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Abstract

The Disjunctive Kriging formalism has been implemented for a number of tasks in geostatis-
tics. Despite the advantages of this formalism, application has been hindered by presenta-
tions that assume a fairly advanced level of mathematical familiarity. This paper will go
through the steps to perform Disjunctive Kriging in a simple case.

The global stationary distribution of the variable under consideration is fit by Hermite
polynomials. Disjunctive Kriging amounts to simple kriging to estimate the polynomial val-
ues at an unsampled location. These estimated values completely define the local distribution
of uncertainty. It is straightforward to implement this formalism in computer code, but a
clear exposition of the theoretical details is required for confident application and any future
development.

Introduction

Disjunctive Kriging (DK) has been available for more than 25 years, however the seemingly
complex theory makes it unappealing for most practitioners. DK is a technique that pro-
vides advantages in many applications. It can be used to estimate the value of any function
of the variable of interest, making it useful to assess truncated statistics for recoverable
reserves. DK provides a solution space larger than the conventional kriging techniques that
only rely on linear combinations of the data. DK is more practical than the conditional
expectation, since it only requires knowledge of the bivariate law, instead of the full multi-
variate probability law of the data locations and location being estimated [7, 9, 11, 12, 14].

The theoretical basis of DK is sound, internally consistent, and has been extensively
developed and expanded, among geostatisticians [1, 2, 4, 8, 10, 13]. In practice, those
developments have not been applied to their full potential. DK has been applied mainly
with the use of Hermite polynomials and the bivariate Gaussian assumption [6, 15]. The
discrete Gaussian model for change of support has been used in practice. Still, relatively few
practitioners have mastered DK. The discomfort of many practitioners is due in part to the
difficult literature focussed on theory rather than applications. The available theoretical
work uses complicated notation and the steps are explained for those very comfortable
with mathematics. There is a need for detailed documentation of DK with emphasis on
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implementation and practical details. This work aims to present DK in a rigorous manner,
with greater focus on its practical aspects.

We start by presenting some background on Hermite polynomials, the bivariate Gaussian
assumption, and then introduce DK with an example. More extensive theory can be found
in Chilès and Delfiner [3], Emery [5], and Rivoirard [14].

Hermite Polynomials

Before getting into DK, we need to define and review some of the properties of Hermite
polynomials. This family of polynomials is important because it will help us parameterize
conditional distributions later on.

Hermite polynomials are defined by Rodrigues’ formula:

Hn(y) =
1√

n! · g(y)
· dng(y)

dyn
∀n ≥ 0 (1)

where n is the degree of the polynomial,
√

n! is a normalization factor, y is a Gaussian
or normal value, and g(y) is the standard Gaussian probability distribution function (pdf)
defined by

g(y) =
1√
2π

· e−y2/2

For a given value of y the polynomial of degree n, Hn(y), can easily be calculated and
will result in a specific number (Equation 1).

A useful recursive expression exists to calculate polynomials of higher orders. This
recursion is important for computer implementation:

Hn+1(y) = − 1√
n + 1

· y · Hn(y) −
√

n

n + 1
· Hn−1(y) ∀n ≥ 1 (2)

This expression along with the knowledge of the first two polynomials is enough for fast
calculation up to any order. The first three polynomials are given as an example:

H0(y) = 1
H1(y) = −y (3)

H2(y) =
1√
2
· (y2 − 1)

These polynomials have the following properties:

1. Mean of Hn(Y ) is 0, except for the polynomial of order 0, which has a mean of 1.

2. Variance of Hn(Y ) is 1, except again for the polynomial of order 0 which is constant
and therefore its variance is 0.

3. Covariance between Hn(Y ) and Hp(Y ) is 0 if n �= p. This property is known as or-
thogonality and can be understood in the same manner as the factors and principal
components in multivariate statistical analysis; they correspond to uncorrelated com-
ponents of a function of Y . Of course, if n = p the covariance becomes the variance
of Hn(Y ). A covariance of zero is sufficient for full independence if the multivariate
distribution is Gaussian.
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Hermite polynomials form an orthonormal basis with respect to the standard normal
distribution, other polynomials families can be considered if a different transformation of
the original variable is performed [3, 5].

