (iB − P (A))
)

+

ωC ·
(
ΣA,C · Σ−1

C,C · (iC − P (A))
) (7)

To identify the conditional probabilities of Equations 6 and 7, the approximate values
for ωB and ωC can be defined:

ωB =
‖ΣA,B · D1 + ΣA,C · DT

0 ‖
‖ΣA,B · Σ−1

B,B‖ ωC =
‖ΣA,B · D0 + ΣA,C · D2‖

‖ΣA,C · Σ−1
C,C‖

(8)

Because the goal is to combine two estimates, the weights must be numbers, not vectors.
The ideal case to apply this method is when the vector ΣA,B ·D1 +ΣA,C ·DT

0 is proportional
to ΣA,B · Σ−1

B,B, and the vector ΣA,B · D0 + ΣA,C · D2 is proportional to ΣA,C · Σ−1
C,C . In

general, these pairs of vectors are not proportional to each other. The calculation of ωB

and ωC under these circumstances is an approximation of the proportionality coefficient if
they were proportional.

We can consider some extreme cases of the linear combination of estimates presented
above. A first extreme case is to assume independence between the events. This amounts to
setting the cross-terms ΣB,C and ΣC,B as 0. D0 becomes zero, D1 is reduced to (ΣB,B)−1,
and D2 is simplified to (ΣC,C)−1. Thus, ωB = ωC = 1. The estimate built as a linear
combination is then just the sum of the two (independent) estimates of the conditional
probability.

Independence of B and C is, in the context presented here, not a good assumption,
since C is very close to u and B is correlated with A, therefore it should also be correlated
with C.
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Notice that this procedure to estimate weights that measure the redundancy between
the sources of information can be extended to any arbitrary number of conditioning events
[10].

In a general case, where the indicator variable does not come from a multivariate Gaus-
sian distribution but where quantifying the redundancy between the two sources of infor-
mation B and C appears impossible, the weighting proposed under the multi-Gaussian
assumption could be used to approximate the solution.

Implementation

In the implementation of these methods a few problems may arise. First, the property
of Bayesian updating under the independence assumption between the sources of informa-
tion can lead to severe order relation deviations, since under this assumption, the updated
probability can easily take values below zero and above one. This problem is not severe
under the assumption of permanence of ratios and under the multi-Gaussian assumption to
assess the relationship between the sources of information. These two methods show order
relation deviation of the same magnitude as the estimation of the conditional probability
by indicator kriging. Permanence of ratios gives an updated probability always within the
interval [0,1], provided each component falls within this interval. In the case of approx-
imating the redundancy through a multi-Gaussian assumption, order relations should be
minor, since the weighting will prevent the estimated probability from departing largely
from the interval [0,1]. Deviations should occur with approximately the same frequency as
when indicator kriging is used.

A second problem is the inconsistency between the univariate distributions of the dif-
ferent sources of information. The methods assume stationarity: the proportions below
the thresholds are the same no matter what source of information is considered. This is
not always the case. Corrections are needed to solve this problem. The goal is to make
the estimator unbiased. The simplest solution is to standardize the conditional probability
from the source whose marginal distribution differs from the target distribution. Con-
sider that the source from where P (A|B) is obtained has a marginal distribution such that
P (A)B �= P (A), then the following standardized conditional probability is used:

P (A|B)∗ = P (A|B) · P (A)
P (A)B

The methods for integrating different events have been implemented. Consider the
following definitions for the events (Figure 1):

A : The event of having Z(u) ≤ zk, where zk corresponds to a threshold value.

B : The nB single points used to inform the location u. These points are located in a
neighborhood of u. They correspond to the data used to solve the simple indicator
kriging system to estimate the conditional probability at u.

C : The multiple-point event formed by a set of nC points, usually very close or adjacent
to the location of interest u.

