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Abstract

Dig limit selection is a difficult problem in mining. There is imprecise knowledge of the min-
eral grade and the dig limits must account for the mining equipment. This paper illustrates a
technique for semi-automatic selection of dig limits. The technique is called semi-automatic
because the user is required to supply initial dig limits. The technique consists of three steps:
(1) transformation of a model of grade uncertainty to a map of expected profit, (2) selection
of the initial dig limits, and (3) iterative perturbation of the initial dig limits to account for
uncertainty and the limitations of mining equipment.

The optimization algorithm, called simulated annealing, is used to iteratively perturb the
initial dig limits until they converge to dig limits that maximise profit and account for the
mining equipment. A number of implementation details are addressed including: selecting
initial dig limits, nested dig limits, and the protocol for dealing with multiple ore types.

Step-by-step examples using real mining data illustrate the technique and its features,
and also a comparison between hand drawn dig limits and automatically generated dig limits
is provided.

Introduction

This paper is concerned with the problem of selecting optimal dig limits. This problem is
difficult due to uncertainty in the precise location of material that can be mined at a profit
(ore) and also due to the limitations of the mining equipment. In some mines ore is further
classified for stockpiling and blending or to be sent to different treatment facilities. Here
the problem of drawing dig limits is just as difficult as with ore/waste dig limits but the
aim is to optimally draw boundaries delineating ore types.

Proper dig limits are important because: (1) it is uneconomical to process waste as
ore or to mine ore as waste, (2) low quality ore can dilute high quality ore and/or defeat
blending practices, (3) large mining equipment cannot efficiently mine tortuous dig limits,
and (4) ore is diluted or lost when the dig limits are too smooth.
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Background

A mine geologist or planning engineer usually draws the dig limits. The decision is based
on assayed blast hole or drill hole information. This assay information rarely provides infor-
mation at a resolution useful for drawing dig limits. Sometimes the blast hole information
is used to draw grade contours which are interpreted as the dig limits. Kriging can be used
construct high-resolution models of grade at unsampled locations. The kriged grade model
is then used to draw the dig limits.

The dig limits are then transferred to the pit by surveying and marking the interface
using stakes. The shovel operator uses the location of the stakes to identify the ore/waste
boundary. Whenever possible the shovel operator will use visible ore/waste contacts in
addition to the pre-determined ore/waste limits. However, in some mining conditions,
particularly in disseminated deposits, visible ore/waste contacts are difficult to discern.

The traditional geostatistical approach to grade mapping involves discretizing the de-
posit into a grid of blocks. This is the classical “sugar cube” style grade model. Dig limits
are usually interpreted as the line that follows the interface between the ore and waste
blocks. These types of dig limits are called “blockwise” dig limits. An example of a block-
wise dig limit is shown in Figure 1. Blockwise dig limits do not account for the limitations
of the mining equipment because they implicitly assume that the mining equipment can
perfectly select and mine a specific block of material. This is unrealistic. The dig limits
should be calibrated to the mining equipment and should involve an optimization procedure
that minimizes equipment induced dilution and maximizes profit. Occasionally blockwise
dig limits are smoothed to account for the mining equipment; however, the use of arbitrary
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Figure 1: Hypothetical block-by-block dig limit.
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smoothers, such as hand contoured maps or erosion-dilation routines, does not account for
the value of the material affected by the smoothing [22].

The high-resolution grade model is then used to draw the dig limits. Contour maps
and kriging derived dig limits do not account for uncertainty. Geostatistics has tools for
constructing and quantifying the uncertainty in the grade between sample locations. Un-
certainty is quantified in the form of multiple realizations [3, 12, 16].

Simulated Annealing (SA)

Since its development as an optimization algorithm SA has solved many optimization prob-
lems once thought intractable. The problems share three characteristic features: (1) the
decision space is very large, (2) the global objective function is not well behaved, and (3)
global objective function consists of multiple objectives that sometimes conflict. The classic
example of the types of problem that SA has solved is that of the travelling salesman: a
salesman must visit n cities only once and return to the starting city.

SA has been referred to as “The Algorithm of the Gods” by Scientific American [2].
Simulated annealing was chosen for its ability to solve a large variety of problems and the
speed at which it can arrive at the optimal answer. The first application of simulated
annealing to the geosciences was by Farmer [9]. Deutsch applied SA to the problem of
generating models of uncertainty [4, 6].