Bivariate Gaussian Assumption

Consider the variable Y distributed in space. We can define the random function model
{Y (u),∀u ∈ Domain}, where u is a location vector in the three-dimensional space. Taking
a pair of random variables Y (u) and Y (u + h), we say they are bivariate Gaussian if their
joint distribution is normal with mean vector µ and variance-covariance matrix Σ. In this
case, we can write:

(Y (u), Y (u + h)) ∼ N2(µ,Σ)

µ =

(
0
0

)
Σ =

(
1 ρ(h)

ρ(h) 1

)

Notice that these two terms, the mean vector and variance-covariance matrix, fully
define the bivariate Gaussian distribution of Y (u) and Y (u + h). The correlogram ρ(h)
gives all the structural information of the bivariate relationship.

Under this assumption, one additional property of Hermite polynomials is of interest.
The covariance between polynomials of different order is always 0, and if the order is the
same, it identifies the correlation raised to the polynomial’s degree power, that is:

Cov{Hn(Y (u)), Hp(Y (u + h))} =

{
(ρ(h))n if n = p
0 if n �= p

(4)

The only term that is left is the covariance between polynomial values of the same degree
for locations separated by a vector h. Since ρ(h) < ρ(0) = 1, this spatial correlation tends
rapidly to zero as the power n increases, that is, the structure tends to pure nugget. Also,
notice that there is no spatial correlation between polynomials of different orders.

Fitting a Function with Hermite Polynomials

Any function with finite variance can be fitted by an infinite expansion of Hermite polyno-
mials in the same way that this could be done using a Taylor or Fourier expansion. Hermite
polynomials are used instead of using the derivatives of the function or sines and cosines.
The idea is to express the function of y as an infinite sum of weighted polynomial values.

f(y(u)) = f0 + f1 · H1(y(u)) + f2 · H2(y(u)) + · · ·
=

∑∞
n=0 fn · Hn(y(u))

(5)

The only question that remains is how to find the coefficients fn, ∀n. This can be done
by calculating the expected value of the product of the function and the polynomial of
degree n:

E{f(Y (u)) · Hn(Y (u))} = E{∑∞
p=0 fp · Hp(Y (u)) · Hn(Y (u))}

=
∑∞

p=0 fp · E{Hp(Y (u)) · Hn(Y (u))} (6)
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The expected value can be taken inside the summation, since it is a linear operator and
the coefficients fp are constants.

Notice that the expected value of the product of polynomials of different degrees corre-
sponds to their covariance. The property of orthogonality comes in so that all terms where
p �= n equal zero and we only have the ones where p = n. In these cases, the covariance
becomes the variance that equals 1. We can then simplify Equation 6 and get an expression
to calculate the coefficients fn:

fn = E{f(Y (u)) · Hn(Y (u))}

We can rewrite this expression and write the expected value in its integral form, which
will later be discretized for numerical calculation:

fn = E{f(Y (u)) · Hn(Y (u))} =
∫

f(y(u)) · Hn(y(u)) · g(y(u)) · dy(u) (7)

It is worth noting that the coefficient of 0 degree corresponds to the mean of the function
of the random variable. This can be seen directly from Equation 7, since, if n = 0, then
Hn(Y (u)) = 1 and the integral becomes the definition of the expected value of f(Y (u)). A
second point of interest is that the variance of the function of Y (u) can also be calculated
(although we are not going to show it here) and corresponds to the infinite sum of squared
coefficients [14]. In summary:

E{f(Y (u))} = f0 (8)

V ar{f(Y (u))} =
∞∑

n=1

(fn)2 (9)

The practical implementation of this expansion calls for some simplifications: the infinite
expansion is truncated at a given degree P . The truncation causes some minor problems,
such as generating values outside the range of the data. These values can simply be reset to
a minimum or maximum values. If the number of polynomials used is large enough, these
problems are of limited impact.

Practical Implementation

Fitting a Global Distribution

Consider the normal score transform (also known as the Gaussian anamorphosis in most
DK literature) of a variable Z with N available samples at locations uα, α = 1, ..., N . The
cumulative distribution function (cdf) of Z is denoted FZ(z):

y = G−1(FZ(z)) ⇔ z = F−1
Z (G(y)) = φ(y)

where φ = F−1
Z ◦ G, in shortened notation, is the anamorphosis function.