9



A=Prob{I(u)=0} B: single-points for IK

C: MP pattern of informed adjacent nodes

Figure 1: Example of three events. A corresponds to the probability of the grey node not to
exceed a threshold value. Six single-point events are found in a search neighborhood of the
node being estimated. They are illustrated as white and black nodes. B is formed by all the
single point events that are not part of the multiple-point configuration that constitutes C.
From the six single-points found in the search neighborhood, only the white nodes (nB = 4
points) will be used to get the IK estimate, to avoid singularity due to full redundancy with
the nodes in C. C is the multiple-point event formed by nC = 2 points adjacent to the
node whose conditional probability is being estimated. They appear as black nodes. The
probability of A given the information in C is obtained either from a training image or
from data.

B will help reproduce the long range structure of the variable, while C will locally modify
the estimation of the probabilities to consider more complex multiple-point information. It
will integrate some of the MP information to the indicator kriging estimator.

In the following examples, a set of very simple two-dimensional patterns are used and
the probabilities are inferred from training images built to investigate the performance of
each technique. The idea is to use only the four adjacent nodes to the one being estimated
(Figure 2). The probabilities are associated with the frequencies of having those configu-
rations in the training image. Since every node is coded as an indicator, for each p-point
configuration there are 2p combinations of zeros and ones possible. The total number of
MP events from which the probabilities of occurrence must be obtained, is 81:

4∑
i=0

(
4
i

)
× 2i = 1 × 1 + 4 × 2 + 6 × 4 + 4 × 8 + 1 × 16 = 81

If a combination of the indicators is not found in the training image, no updating will
take place and the updated probability will correspond exactly to the one obtained by
indicator kriging.

Examples

Several reference images have been built to have a training image for MP statistics, and for
a visual reference. Four methods are used to generate unconditional realizations: sequential
indicator simulation (SIS), updating under the independence assumption between B and
C, updating under the permanence of ratios assumption, and combining estimates under
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4 points

3 points

2 points

1 point

0 points

Figure 2: Multiple-point patterns with adjacent grid nodes. The gray node is the one being
estimated. The patterns correspond to the four adjacent nodes to the node of interest. The
probabilities are extracted from the training image even when some of the nodes are not
informed, generating the three-, two-, one-, and zero-point patterns.

the multi-Gaussian assumption. All methods are simulated unconditionally and with the
same random path for comparison.

Binary images are built with the object based algorithm ellipsim in GSLIB [5]. Different
proportions are tested (p= 10, 50, and 90%) and cases with and without anisotropy.

This section also presents a binary example using training images of continuous variables
and finally an example with multiple thresholds is shown.

Small Isotropic Objects Objects of radius equal to 3 units on a two-dimensional domain
of 100 by 100 nodes, with a spacing of one unit are simulated as a reference. The four
methods proposed are used to generate one realization of the phenomenon. Figures 3, 4,
and 5 show the results.

Large Isotropic Objects Larger objects were simulated, with a radius of 9 units, under
the same condition as before. The results are shown on Figures 6, 7, and 8.

Small Anisotropic Objects Ellipses with an anisotropy at 30 degrees and major radius
of 6 units and minor radius of 3 units were generated, again using different proportions (10,
50, and 90 %). The results are presented in Figures 9, 10, and 11.