Methodology

The proposed technique involves minimal additional effort and can yield profit improvements
of 1–2%. The improvement may seem meagre, but over the life of a mine this is a substantial
amount of money. The technique could be integrated into an automated grade control
program guided by GPS (Global Positioning System). Haul trucks could be automatically
dispatched according to the grade control program. A multiple step approach for selecting
dig limits is proposed:

1. Construct a model of uncertainty in grade using geostatistical simulation.

2. Transform the models of grade to models of profit and calculate the expected profit
at each location.

3. Use the expected profit map to draw initial dig limits and use simulated annealing to
optimize them.

The overall program takes very little time to complete for large benches even on a modest
PC. Note that the ore/waste classification decision is avoided until the very last step, as
this is dependent of the dig limits. The final dig limits account for uncertainty, multiple ore
types, and the limitations of the mining equipment.
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There are numerous advantages to basing the ore/waste classification on maximum prof-
itability rather than on an estimated grade map. Profitability assessment is improved by
explicitly accounting for uncertainty in the grade estimation and the economic consequences
of misclassification. Spatial/temporal variations in milling costs, mining costs, plant recov-
eries, and metal prices can be incorporated into a profit based grade control program.

Most deposits that are mined contain multiple minerals. A profit based grade control
program easily handles this problem by transforming each mineral to profit and combining
the profit. The effect of contaminants can be transformed to an impact on profit. The
final product of the grade to profit transformation is a map of expected profit values for
selecting dig limits. Using an expected profit map accounts for uncertainty. This simplistic
approach does not account for the complex mineral interactions. The exact process of
transforming the models of grade to profit is unique to each mine because each deposit has
unique features, interactions between minerals, and milling processes.

The Grade to Profit Transform

Most mining operations understand the unique and complex interactions at their site that
affect the quality of the final concentrate or smelter feed. The following grade-to-profit
transform is very simplistic and is used for illustrative purposes only. Each mine is imposes
their own criteria for a valid profit transformation. The proposed grade to profit transform
has four components:

1. The grade information (zl(u), l = 1, . . . , L): The grades at the location being
considered are represented by a model of uncertainty consisting of L realizations built
using geostatistical simulation.

2. The cutoff grade (zc): The cutoff grade is often defined by management. In general,
it is interpreted as the grade at which the mine can operate without loss. Market
conditions and the recovery process control the cutoff grade. Other considerations
include the mining cost, administration cost, and contract obligations.

3. The recovery curve (r(z)): The mineral recovery generally increases with increasing
grade, or a constant value may be used.

4. The price per unit mineral (price): The selling price of the mineral.

Figure 2 shows a grade to profit transform. The transform function could be a best fit
function based on observed recoveries or a continuous function provided by the metallurgical
engineer. The vertical line represents the cutoff grade, zc. The cutoff grade corresponds to
the break even point. If the grade is at or below the cutoff grade, the profit will be less
than 0. The profit at any location is given by:

p = (z · r(z) − zc · r(zc)) · price
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Figure 2: Schematic for transforming the distribution of uncertainty in grade to one in profit. The
grade distribution is shown on the abscissa axis, and the profit distribution is shown on the ordinate
axis. The transform function is shown as a curved line.

Note that this profit function is assumed to be independent of location.
The grade to profit transform is performed at each location u in the model over the L

realizations:

pl(u) = (zl(u) · r(zl(u)) − zc · r(zc)) · price l = 1, . . . , L (1)

The mapped profit value at location u is the expected profit:

P (u) = E
{
pl(u)

}
, ∀u ∈ A, � = ∞, . . . ,L (2)

The result of applying this transform is a map of expected profit that accounts for the
uncertainty in grade. Thus, selecting dig limits on this map of expected profit accounts for
the model of uncertainty.

Consider the hypothetical recovery curve shown in Figure 3. A one tonne block of
material has an average grade of 0.78% copper, the cutoff grade is 0.8%. The expected
grade and profit are calculated using the hypothetical grade distribution shown in Table 1.
The probability of high grades, that is, 1.2 and 1.3 with correspondingly high recovery causes
the expected profit to be positive and the correct classification to be ore. Uncertainty and
a non-linear recovery of mineral result in misclassification when a cutoff grade is used in
the above example.