This normal score transformation is often done through a one to one table lookup that
relates the sample data z(uα) with corresponding quantiles of the standard normal distri-
bution G(y) (Figure 1). As an approximation to this quantile matching procedure, we can
parametrize the relationship with a finite number of coefficients. The Hermitian expansion
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of this function up to a degree P is used to give a close approximation to the shape of the
function φ.

Z(u) = φ(Y (u)) ≈
P∑

p=0

φp · Hp(Y (u))

Notice how we use φ as a function, like we used f in the previous section. We know how
to calculate the coefficients:

φ0 = E{φ(Y (u))} = E{Z(u)}
φp = E{Z(u) · Hp(Y (u))} =

∫
φ(y(u)) · Hp(y(u)) · g(y(u)) · dy(u)

(10)

The last expression can be approximated with the data at hand, as a finite summation.
Consider the data values y(u1), y(u2), ..., y(uN ) sorted increasingly. The terms φ(y(u))
become z(u). Since we have N data, we approximate the integral as a sum of N elements:

φp =
N∑

α=1

∫ y(uα+1)

y(uα)
z(uα) · Hp(y(u)) · g(y(u)) · dy(u)

=
N∑

α=1

∫ y(uα+1)

y(uα)
z(uα) · 1√

p! · g(y(u))
· dpg(y(u))

dy(u)p
· g(y(u)) · dy(u)

=
N∑

α=1

z(uα) · 1√
p!

·
∫ y(uα+1)

y(uα)

d

dy(u)

(
dp−1g(y(u))
dy(u)p−1

)
· dy(u)

=
N∑

α=1

z(uα) · 1√
p!

·
∫ y(uα+1)

y(uα)

d

dy(u)

(
Hp−1(y(u)) ·

√
(p − 1)! · g(y(u))

)
· dy(u)

=
N∑

α=1

z(uα) · 1√
p
·
[
Hp−1(y(u)) · g(y(u))

]y(uα+1)

y(uα)

=
N∑

α=1

z(uα) ·
(

1√
p
Hp−1(y(uα+1)) · g(y(uα+1)) − 1√

p
Hp−1(y(uα)) · g(y(uα))

)

with g(y(u1)) = g(−∞) = 0 and g(y(uN+1)) = g(∞) = 0.
This expression can be further simplified by cancelling out the term:

1√
p
· Hp−1(y(uα+1)) · g(y(uα+1))

of the α element of the summation, with the term:

− 1√
p
· Hp−1(y(uα)) · g(y(uα))

of the (α + 1) element of the summation, resulting in the following concise result:

φp =
N∑

α=2

(z(uα−1) − z(uα)) · 1√
p
Hp−1(y(uα)) · g(y(uα)) (11)

In summary, all we need to fit a global distribution with Hermite polynomials is:
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Figure 1: Graphical transformation to normal scores and anamorphosis function for a global
distribution.
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1. The sample data set z(uα), α = 1, ..., N .

2. The Hermite polynomial values computed for each one of the corresponding normal
score transforms of the data y(uα), α = 1, ..., N .

3. The pdf value of a standard normal distribution of all the normal score transforms of
the data g(y(uα)), α = 1, ..., N .

Fitting an Indicator Function

A second application is to use Hermite polynomials to fit an indicator function. Consider a
threshold zc and its corresponding normal score transform yc = G−1(FZ(zc))

We can define the indicator function for the variable Z, which is equivalent to another
indicator function defined for the normal scores:

IZ(u; zc) = Prob{z(u) ≤ zc} = Prob{y(u) ≤ yc} = IY (u; yc)

Again, we can consider expanding this function of Y up to a degree P :

IY (u; yc) =
P∑

p=0

ψp · Hp(Y (u))

The coefficients ψp are the unique coefficients defined for the expansion using Hermite
polynomials for the indicator function, as the fp were the coefficients for the expansion of
the general function f in Equation 5.