Large Anisotropic Objects Finally, larger anisotropic ellipses were generated to extract
the MP statistics and then simulated with the four methods. The major radius is 18 and
the minor radius is 9 units. Figures 12, 13, and 14 show the resulting maps.
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Figure 3: Maps of simulated values for small isotropic objects. Proportion above the thresh-
old is 10 %
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Figure 4: Maps of simulated values for small isotropic objects. Proportion above the thresh-
old is 50 %
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Figure 5: Maps of simulated values for small isotropic objects. Proportion above the thresh-
old is 90 %
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Figure 6: Maps of simulated values for large isotropic objects. Proportion above the thresh-
old is 10 %
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Figure 7: Maps of simulated values for large isotropic objects. Proportion above the thresh-
old is 50 %
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Figure 8: Maps of simulated values for large isotropic objects. Proportion above the thresh-
old is 90 %
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Figure 9: Maps of simulated values for small anisotropic objects. Proportion above the
threshold is 10 %
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Figure 10: Maps of simulated values for small anisotropic objects. Proportion above the
threshold is 50 %
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Figure 11: Maps of simulated values for small anisotropic objects. Proportion above the
threshold is 90 %
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Figure 12: Maps of simulated values for large anisotropic objects. Proportion above the
threshold is 10 %
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Figure 13: Maps of simulated values for large anisotropic objects. Proportion above the
threshold is 50 %
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Figure 14: Maps of simulated values for large anisotropic objects. Proportion above the
threshold is 90 %
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Figure 15: Maps of simulated values for a binary image taken from a continuous variable.
Proportion above the threshold is 50 %

MP Statistics Extracted From a Continuous Training Image A training image
showing a continuous variable is used in this example. The median threshold has been
chosen to create a binary image. The probabilities of multiple-point events as shown on
Figure 2 are extracted to update the SIS algorithm. The results are shown on Figure 15.
Although the curvilinearity is not captured by any of the methods, the layering that can
be seen on the training image is also seen on the simulated models. The models obtained
with Bayesian updating assuming data independence and permanence of ratios look too
clean. These two methods erase all the noise that can be seen in the reference. On the
contrary, the updating by combining the estimates of the conditional probability under the
multi-Gaussian assumption seems to add too much noise.

Continuous Variable Example The same training image of a continuous variable used
in the last example is now utilized to simulate using multiple thresholds. A variable with a
positively skewed distribution has been characterized with 10 thresholds corresponding to
each one of the 9 deciles, in addition to the quantile 0.95. The indicator variograms for each
thresholds were calculated to perform sequential indicator simulation. The frequency of
occurrence of the MP-patterns that have at least one adjacent node informed are extracted
from the reference image. These statistics are then used to update the SIS simulated model.
Again, all four methods were applied and the results are shown on Figure 16.

Discussion

There are several comments:
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Figure 16: Maps of the continuous simulated values using all five methods for a continuous
variable. Ten thresholds were used to characterize the spatial continuity of the variable.

• SIS generates a map with the correct long range continuity, but there seems to be too
much noise in the short range: multiple-point statistics are clearly not reproduced.
This problem is partially solved via image cleaning. Algorithms such as MAPS [4]
reduce the excessive randomness, but without direct control of the multivariate dis-
tribution.

• Updating under the data independence assumption cleans the image. It looks like a
cleaned SIS output [4]. The short-range anisotropic features of the SIS output look
more isotropic than the training image, maybe because of the small size of the pattern
used to extract the MP statistics, which does not reflects anisotropies very clearly. In
general, the result is more similar to the training image.

• Updating under the permanence of ratios assumption also cleans the image. It is hard
to judge which method gives the better result.

• The idea of combining both estimates of the conditional probability, the one calcu-
lated by indicator kriging of the data not belonging to the pattern used to infer the
MP statistics, and the probability obtained from the MP pattern, performed well.
It compares similarly to the algorithm where the updating is made under the data
independence and permanence of ratios assumptions. However, it approximates the
effect of redundancy between both sources of information, so this assumption should
be more realistic.

The examples presented correspond to unconditional simulations. It was found in these
examples that all the methods generated a bias on the probabilities below each threshold.
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Algorithm SIS Full Indep. Perm. of Ratios MG Assumption
MSE 3.18E-05 1.98E-05 2.48E-05 4.78E-06
MAS 3.36E-02 3.85E-02 4.14E-02 2.71E-02

Table 1: Mean squared error and mean absolute error in the MP probability for the different
algorithms.

This bias was always towards the median. Investigation of the bias showed that it is due to
the correction of order relation deviations as discussed in [12].

