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Abstract 

Conditional bias is an infamous problem with estimation methods including kriging. Changing estimation 
parameters will mitigate, but not remove, conditional bias. The conditional bias of kriging is well 
understood; however, there is widespread confusion in the literature and among practicing geostatisticians 
regarding the conditional bias of geostatistical simulation.  There is no conditional bias of simulation when 
the simulation results are used correctly.  The correct use of simulation for recoverable reserves estimation 
is to (1) generate multiple realizations conditional to all available data at a small scale, (2) linearly 
average all realizations to the chosen block size and (3) calculate the probability of each block being ore 
and the ore grade of each block.  The “probability of ore” and the “ore grade” are conditionally non-
biased. 

 
Introduction 

The problems of conditional bias are notorious.  Although there have been significant developments in 
geostatistics, conditional bias is still a concern of practical ore reserve estimation.  Most mines base 
recoverable reserves on some type of estimates. Such estimates are often conditionally biased. Attempts to 
improve estimation algorithms have met with some success, but the problems of conditional bias persist. 

Conditional bias occurs when the expected value of the true grade (ZV) conditional on the estimated 
grade (Z*

V = z) is not equal to the estimated grade, that is: 

 E{ZV  | Z*
V  = z} ≠ z (1) 

where the V is symbolic of some volume of estimation, for example, a selective mining unit (SMU). 
Conditional bias is almost always present due to the smoothing effect of all linear estimation procedures, 
including kriging, in the presence of sample data that are relatively widely spaced.  The true grade is 
typically less than the estimated grade when the estimated grade is high and the true grade is typically 
greater than the estimated grade when the estimated grade is low.  

Conditional non-bias occurs when the expected value of the true grade conditional on the estimated 
grade is equal to the estimated grade. In practice, this requires that material believed to have an average 
grade of 1 g/t will, in fact, have an average grade of 1 g/t, and that material supposed to have an average 
grade of 10 g/t will, in fact, have an average grade of 10 g/t. Conditional non-bias is much more stringent 
than global non-bias. Often, in practice, local accuracy is sacrificed for global accuracy, that is, conditional 
bias is accepted in turn for global non-bias. 

A small example has been constructed to illustrate conditional bias (see Figure 1).  Consider 
mineralization with a lognormal histogram with a mean of 1.0 and a variance of 4.0.  The variogram has a 
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relative nugget effect of 20% and an isotropic range of 40 m.  Consider four samples on a regular 20m grid 
to estimate a central 10 m square block in a high and low-grade case.  This is a favorable estimation scheme 
since the nugget effect is relatively low and the range is large relative to the sample spacing.  Nevertheless, 
there is conditional bias, that is, the kriged grade is too high in the high-grade case and too low in the low-
grade case.  

Mine planning is often based on estimates 
calculated from blasthole or drillhole data. 
Adequate follow-up with validation exercises 
on these estimates is important. In practice, 
however, ore/waste selection is based on 
relatively widely spaced sample data and 
limited access to true grades at the same 
support.  This often results in smoothed and/or 
conditionally biased selective mining unit 
(SMU) estimates and, therefore, misleading 
SMU selection, recoverable reserve estimates 
and profit profiles. 

There are many flavors of kriging. 
Uniform Conditioning (UC), Direct 
Conditioning (DC), Disjunctive Kriging (DK), 
the MultiGaussian approach (MG), the Bi-
Gaussian approach (BG) and Median Indicator 
Kriging (MIK) are a few, see Guibal  and 
Remacre (1984) or Marcotte  and David 
(1985). The classical application of kriging to 
mine planning is discussed in David (1977) 
and Journel and Huijbregts (1978). The 
relationship between conditional biases, 
smoothing and various search routines is well 
understood and documented, see Krige  and 
Assibey-Bonsu (1999d, 2000), Krige (1994, 
1996, 1999, 2000) or Isaaks  and Davis (1999) 
for more recent references. 

There are two schools of thought related to the conditional bias and smoothing of ordinary kriging for 
mine planning: 

1. The “conditional bias of block estimates is always wrong” school championed by D.G. Krige, W. 
Assibey-Bonsu and coworkers.  Here, one never accepts block estimates known to be wrong in 
expected value.  Large search routines retaining many conditioning data are implemented to 
minimize uncertainty and conditional bias. The price is block estimates that are smooth and near 
the mean. 

2. The “let’s get recoverable reserves right” school championed by various other practitioners.  The 
idea here is to anticipate the dispersion variance of the true block grades.  Fewer samples are used 
in the kriging plan to increase the variability of the block estimates.  The price here is block 
estimates that are conditionally biased. 

We see the relative merits of both schools; however, there is no reasons to pay with too smooth 
estimates or conditional bias.  We would rather pay with the increased computational and professional time 
to implement simulation correctly.  Creating “probability of ore” and “ore grade” SMU estimates derived 
from multiple geostatistical simulations eliminates conditional bias, corrects smoothing, and accounts for 

Figure 1.  The sketches to the left show the data 
configuration and a central block being estimated (10 m on 
a side) in a high and low-grade case.  The histograms show 
the distributions of true grades conditional to the 20m 
spaced sample data.  The heavy vertical line is the kriged 
grade and the light vertical line is the mean true grade. The 
kriged grade is too high in the high-grade case and too low 
in the low-grade case. 
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uncertainty. This paper demonstrates how valid recoverable reserve estimates can be derived from 
geostatistical simulation.  