The coefficients can be calculated as:

ψ0 = G(yc)
ψp = E{IY (u; yc) · Hp(Y (u))}

=
∫ ∞

−∞
IY (u; yc) · Hp(y(u)) · g(y(u)) · dy(u)

=
∫ yc

−∞
Hp(y(u)) · g(y(u)) · dy(u)

=
1√
p
· Hp−1(yc) · g(yc)

For clarity, let us see how this last step was done. First, recall the definition of the
Hermite polynomial presented in Equation 1 and replace it in the previous equation:

ψp =
∫ yc

−∞
Hp(y(u)) · g(y(u)) · dy(u)

=
∫ yc

−∞
1√

p! · g(y(u))
· dpg(y(u))

dy(u)p
· g(y(u)) · dy(u)

=
1√
p!

·
(

dp−1g(y(u))
dy(u)p−1

)
y(u)=yc

=
1√
p!

· Hp−1(yc) ·
√

(p − 1)! · g(yc)

=
1√
p
· Hp−1(yc) · g(yc)
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It is important to emphasize that the Hermite coefficients for the indicator function are
not the same as the ones shown for the continuous function. The idea behind the expansion
is that for each function a different set of coefficients is found that allows us to express the
function as a linear combination of Hermite polynomials. This expansion fits the function
under consideration.

Application to Uniform and Lognormal Distributions

Two experimental distributions are used to illustrate the procedure. The number of Her-
mite polynomials used is important to get a close match between the original and fitted
distributions. The general procedure to fitting a continuous function with a finite expansion
of Hermite polynomials is:

• Transform the original data zi, i = 1, . . . , N to normal scores

yi = G−1(F (zi)), i = 1, . . . , N

• Calculate the Hermite polynomials for all the Gaussian transformed yi data values
using Equations 2 and 3.

• Calculate the coefficients using Equations 10 and 11.

• Generate the approximate function as the linear combination of the Hermite polyno-
mials weighted by the corresponding coefficients, as in Equation 5.

Data from a uniform distribution are presented in Figure 2, along with the approximated
histogram obtained by Hermite expansion of 100 polynomials. Recall that the expansion
matches the function if an infinite number of polynomials is used, therefore the larger the
number of polynomials, the closer the expansion to reproducing the original distribution.
It was found that any expansion over the order of 25 gave satisfactory results, matching the
statistics up to the fourth significant digit.

Data from a lognormal distribution were fitted with expansions of 10, 50, and 100
polynomials, giving very good match with an expansion of order 100 (Figure 3). Notice
that the approximation for high values seen in the q-q plot does not perform well. This is
due to the truncation of the infinite expansion. The mean was reproduced up to the fifth
significant digit, while the variance was reproduced up to the third significant digit.

Disjunctive Kriging

Disjunctive Kriging (DK) allows the estimation of any function of Z(u), based on a bivariate
probability model. A bivariate Gaussian distribution of the normal scores of the data is
almost always chosen.

DK provides the solution that minimizes the estimation variance among all linear com-
binations of functions of one point at a time.

In simple words, DK relies on the decomposition of the variable (or a function of it) into
a sum of factors. These factors are orthogonal random variables, uncorrelated with each
other, and therefore the optimum estimate can be found by simple kriging each component.
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Figure 2: Original uniform distribution and corresponding reproduction of uniform distri-
bution with 100 Hermite polynomials. A q-q plot of the original and approximated global
distributions shows the excellent match.
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Figure 3: Original lognormal distribution and corresponding reproduction of lognormal
distribution with 100 Hermite polynomials. The q-q plot shows the problem of reproduction
of the upper tail due to the truncation of the infinite expansion.

Consider a random variable Z and a transformed random variable Y , in general its Gaussian
transform. The disjunctive kriging estimate finds the family of functions of Y that minimizes
the estimation variance. Under a particular bivariate assumption, an isofactorial family
of functions can be found. Under the bivariate Gaussian assumption, this family is the
Hermite polynomials. However, other transformations can be done and different orthogonal
polynomials must be used. For a uniform transformation, Legendre polynomials are used.
If the transformation is exponential, Laguerre polynomials are appropriate. They are called
isofactorial families because they decompose the function of the random variable into factors
that are independent. Although in the general case the DK estimate is obtained by simple
cokriging of the functions of different order, if these are independent from each other, just
a simple kriging of the functions of the same order and their posterior linear combination
suffices to obtain the best estimate.