Similar to using a cutoff grade for classification, using the probability of a block to be
ore does not account for the non-linear grade to profit transformation. Figure 4 shows
distributions of grade for two blocks of material. Both models have the same probability
of exceeding the cutoff grade and would be classified as waste. However, the model on
the right has a higher probability of having a very high grade, and hence a profit-based
classification can change its designation from waste to ore.
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Figure 3: A hypothetical recovery curve.

Table 1: Summary table of results for grade control experiment using a cutoff grade for classification

Realization Grade (%) Recovery (%) Profit (�)
1 0.80 0.70 0.00
2 0.60 0.59 -306.65
3 0.71 0.66 -140.97
4 0.67 0.63 -202.24
5 1.30 0.93 973.50
6 0.59 0.59 -321.22
7 1.20 0.90 780.00
8 0.59 0.59 -321.22
9 0.60 0.59 -306.65
10 0.75 0.68 -78.78

Expected Grade: 0.78 Expected Profit: 7.58

Grade

zc

Grade

zc

Figure 4: Distributions of uncertainty in grade for two blocks of material.
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Expected Profit and Risk. We need to select an expected profit value from P (u) for
mapping and selecting a dig limit. There are economic methods for incorporating risk into
the selection of a value. Our proposed approach does not incorporate risk, we select a risk
neutral position and select the expected profit. The ore-waste decision is repeated a large
number of times over the life of the mine. Incorporating a risk position in the selection of
a value would yield values that systematically under-value or over-value the material and
give sub-optimal results.

Expected Profit and Dig Limits: An alternative approach to mapping expected profit
for selecting dig limits is to superimpose dig limits over the model of uncertainty in profit.
The optimal dig limits would be the dig limits that maximize profit over the model of
uncertainty. We can think of no reason that would prevent this from working. The expected
profit approach was chosen because it should be more efficient in terms of CPU time.

Accounting for Multiple Ore Types: Many mines have multiple mineralizations that
require different treatment facilities, and blending strategies to cope with contaminants. The
procedure for selecting dig limits in the presence of multiple ore types is analogous to the
problem of selecting ore-waste dig limits; just as misclassifying ore and waste reduces profit,
misclassification of ore types reduces profit. The procedure consists of a recursive application
of the ore-waste selection procedure for each ore type. The procedure is described in more
detail below:

1. Construct the N ore type expected profit maps. Do not account for misclassification:
calculate the expected profit as though the block at location u were classified according
to the classification being considered.

2. Rank the N ore type expected profit maps according to importance and give the most
important ore type the highest rank.

3. Let OTPi(u), i = 1, . . . , N be the profit for the ore type currently being considered.
Let OTPj(u), j = 1, . . . , N − 1, j �= i be the ore type profit for the classification
that maximizes the profit.

4. For each location on the ith ore type calculate a new profit that accounts for loss due
to misclassification using the decision rule below:

P (u) =

{
OTPi(u), if OTPi(u) = max[OTPi(u), i = 1, . . . , N ]

OTPi(u) − OTPj(u), otherwise
∀u ∈ A

5. Select the dig limits for the ore type under consideration. The new expected profit
map will have profit regions corresponding to the best ore type classification that have
a positive profit and negative profit (loss) regions that correspond to the profit lost
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due to misclassification. The new expected profit map is analogous to the ore-waste
dig limit problem.

6. Repeat for the next ore type until all ore types are processed. If this is the N th ore
type, the expected profit map will be the ore-waste map.

The set of ore type limits and the ore-waste limits are the dig limits for the area of concern.

Selecting Optimal Dig Limits

Selecting optimal dig limits starts with user supplied initial dig limits that are optimized
using simulated annealing (SA). To use SA, we need to formulate the dig limit problem
in the form of a mathematical equation that is called a global objective function. The
global objective function measures the profit associated with the material contained in the
dig limit and the loss associated with the dig limit tortuosity. The idea is to measure the
loss, randomly change the dig limits, measure the loss after the change, use the simulated
annealing decision rule to accept the change if the loss is reduced or possibly accept the
change if the loss increases, and continue perturbing the dig limits until the loss is minimized.