The essential idea of using geostatistical simulation for the estimation of recoverable reserves is to (1) 
apply geostatistical simulation to quantify the uncertainty in block grades and account for smoothing, (2) 
calculate the “probability of ore” (PORE) for every SMU as the proportion of simulated block grades above 
cutoff, and (3) calculate the “ore grade” (ZORE) for every SMU as the average of the simulated block grades 
above cutoff.     

Calculating probability of ore PORE and ore grade ZORE estimates for all the mining blocks allows for 
improved recoverable reserves for mine planning; however, these estimates must be properly validated and 
shown to be conditionally non-biased for various cutoff grades. The entire procedure can be largely 
automated so that the mining engineer/geologist gets maps of the PORE and ZORE SMU estimates and their 
corresponding cross validation plots.  The PORE and ZORE block estimates are shown to be conditionally 
non-biased. 

There are numerous advantages to basing mine plans and recoverable reserves on probability of ore 
PORE and ore grade ZORE SMU estimates.  Such estimates are not conditionally biased, have the right 
dispersion variance and account for inherent block grade uncertainties.  The uncertainty involved in 
selection is conveniently represented by PORE maps and the expected ore grade within any subsection of the 
orebody is straightforward to calculate with ZORE maps.  The increased CPU demand of this approach is not 
an issue. 

The recommended methodology is presented with all necessary detail.  A simple example will illustrate 
the procedure. 

 
Methodology 

The language of probability is a well-established way to express uncertainty.  Multiple geostatistical 
realizations of the grades at a fine scale, conditioned by all available data, are constructed with Gaussian or 
indicator simulation techniques to express our uncertainty in the grades: 

 },...,1,,...,1),({ )( LlFqz q
l ==u  (2) 

where the locations uq, q = 1,…, F represent a finely gridded version of the orebody.  There should be 10 
or more “fine” blocks per SMU of volume V and the number of realizations l = 1,…, L should be sufficient 
to reflect uncertainty and avoid decision making based on unrepresentative stochastic features (20-100 are 
considered sufficient). 

These small-scale realizations are linearly block averaged to the mining size V to obtain a new set of L 
realizations at the SMU resolution: 
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The probability of ore PORE and ore grade ZORE for the N SMU locations are calculated from the L 
realizations while applying a cutoff grade zC. An indicator transform is defined for every mining block, for 
every realization: 
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The probability of ore at each location is calculated: 
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The ore grade at each location is calculated: 
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The probability of ore PORE and ore grade ZORE SMU estimates are useful for mine planning.  The ore 
grade ZORE, ore tonnes TORE and waste tonnes TWASTE for a particular subset of N’ mining blocks for a 
particular stage of mining is calculated: 
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where TV is the tonnes of a full block V. Of course, the specific gravity could be modeled geostatistically on 
a by-rock-type basis. 

We must now demonstrate that the PORE and ZORE SMU estimates are conditionally unbiased, that is, we 
must show that: 
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These cannot be proven in all generality since the true distribution of grades will never exactly follow 
our random function (RF) models; however, we could indeed prove these conditionally non-bias conditions 
if the true grades and the simulated grades follow the same RF model, that is, the uncertainty in the true 
grades is modeled correctly by the conditional distribution functions );(*

CjV zF u  sampled by the 
simulation.  In practice, if our simulated realizations reflect the true grades and we have sufficient data to 
estimate all parameters (variogram, histogram, etc) with no error then );();( *

CjVCjV zFzF uu ≈ for all 
locations uj, all volumes V and all cutoff grades zC. Truncated statistics such as PORE and ZORE are the same 
if the distributions are the same, and satisfy relation (8). 

The conditional non-bias of PORE and ZORE estimates can also be demonstrated with extensive data or by 
a simulation exercise.  We could check the true SMU grades coincident with a subset of N SMUs with 

predicted probability of ore p +/- ∆p.  There should be p
N
n

≈  of that subset actually ore, where n is the 

number of true SMU grades above cutoff. For example, if there are 250 SMUs with predicted probability of 
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ore 0.10 +/- 0.025 then 25 of those SMUs should truly be above cutoff, that is, 10.0
250
25

=≈
=

=
p

N
n

. 

And the true ore grade should be equal to the estimated ore grade ZORE at each SMU. 

The preceding approach is simple. The PORE estimates are simply the proportions of grade realizations 
above cutoff, and the averages of those grades (identified to be above cutoff) are the ZORE estimates.  
Checking the conditional non-bias of these estimates is simple and consistent with the theory of cross 
validation.  

 
An Example 

The grades in this example are synthetic, but were chosen to mimic practical mineralization.  
Application to real data is straightforward; however, access to sufficient true grades is limited.  The 
proposed approach will work for any particular grade or variable z. The parameters used in Krige (2000) 
and Assibey-Bonsu are used for easy comparison. 