The DK estimate is presented next under the bivariate Gaussian assumption using
Hermite polynomials:

[f(Y (u))]∗DK =
∞∑

p=0

fp · [Hp(Y (u))]∗SK

The expansion is normally truncated at a degree P , usually under 100.
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To calculate the DK estimate the normal score transformation of the data is necessary:

y(uα) = G−1(FZ(z(uα))) α = 1, ..., N

Then, the spatial covariance of the transformed variable ρ(h) is calculated and modelled.
The covariance function is the correlogram because Y has unit variance.

The Hermite polynomials are computed for all the transformed data up to a degree P
using Equations 2 and 3. Finally, the coefficients of the Hermitian expansion, up to a degree
P , can be calculated by Equations 10 and 11.

Simple kriging is performed P times. The estimate of the Hermite polynomial at an
unsampled location u0 is calculated as:

[Hp(y(u0))]∗SK =
n(u0)∑
i=1

λp,i · Hp(y(ui)) ∀p > 0

where λp,i is the simple kriging weight for the data y(ui) and the degree p; n(u0) is the
number of samples found in the search neighborhood used for kriging. Notice that the term
for the mean is not present, since the mean value of the Hermite polynomial is 0, for all
p > 0. Also, note that the SK estimate for the polynomial of degree 0 is 1, since this is its
value by definition (Equation 3).

The weights are obtained by solving the following system of equations:


(ρ1,1)p · · · (ρ1,n(u0))p

...
. . .

...
(ρn(u0),1)p · · · (ρn(u0),n(u0)p)


 ·




λp,1
...

λp,n(u0)


 =




(ρ1,0)p

...
(ρn(u0),0)

p


 (12)

We can now rewrite the DK estimate as:

[f(Y (u0))]∗DK =
P∑

p=0

fp ·

n(u0)∑

i=1

λp,i · Hp(y(ui))




The estimation variance is:

σ2
DK(u0) = V ar{f(Y (u0)) − [f(Y (u0))]∗DK} =

P∑
p=1

(fp)2 · σ2
SK,p

where σ2
SK,p is the estimation variance from SK of the Hermite polynomials for the system

of order p, that is:

σ2
SK,p = σ2

Hp(Y ) −
n(u0)∑
i=1

λp,i · (ρi,0)p

Since σ2
Hp(Y ) = 1,∀p > 0, the estimation variance of DK can be rewritten as:

σ2
DK(u0) =

P∑
p=1

(fp)2 ·

1 −

n(u0)∑
i=1

λp,i · (ρi,0)p
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Example

The following example is presented to illustrate the implementation of DK. Ten sample
values are considered. The sample statistics are:

Mean = 7.278
V ariance = 24.280

To proceed with DK, the global distribution must be fitted with Hermite polynomials.
The normal score transforms have been calculated considering only these ten values as the
global distribution. Table 1 shows the original values, their transforms, the corresponding
probability densities and the values for the Hermite polynomials up to the tenth degree.

Once the Hermite polynomials have been calculated, the next step is to calculate the
coefficients that will be used to fit the global distribution. The coefficients in Equation
11 are calculated in Table 2. The values fp are obtained by summing the elements in the
corresponding columns. Recall that f0 = E{Z}. This expected value is estimated with the
sample mean, that is, f0 = 7.278.

The global distribution is fitted with Hermite polynomials up to the tenth degree. For
comparison, the fitting using 100 Hermite polynomials is also shown on Figure 4.

We are interested in estimating the value of variable Z at location u0 = (0, 0) by
Disjunctive Kriging. Considering a spherical covariance with range of 40 for the Gaussian
transform, we can calculate the estimate at that location given the location of the nearby
samples, as shown on Figure 5.
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Figure 4: Fitting of the global distribution using the ten polynomials. For comparison, a
fitting using 100 polynomials is shown. The fitted distribution is shown as a thick line.

Only three samples are found in the search neighborhood: z(u1) = 3.377 located in
u1 = (−2, 0); z(u2) = 12.586 located in u2 = (4, 0); and z(u3) = 5.398 located in u3 = (0, 4).
A matrix D of absolute distance between the samples, and a vector d with the distance
between the samples and the point to be estimated are built.