The bias is greatly reduced if the following conditions are met [10]: (1) enough condi-
tioning information is available; (2) the size of the simulated domain is large with respect to
the range of correlation of the variogram; and (3) multiple grid search is used to simulate.

Assessing Performance

Comparing the methods is not an easy task. One straightforward approach would be to
look at the histograms of MP probabilities obtained from each simulated model, compared
with the reference probabilities. Classical measures of mismatch could be used, such as a
mean squared error or mean absolute error. Unfortunately, not all the MP configurations
have the same importance, so a small mismatch in an important configuration can pass
unnoticed with a summary statistic of this kind.

This analysis was done to the binary example generated with a training image from
a continuous variable; otherwise, we would need to determine the probabilities for each
threshold and joint-probabilities between thresholds.

The probabilities of each one of the 81 MP configurations was calculated for the reference
and for each one of the four maps generated with the different algorithms. For completeness,
this should be done over multiple realizations with each algorithm, to avoid problems of
ergodicity. The mismatch between the MP probability for each configuration from the
training image and from each simulated map was calculated and plotted (Figure 17). The
absolute value of this error is also presented in Figure 18. In this plot, the multi-Gaussian
assumption appears as the closest to the target probabilities.

Interestingly, the graphs show quite clearly that the estimation of the conditional prob-
ability combining the IK estimate (from the data) and the MP probability estimate (from
the training image) generates smaller errors than the other algorithms. This is also seen
when looking at summary statistics, such as the mean squared error and the mean absolute
error (Table 1). Cases where a given configuration of the multiple-points was not found
are not easily comparable, since the impact of not having a configuration that is present in
the target statistics cannot easily be quantified.

Implementation with real data should provide more insight regarding which method per-
forms the best. The exploratory examples developed in this section only help to anticipate
the improvement in performance of each one of the methodologies proposed.
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Non-Convexity of Estimators

One of the good properties of the estimators, when integrating information from various
sources is the possibility to be non-convex, that is, to generate probabilities outside the
range of the input information. However in the kriging context, this is sometimes deemed
inappropriate since the probabilities may go beyond the allowed range [0,1]. The idea is
that the new method performs better than all the individual sources of information when
estimating the conditional probability at a location of interest.

Bayesian updating under the independence and permanence of ratios assumptions gives
a unique map of the updated probability given the marginal probability of the event of
interest. That is, given P (A), the map of P (A|B,C) as a function of P (A|B) and P (A|C)
is fixed (for example, see Figure 19).

The non-convexity can easily be obtained for these methods, by coding with a different
color all the area of this map where the resulting probability P (A|B,C) is outside the
range defined by the two sources of information P (A|B) and P (A|C). These maps are
presented in Figure 20. The non-convexity of all the methods can also be quantified
during the simulation procedure. At every node, the three probabilities P (A|B), P (A|C),
and P (A|B,C) are known for all the updating methods. The proportion of the time in
which the corresponding algorithm generates a result outside the range of the two input
probabilities can be used as a measure of non-convexity.

Table 2 shows the result for the examples previously presented. In general, the linear
combination of estimates under the multi-Gaussian assumption generated more estimates
outside the range of the probabilities inferred from the two sources B and C. The high
fraction of estimates outside the range of the input probabilities for the case of assuming
independence of the sources of information is mostly due to the large order relations that
this method generates. The non-convexity of this method is undermined by the corrections
required to keep the probabilities in the allowable interval.
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Example Full Indep. Perm. of Ratios MG Assumption
Small isotropic objects p = 0.10 0.76 0.25 0.65
Small isotropic objects p = 0.50 0.66 0.45 0.55
Small isotropic objects p = 0.90 0.40 0.34 0.52
Large isotropic objects p = 0.10 0.72 0.24 0.72
Large isotropic objects p = 0.50 0.59 0.31 0.63
Large isotropic objects p = 0.90 0.26 0.17 0.63