The exhaustive true grade model is created by unconditional simulation using the “sgsim” program 
from GSLIB.  A grid of 120 by 120 by 120 (1,728,000) values spaced 1m apart with a lognormal 
distribution with a mean grade of 1.0 and a variance of 1.7 is built.  The variogram has a 41% relative 
nugget effect with ranges of 19m in the horizontal and 35m in the vertical. 

A 20m spaced sample data set is now extracted. This 20m grid of samples (216 values) will be used as 
exploration data for subsequent kriging and simulation.   

Checking the conditional bias of probability of ore and ore grade estimates requires knowing the true 
grades at the chosen SMU support.  An SMU size V of 10 by 10 by 10m is chosen and a true grade model is 
calculated by linearly block averaging the fine-scale true grade model. The variance of the re-blocked 
values (the true dispersion variance) is 0.52. 

Ordinary kriging (conditioned to the 20m grid of exploration samples) with 4 and 24 maximum 
conditioning data is performed with the “kt3d” program from GSLIB (see Figure 2). With 4 conditioning 
data, the true underlying block variance is well reproduced (0.55 obtained vs. 0.52 sought) and the slope of 
the regression line is 0.53; however, with 24 maximum data, the variance is severely underestimated (0.20 
vs. 0.52 sought) and the slope of the regression line is 0.88. As expected, the conditional bias when using 4 
maximum data is much more severe than when using 24 maximum data. 

One hundred fine-scale geostatistical realizations, conditioned by the 20m grid of exploration data are 
simulated.  These realizations are then block averaged to the SMU scale. 

The results of the probability of ore PORE and ore grade ZORE SMU estimates are summarized in Figure 
3.  We assumed a base case cutoff grade of 0.5. The high-grade areas have high probabilities of being ore 
and high expected ore grades while the low-grade areas have low probabilities of being ore and low 
expected ore grades. The minimum of the probability of ore estimates is 0.17 and the expected ore grades 
are all greater than the 0.5 cutoff.  

To show that the probability of ore PORE and ore grade ZORE SMU estimates are conditionally unbiased, 
six symmetric probability intervals are chosen. The centers of these probability intervals are the estimated 
probabilities. The proportions of true SMU grades above cutoff within each probability interval are the true 
probabilities. The average grade of ore is calculated. In Figure 4, a cross plot of the true probabilities of ore 
versus the estimated probabilities of ore and the true ore grades versus the estimated ore grades are shown.  
There is perfect correlation between the true and estimated probabilities of ore (the first dot was omitted 
because there was no probability of ore estimate within this symmetric probability interval) and good 
agreement between the mean of true ore grades and estimated ore grades. 

We explored cutoff grades at 0.5, 1.0, and 1.5 (below, at and above the mean).  The results are shown in 
Figure 5.  In all cases, excellent correlation between the true and estimated probabilities of ore exists.  The 
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same sensitivity analysis is done for the ore grade estimates. The agreement of true and estimated ore 
grades also persists. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Figure 2. Cross-plots of the true SMU grades vs. ordinary kriging estimates with 4 and 
24 maximum conditioning data.  There is severe conditional bias and good variance 
reproduction when kriging with 4 conditioning data, and mild conditional bias and poor 
variance reproduction when kriging with 24 maximum data. 

Figure 3. Probability of ore and ore grade estimates using a 0.5 base-case cutoff 
grade at the central X-Y slice (top). The histogram of all 1,728 probabilities of ore 
and ore grade estimates are shown. The minimum of the probability estimates is 
0.17 and all of the estimated ore grades are greater than the 0.5 cutoff. 

Figure 4. The cross-plot of true versus estimated probability of ore and 
true vs. estimated ore grade for the 0.5 base-case cutoff. The probabilities 
are excellently correlated and the mean ore grades are in good 
agreement. 
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Discussion 

The results are not surprising.  Proper application of 
simulation, as we have described it, will always work 
when the simulated realizations make use of the same 
parameters (histogram, variogram, etc) as the true grades.  
Nevertheless, it is valuable to illustrate the correct way to 
use simulation in mine planning.  The example would be 
more convincing with real data; however, it is uncommon 
to have sufficient true grades for proper testing. 

This example has confirmed conventional wisdom, 
that is, ordinary kriging with a limited search routine 
results in good variance reproduction at the expense of 
conditional bias and ordinary kriging with a large search 
reduces conditional bias at the expense of smoothing.  
These are important because practitioners do not have the 
background, resources, or management support to switch 
to simulation using the methodology we have 
documented.  The practitioner will, therefore, still be 
faced with the hard choice of improved global estimation 
of recoverable reserves or estimates with no conditional 
bias.  

  
Conclusion 
Basing mine plans on probability of ore and ore grade 
estimates calculated from multiple geostatistical 
realizations effectively solves the longstanding problem of 
conditional bias.  Geostatistical simulation, the theory of 
block averaging, the calculation of probability of ore 
estimates and ore grade estimates are consistent with 
recoverable reserves estimation for mine planning.  
Implementation is straightforward and the procedure can 
be run on low-level PC’s available at virtually every mine 
site. 
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