D =


 0.00 6.00 4.47

6.00 0.00 5.66
4.47 5.66 0.00


 d =


 2.00

4.00
4.007
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Figure 5: Data configuration. The figure shows the original z data. A search radius is
defined to find the nearby samples to estimate by DK the value of z(u) at location u = (0, 0).
Only three samples are found in the search neighborhood.

The DK estimate is obtained by solving P = 10 simple kriging systems to estimate the
polynomial values that will be combined using the coefficients calculated to fit the global
distribution. Recall that to estimate the polynomial of order p, the covariance must be
exponentiated to the corresponding degree.

Consider for example the simple kriging systems and estimates for the first three poly-
nomials:

[H1(y(u0))]∗SK = λp=1
1 · H1(y(u1)) + λp=1

2 · H1(y(u2)) + λp=1
3 · H1(y(u3))

p = 1 :


 1.000 0.777 0.833

0.777 1.000 0.789
0.833 0.789 1.000


 ·


 λp=1

1

λp=1
2

λp=1
3


 =


 0.925

0.851
0.851




[H2(y(u0))]∗SK = λp=2
1 · H2(y(u1)) + λp=2

2 · H2(y(u2)) + λp=2
3 · H2(y(u3))

p = 2 :


 (1.000)2 (0.777)2 (0.833)2

(0.777)2 (1.000)2 (0.789)2

(0.833)2 (0.789)2 (1.000)2


 ·


 λp=2

1

λp=2
2

λp=2
3


 =


 (0.925)2

(0.851)2

(0.851)2




[H3(y(u0))]∗SK = λp=3
1 · H3(y(u1)) + λp=3

2 · H3(y(u2)) + λp=3
3 · H3(y(u3))

p = 3 :


 (1.000)3 (0.777)3 (0.833)3

(0.777)3 (1.000)3 (0.789)3

(0.833)3 (0.789)3 (1.000)3


 ·


 λp=3

1

λp=3
2

λp=3
3


 =


 (0.925)3

(0.851)3

(0.851)3




Recall that for p = 0 the polynomial is equal to 1 (Equation 3).
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p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8 p = 9 p = 10
Hp(y(u1)) 0.674 -0.385 -0.701 0.097 0.656 0.092 -0.584 -0.225 0.500 0.320
Hp(y(u2)) -1.036 0.052 0.815 -0.468 -0.512 0.644 0.222 -0.683 0.027 0.639
Hp(y(u3)) -0.126 -0.696 0.153 0.593 -0.170 -0.533 0.183 0.490 -0.193 -0.457

λp
1 0.596 0.590 0.580 0.566 0.548 0.528 0.505 0.480 0.535 0.428

λp
2 0.287 0.281 0.272 0.259 0.244 0.227 0.209 0.190 0.234 0.153

λp
3 0.128 0.139 0.147 0.150 0.150 0.147 0.142 0.134 0.148 0.115

[Hp(y(u0))]∗SK 0.088 -0.309 -0.162 0.023 0.209 0.116 -0.223 -0.172 0.245 0.183

Table 3: Simple kriging weights and hermite polynomial values. The estimated Hermite
polynomials for location u0 are shown at the bottom row.

We solve for the weights λp
α, α = 1, ..., n, p = 1, ..., P and estimate each one of the

polynomials for location u0. Table 3 shows the weights, Hermite polynomials for u1, u2,
and u3, and the estimated Hermite polynomial values for u0.

Finally, the DK estimate of z(u0) is obtained by combining these estimated Hermite
polynomial values with the coefficients for the global transformation.

This gives:

[z(u0)]∗DK = [f(y(u0))]∗DK =
P∑

p=0

fp · [Hp(y(u0))]∗SK = 6.462

Conclusion

This paper presents the methodology to estimate the value of a regionalized variable at
an unsampled location by Disjunctive Kriging. The use of the Hermite polynomials as an
isofactorial family was discussed and the most fundamental equations were presented. A
simple example where a single point was estimated was presented, showing all calculations
required to obtain the estimated value.

DK can be applied under a variety of assumptions regarding the bivariate spatial law.
These extensions have not been presented in this paper. Implementation of DK under
the biGaussian assumption and with other isofactorial families of polynomials could be
considered in the future.
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