Small anisotropic objects p = 0.10 0.75 0.25 0.66
Small anisotropic objects p = 0.50 0.60 0.37 0.59
Small anisotropic objects p = 0.90 0.33 0.26 0.58
Large anisotropic objects p = 0.10 0.68 0.22 0.74
Large anisotropic objects p = 0.50 0.59 0.29 0.65
Large anisotropic objects p = 0.90 0.25 0.14 0.64

Real example - One threshold p = 0.50 0.85 0.85 0.35
Real example - Ten thresholds 0.82 0.78 0.29

Table 2: Fraction of the nodes updated where P (A|B,C) was outside the range of P (A|B)
and P (A|C).

Discussion

The use of multiple-point statistics in geostatistical simulation is cumbersome. Many issues
make their use difficult. Stationarity, inference, and the scale of the model are some of the
issues we discussed in this paper. The integration of MP statistics requires simplifications
to the correct expression obtained by Bayes’ law. We discussed several approximations
to facilitate the calculation of the conditional probability considering the multiple-point
information in an indicator framework.

The assumption of permanence of ratios has several nice properties that suggest it
should perform better than the full independence assumption for updating a conditional
probability. The examples presented here showed a similar performance of these updating
techniques.

Linearly combining the estimates of indicator kriging with the farthest data and the
probability of the MP event constituted by the closest (adjacent) nodes to the location
being simulated calls for an assumption of dependence. The multi-Gaussian framework is
used because of its convenient mathematical properties. The estimation of MP covariances
is done by combining two-point covariances. This greatly simplifies the integration of infor-
mation and allows the calculation of factors (or weights) to be assigned to each estimate.
The resulting probability is often outside the range of the input probabilities, which is a
nice property, since it means that the updated probability is better informed than the two
input probabilities. The examples presented showed a reasonably good performance of this
method.

Further research is required to better assess the performance of these methods and to
explore some of the other issues exposed in this paper.

References

[1] B. G. Arpat, J. Caers, and A. Haas. Characterization of West-Africa submarine channel reser-
voirs: A neural network based approach to integration of seismic data. In 2001 SPE Annual

24



0.05
0.15

0.25
0.35

0.45
0.55

0.65
0.75

0.85
0.95

0.05

0.20

0.35

0.50

0.65

0.80

0.95

0.00

0.50

1.00

1.50

2.00

P(A|B,C)

P(A|B)

P(A|C)

0.05
0.15

0.25
0.35

0.45
0.55

0.65
0.75

0.85
0.95

0.05

0.20

0.35

0.50

0.65

0.80

0.95

0.00

0.50

1.00

1.50

2.00

P(A|B,C)

P(A|B)

P(A|C)

0.05
0.15

0.25
0.35

0.45
0.55

0.65
0.75

0.85
0.95

0.05

0.20

0.35

0.50

0.65

0.80

0.95

0.00

0.50

1.00

1.50

2.00

P(A|B,C)

P(A|B)

P(A|C)

0.05

0.20

0.35

0.50

0.65

0.80

0.95

0.05
0.15

0.25
0.35

0.45
0.55

0.65
0.75

0.85
0.95

0.00

0.25

0.50

0.75

1.00

P(A|B,C)

P(A|C)

P(A|B)

0.05

0.20

0.35

0.50

0.65

0.80

0.95

0.05
0.15

0.25
0.35

0.45
0.55

0.65
0.75

0.85
0.95

0.00

0.25

0.50

0.75

1.00

P(A|B,C)

P(A|C)

P(A|B)

0.05

0.20

0.35

0.50

0.65

0.80

0.95

0.05
0.15

0.25
0.35

0.45
0.55

0.65
0.75

0.85
0.95

0.00

0.25

0.50

0.75

1.00

P(A|B,C)

P(A|C)