The global objective function is a linear combination of two component objectives: (1)
the profit for the dig limits, Oprofit, and (2) the loss due to the limitations associated to
the mining equipment, Oloss. The global objective function is:

Oglobal = −1 · Oprofit + λOloss (3)

The optimization algorithm used here minimizes a global objective function. Multiplying the
profit component objective function by −1 satisfies the convention. In the above formulation
dig limits that are too smooth have a large loss due to dilution and low profit. The optimal
dig limits minimize equipment induced dilution and maximize profit which minimizes the
objective function.

Profit objective function. The profit component objective function, Oprofit, is calcu-
lated by summing the fractional profit of all the blocks that lie inside the dig limits. Figure 5
shows an example dig limit superimposed on a grid that represents a map of expected profit.
The shaded area represents the fractional sum of the blocks within the dig limits. The profit
for a dig limit polygon is calculated as:

Oprofit =
nx∑

ix=1

ny∑
iy=1

frac(ix,iy) · p̄(ix,iy) (4)

where fracix,iy is the fractional area of the block indexed at location (ix, iy) within the
polygon and p̄(ix,iy) is the profit for location (ix, iy). The dig limit might represent an ore
polygon or a waste polygon. For either case the procedure is the same.
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Number of vertices = 5
Number of grid blocks = 19

Figure 5: The fractional blocks of expected profit within the dig limits, shown as shaded fractional
areas, are summed to provide the profit from a dig limit polygon.
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Figure 6: An example equipment curve: the ordinate axis is the penalty and the abscissa is the
angle of operation.

Equipment objective function. The loss incurred by the mining equipment is quanti-
fied by accounting for the tortuosity of the dig limit and penalizing the profit accordingly.
Loss is calculated using a penalty function, shown in Figure 6. The abscissa axis represents
the angle defined by three consecutive vertices on the dig limit polygon and the ordinate
axis is the penalty corresponding to each angle. The sum of all the penalties for all angles
is a quantification of how difficult a dig limit is to mine:

Oloss =
nv∑

iv=1

peniv (5)

where peniv is the penalty at vertex iv. Small angles incur higher penalties than large angles
and have a greater impact on profit. We use the term “digability” to summarize how easy a
dig limit can be mined. Dig limits with low digability have maximum profit and minimum
ore loss but are difficult to mine. High digability dig limits have less than maximum profit
due to equipment induced ore loss but are easy to mine.

The maximum penalty, on the ordinate axis, is calculated as the average profit of all
the blocks in the area of interest that have positive profit. The loss per vertex is calculated
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Figure 7: An example equipment curve: the ordinate axis is the penalty and the abscissa is the
angle of operation.

as a percentage of the maximum penalty. Using the average profit over the area of interest
automatically accounts for the value of the blocks. Consider two regions that are identical
in spatial configuration in all respects except that one region has high average grade and
the other has low average grade. We would expect the region with high average grade to
have more tortuous dig limits than the other region. The more tortuous dig limits account
for the higher valued material. Using the average profit ensures that this expectation is
satisfied.

The parameter λ is the digability parameter. The digability parameter is proportional
to digability: when a dig limit with high digability is desired then high lambda values are
selected for the digability parameter and vice versa. The digability parameter “translates”
the penalty function along the abscissa, see Figure 7. The digability parameter calibrates
Oloss to the mining equipment. As λ approaches 0, the emphasis is on profit and a high
degree of selectivity is assumed. As λ increases the emphasis is on the mining equipment
constraints. There is no theory for selecting the parameter λ. It is selected based solely on
professional judgment. A suggested technique for selecting the digability parameter is to
build a catalogue of dig limits. The catalogue should span the range of digability parameters
that stress profit and the mining equipment constraints. The selected digability parameter
strikes the best balance between profit and mining constraints based on professional judg-
ment. Selecting low values for the digability factor yields dig limits that cost more to mine
because more selective equipment is required. Large equipment accepts more dilution, but
it is faster and hence cheaper to mine. The operating strategy of the mine, the skill level
of the operators, and other considerations could be accounted for.

The initial dig limit is perturbed under the decision rule in simulated annealing until
the dig limits conform to optimal dig limits. A perturbation is a random change in a
location for a vertex in the dig limit polygon. The perturbation mechanism is important
in SA optimization problems. Perturbations must not be too drastic or most perturbations
will not be accepted and convergence will be slow; nor can they be too minor or many
perturbations will be required to achieve convergence.