P(A|B)
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Figure 20: Graphs showing in grey the area where the estimated probability P (A|B,C) is
outside the range defined by P (A|B) and P (A|C) given P (A) = 0.25 (top), P (A) = 0.50
(middle), and P (A) = 0.75 (bottom). The plots on the left show the maps under the
assumption of full independence between B and C. The plots on the right show the maps
under the assumption of permanence of ratios.
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Appendix

Derivation of Equation 2

Recall Equation 1:

P (A|B,C) =
P (A,B,C)
P (B,C)

(9)

Considering B and C are conditionally independent given A and also considering them inde-
pendent from each other, we have the following expressions:

P (B|A,C) = P (B|A)
P (C|A,B) = P (C|A)

P (B,C) = P (B) · P (C)

Now,
P (A,B,C) = P (C|A,B) · P (A,B) = P (C|A,B) · P (B|A) · P (A)

which can be simplified to

P (A,B,C) = P (C|A) · P (B|A) · P (A)

We also know that:

P (C|A) =
P (A,C)
P (A)

=
P (A|C) · P (C)

P (A)
(10)

Similarly,

P (B|A) =
P (A,B)
P (A)

=
P (A|B) · P (B)

P (A)
(11)

Equation 9 can be rewritten:

P (A|B,C) =
P (A,B,C)
P (B,C)

=
P (C|A) · P (B|A) · P (A)

P (B) · P (C)

which entails Equation 2:

P (A|B,C) =
P (A|B)
P (A)

· P (A|C)
P (A)

· P (A)

Derivation of Equation 3

Consider the expression for P (A|B,C) given the assumption of conditional independence between
B and C given A:

P (A|B,C) =
P (A) · P (B|A) · P (C|A)

P (B,C)

A similar expression for the complement of A, noted Ā can be written:

P (Ā|B,C) =
P (Ā) · P (B|Ā) · P (C|Ā)

P (B,C)

The ratio between these two expressions entails:

P (Ā|B,C)
P (A|B,C)

=
P (Ā) · P (B|Ā) · P (C|Ā)
P (A) · P (B|A) · P (C|A)
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Using Equations 10 and 11, and the fact that P (Ā|B,C) = 1−P (A|B,C), P (B|Ā) = 1−P (B|A),
and P (C|Ā) = 1 − P (C|A), we can deduce Equation 3:

P (A|B,C) =
1−P (A)

P (A)

1−P (A)
P (A) + 1−P (A|B)

P (A|B) · 1−P (A|C)
P (A|C)

Derivation of Equation 4

We now show how to derive the weights in Equation 4:

P (A|B,C) − P (A) = ωB · (P (A|B) − P (A)) + ωC · (P (A|C) − P (A))

P (A|B,C) can be calculated by linearly combining the estimates from different sources. To
find the weights, we consider that the phenomenon is multi-Gaussian, hence, we can solve for the
conditional probability with conventional kriging that uses only two point statistics.

The procedure is:

• Use all nB + nC single points to solve the simple indicator kriging system of equations and
find an estimate of P (A|B,C). This estimate is the linear combination of the weights that
solve the kriging system and the indicator kriging values of the nB + nC values (samples and
previously simulated nodes):

P (A|B,C) − P (A) =
(

ΣA,B ΣA,C

) ·
(

ΣB,B ΣB,C

ΣC,B ΣC,C

)−1

·
(

iB − P (A)
iC − P (A)

)

Considering the expression for the inverse of the covariance matrix:

(
ΣB,B ΣB,C

ΣC,B ΣC,C

)−1

=
(

D1 D0

DT
0 D2

)

We can solve for the sub-matrices by multiplying the covariance matrix with its inverse and
setting this product to be equal to the identity:

(
D1 D0

DT
0 D2

)
·
(

ΣB,B ΣB,C

ΣC,B ΣC,C

)
=

(
InB

0
0 InC

)

We have four equations to find three unknowns:

D1 · ΣB,B + D0 · ΣC,B = InB

D1 · ΣB,C + D0 · ΣC,C = 0
DT

0 · ΣB,B + D2 · ΣC,B = 0
DT

0 · ΣB,C + D2 · ΣC,C = InC

The first two equations allow the calculation of D1:

D1 · ΣB,B + D0 · ΣC,B = InB

D0 = −D1 · ΣB,C · Σ−1
C,C

hence,
D1 · ΣB,B + −D1 · ΣB,C · Σ−1

C,C · ΣC,B = InB

⇒ D1 = (ΣB,B − ΣB,C · Σ−1
C,C · ΣC,B)−1
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And now, we can calculate D0:

D0 = −D1 · ΣB,C · Σ−1
C,C

⇒ D0 = −(ΣB,B − ΣB,C · Σ−1
C,C · ΣC,B)−1 · ΣB,C · Σ−1

C,C

Finally, we can obtain the expression for D2:

DT
0 · ΣB,C + D2 · ΣC,C = InC

⇒ D2 = Σ−1
C,C − DT

0 · ΣB,C · Σ−1
C,C

⇒ D2 = Σ−1
C,C − (−(ΣB,B − ΣB,C · Σ−1

C,C · ΣC,B)−1 · ΣB,C · Σ−1
C,C)T · ΣB,C · Σ−1

C,C

⇒ D2 = Σ−1
C,C +

(
(ΣB,B − ΣB,C · Σ−1

C,C · ΣC,B)−1 · ΣB,C · Σ−1
C,C

)T

· ΣB,C · Σ−1
C,C

We can now re-write the expression for the conditional probability:

P (A|B,C) − P (A) =
(

ΣA,B ΣA,C

) ·
(

D1 D0

DT
0 D2

)
·
(

iB − P (A)
iC − P (A)

)

P (A|B,C) − P (A) =
(
ΣA,B · D1 + ΣA,C · DT

0

) · (iB − P (A))+
(ΣA,B · D0 + ΣA,C · D2) · (iC − P (A))

• Use only the nB points of the farthest single points to solve the simple indicator kriging system
and find an estimate of P (A|B).

P (A|B) − P (A) = ΣA,B · Σ−1
B,B · (iB − P (A))

• Repeat with the nC single points (that constitute the multiple-point event) and solve a simple
indicator kriging system to estimate the conditional probability P (A|C). Notice that this
estimate does not have to be equal to the value obtained from a secondary source (either a
training image or production quasi-exhaustive data).

P (A|C) − P (A) = ΣA,C · Σ−1
C,C · (iC − P (A))

• Since we are interested in obtaining the weights to linearly combine the estimates as if they
were multi-Gaussian, we have the expression:

P (A|B,C) − P (A) = ωB · (P (A|B) − P (A)) + ωC · (P (A|C) − P (A))

(
ΣA,B · D1 + ΣA,C · DT

0

) · (iB − P (A)) + (ΣA,B · D0 + ΣA,C · D2) · (iC − P (A)) =

ωB · ΣA,B · Σ−1
B,B · (iB − P (A)) + ωC · ΣA,C · Σ−1

C,C · (iC − P (A))

Identifying the terms common to (iB − P (A)) and (iC − P (A)), we can set the following
identities: (

ΣA,B · D1 + ΣA,C · DT
0

)
= ωB · ΣA,B · Σ−1

B,B

(ΣA,B · D0 + ΣA,C · D2) = ωC · ΣA,C · Σ−1
C,C

And a possible solution (see Equation 8) is to take the ratio between the norms of the vectors
on each side of the equations:

ωB =
‖ΣA,B · D1 + ΣA,C · DT

0 ‖
‖ΣA,B · Σ−1

B,B‖ ωC =
‖ΣA,B · D0 + ΣA,C · D2‖

‖ΣA,C · Σ−1
C,C‖
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