The mechanism chosen is: (1) randomly pick a vertex and (2) choose to move that
vertex with uniform probability within a specified distance (up to 20% of the grid block
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Figure 8: The algorithm randomly selects a vertex and moves it randomly.

dimension). Figure 8 shows the region for perturbation for one vertex of a polygon. This
simple perturbation mechanism must be supplemented by a series of rules including: (1) an
additional vertex is added at the midpoint between the distant vertices if the vertices get
too far apart, (2) vertices are merged if they get too close, and (3) a candidate perturbation
is rejected if the polygon lines cross.

If the random change gives a lower global objective function value, then it is accepted.
If the random change increases the objective function then the perturbation is conditionally
accepted using the simulated annealing decision rule.

Handling Multiple Polygons

The dig limit algorithm solves for a single ore/waste dig limit at a time. Most benches
require multiple ore and waste dig limits. Multiple dig limits can be drawn using a decom-
position approach. Figure 9 shows a map of a waste region inside of larger ore body. The
first step of the decomposition approach is to select initial dig limits for the ore region as
shown in Step 1 in Figure 9. The next step is to select the initial dig limits for the small
waste region as shown in Step 2. The total profit of the bench is defined as the sum of
profit over all np polygons:

Oprofitability =
np∑

ip=1

pip

where pip is the profit of the ipth polygon. The composite dig limits represent the dig limits
for the entire bench.

Examples

Two examples are provided to illustrate the application of the dig limit algorithm. The first
example is a simple disseminated copper mine, and the second example is a polymetallic
zinc/copper mine. The parameters for the program, diglim, are explained in the appendix.
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Figure 9: A decomposition approach is used to obtain the dig limits.

Copper Mine Example

There are 372 blasthole data with an average copper grade of 1.015% and a standard
deviation of 1.19%. A kriged map of the grades, generated from the data, is shown in
Figure 10 for reference only. A high resolution realization from the simulation is shown in
Figure 11. Sequential Gaussian simulation was used to construct 100 realizations. A block
averaged realization is shown in Figure 12 (the same shown in Figure 11). We considered a
cutoff grade of 0.5% copper. The transform function used has been shown in the previous
discussion. Figure 13 shows the expected profit map that was used to select dig limits.

The initial dig limits are shown in Figure 14. During the implementation of the program
a portion of the line was perturbed. The dashed portion of the line was not perturbed while
the solid portion of the line was perturbed. The optimized dig limit, shown in Figure 15,
represent the dig limit that maximize profit and accounts for the limitations of the mining
equipment for a digability of 0.5.

Figure 10: The map of kriged estimates
in copper grade.

Figure 11: One realization of 100 at a
fine blast hole scale.
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Figure 12: A block averaged realization of
grades.

Figure 13: Final expected profit map.

Figure 14: The seed dig limit. The solid
portion of the dig limit will be perturbed,
while the dashed portion of the line will not
be.

Figure 15: The final optimal dig limits for
a specified digability parameter of 0.5.
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Digability of 0.1 Digability of 0.2 Digability of 0.3

Digability of 0.4 Digability of 0.5 Digability of 0.6

Digability of 0.7 Digability of 0.8 Digability of 0.9

Figure 16: A digability catalogue for the copper mine example.

A digability catalogue is shown in Figure 16. The top left map has a digability factor of
0.0. The catalogue increments by 0.1 from left to right and down to the bottom of the figure.
We can see that as the digability factor increases, the smoother the dig limits become. This
is consistent with dig limits required for increasingly larger equipment.

Polymetallic Mine Example

In the presence of multiple mineralizations the calculation of expected profit and the optimal
dig limits is almost as easy as singular mineralization. Two types of mineralization are
considered in this example: the primary mineral of interest is nickel with copper taking a
secondary role.

Similar to the previous example, blast hole data were sampled, simulation was performed
at a fine scale resolution, and then block averaged to a larger size. Figures 17 and 18 show
the nickel and copper simulations respectively. The expected profit is the sum of the profit
from the nickel and copper minus the cost of mining the ore and treating it in the plant,
or the cost of mining it as waste. Shown in Figure 19 is the expected profit map and in
Figure 20 is the classification of the material to be mined. Material is called marginal ore if
it does not make money when processed but costs less to process than to treat it as waste.

14



Figure 17: A single Nickel realization. Figure 18: A single Copper simulation.

Figure 19: The expected profit that is cal-
culated as the sum of the nickel and copper
profits.

Waste

Ore

Marginal
Ore

Figure 20: The blocks are classified as ore,
marginal ore, and waste based on the expected
profit map. The final dig limit is shown as a solid
line. The dashed line constrained the dig limit to
the upper portion of the expected profit map.

Figure 20 also shows the final dig limit as a solid line. All of the vertices in the dig
limit were allowed to perturb and the dig limit was optimized to the ore/waste boundary.
The marginal ore was mined as ore because it could not be left in place the during mining
sequence.

Comparison with Hand Drawn Dig Limits

The Dig Limit Challenge was an experiment, conducted in 2001, designed to show that
semi-automatic dig limits are at least equal to or better than hand drawn dig limits. Four
mining professionals were given the map of profit shown in Figure 21 and asked to select the
best dig limits. The hand drawn dig limits were digitized. From the digitized coordinates
the minimum, maximum, and average line segments were calculated. A penalty curve
was constructed from the cumulative distribution function of the angles. The penalty is
calculated as 100 ∗ (1 − qbin). The minimum and maximum line segment and the penalty
function for each professional were used as parameters for the diglim program. The hand
drawn dig limits were used as final dig limits in all cases. Two comparisons were made: (1)
do not constrain the dig limits to the users overall penalty, and (2) constrain the dig limits
to the users overall penalty. The second comparison is more fair than the first because it
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Figure 21: The map of profit used in the Dig Limit Challenge.

Table 2: The numerical results for the first dig limit challenge comparison.

Proposed Limits diglim Limits Difference
Expert Profit Penalty Profit Penalty Profit Penalty

1 1 196 888 14 529 1 210 401 11 372 13 513 3 157
2 1 204 202 16 347 1 210 873 10 801 6 671 5 546
3 1 197 635 14 487 1 212 118 7 991 14 483 6 496
4 1 168 998 12 111 1 209 424 12 432 40 426 321

aims to reproduce the users “sense” of what the mining equipment can handle. The results
for comparison 1 are in Table 2. The units are simply profit units and not really monetary
values, but they are good yardsticks for comparison. Table 2 shows that semi-automatic
dig limits improve profit and digability. The results for the second comparison are shown in
Figure 22 and Table 3. The digability is well honoured and the semi-automatic dig limits
outperform the hand drawn dig limits in producing higher profit.

Table 3: The numerical results for the second dig limit challenge comparison.

Proposed Limits diglim Limits Difference
Expert Profit Penalty Profit Penalty Profit Penalty

1 1 196 888 14 529 1 214 297 14 556 17 409 27
2 1 204 202 16 347 1 216 690 16 342 12 488 5
3 1 197 635 14 487 1 216 118 14 494 19 383 7
4 1 168 998 12 111 1 210 911 12 123 41 913 13
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Figure 22: The hand drawn dig limits are on the left and the semi-automatic dig limits are on the
right.
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Discussion

The following remarks discuss algorithm-based selection of initial dig limits, an alternate
approach to using an expected profit map, and CPU time.

Remark 1 — Automatic Selection of Initial Dig Limits: Automatically selecting initial
dig limits is not trivial. Several approaches were attempted, but none performed well enough
to be incorporated into the dig limit algorithm. The initial dig limits rely on a complex
interaction of issues: the direction of mining, availability of equipment, mining volume
requirements, and geology. The complexity is unique to each mine and thus it is extremely
difficult to devise an algorithm for selecting initial dig limits.

Remark 2 — Alternative Approach for Dig Limit Selection: An alternative to selecting
dig limits on a map of expected profit is to select dig limits on the full model of profit
uncertainty. The idea is presented in Figure 23 and explained below. The figure shows
the same dig limits superimposed on three profit realizations. The procedure would be

Realization 1

Realization 2

Realization 3

Figure 23: The dig limit polygon is superimposed on the L realizations. Optimization would
proceed by calculating profit over the L realizations.
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similar to optimizing on an expected profit map except that the objective function would
be evaluated on the L realizations instead of the expected profit map.

This approach has not been implemented yet, but the following advantages are appar-
ent: (1) the step requirement of an expected profit map would be avoided, and (2) the
effects of averaging would be avoided. The obvious disadvantage is that of increased CPU
requirements since the objective function would have to be evaluated L−1 times more than
using an expected profit map alone.

Remark 3 — CPU time: The processing time required by the program for a moderate
sized bench of 200 x 200m is approximately 2–3 minutes. This is quite a long time especially
if the user is going to run the program several times with small changes between each run.
Some ideas have been proposed that should shorten the processing time substantially. These
changes will be implemented and test as soon as possible.

Conclusion

The algorithm for selecting dig limits gives ore/waste limits that account for grade uncer-
tainty and the limitations of the mining equipment. The first step is to construct a model
of uncertainty in grade. This is then transformed to a model of uncertainty in profit, from
which an expected profit map can be obtained. Initial dig limits are then proposed and the
dig limit algorithm is used for optimization.

The final dig limit is optimal in the sense that the best balance is found between equip-
ment induced dilution and profit for a particular digability factor. The appropriate balance
is selected by the user and can be fine tuned to each individual operation. In addition, the
steps taken to determine the optimal dig limits can be documented and reproduced.
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Appendix: diglim Inputs, Outputs, and Parameters

The program used to determine the optimal dig limits is diglim. The program requires a
2-D map of expected profit as input data. The outputs include:

� Dig Limit Output: The true x and y coordinates for each vertex in the dig limit
polygon. These are in Geo-EAS format.

� Debugging File: This file includes the information reported to the screen while the
program is running. The file is in Geo-EAS format. Plotting the objective function
versus the number of perturbations is useful for evaluating convergence: there should
be no change in the objective function near the end of the run. If the plot does not
“flatten out,” then more perturbations should be run. The temperature should be
zero for a large number of perturbations.

� Gridded Output: The gridded output gives the fraction of each block included in
the dig limits. Blocks that are not included in the maximum dig limit window are
written as -1.0. Blocks falling within the maximum dig limit window range from 0
to 1 according to the fraction of the block within the dig limits. These fractions are
appended to the input file and written to the new file as output.
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Listed below and shown in Figure 24 are the parameters for the program:

� datafl: the input data file with the expected profit.

� icol: column number for the expected profit.

� polyfl: file with the initial polygon (the x coordinate must be in column one and the
y coordinate in column two).

� outfl: the output file for the dig limit polygon (the x coordinate will be in column
one and the y coordinate in column two).

� dbgfl: the debugging file. The information written to the debugging file is the same
as what appears on the screen during the program execution.

� grdfl: the gridded output file that contains the input file and the appended block
fractions.

� nx, xmn, and xsiz: definition of the grid system (x-axis).

� ny, ymn, and ysiz: definition of the grid system (y-axis).

� xmin, xmax, ymin and ymax: definition of the dig limit boundary window. Mini-
mum and maximum x and y values.

� iorelim: indicator for the material type contained in the dig limit (0=waste, 1=ore).

� dig: the digability or equipment factor (0 to 1).

� freezeflag: indicator for freezing a portion of the dig limit during the optimization
(0=no, 1=yes).

� xs, ys, xe, and ye: start and end x and y coordinates of the vertices to freeze. The
two vertices closest to the points are frozen and all the vertices between are frozen in
a clockwise direction.

� schedflag: indicator for an automatic or user specified simulated annealing schedule
(0=automatic, 1=user specified). With an automatic schedule the remaining lines in
the parameter file are ignored.

� seed: random number seed (a large odd integer).

� t0, redfac, ka, k, and num: the initial temperature, reduction factor, number of
perturbation attempts at one temperature, target number of perturbations at one
temperature, and the number of times that ka can be reached before the program
exits.
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Parameters for DIGLIM
*********************

START OF PARAMETERS:
eprofit.out -file with the input data
2 - column for expected profit
initial_polygon.dat -file with initial polygon
diglim.out -file for dig limit output
diglim.dbg -file for debugging output
grid.out -file for gridded output
50 0.5 1.0 -nx, xmn, xsiz
50 0.5 1.0 -ny, ymn, ysiz
20 50 5 35 -dig limit window: xmin, xmax, ymin, ymax
1 -type of dig limit (1=ore, 0=waste)
0.3 -equipment factor/digability
0 -use fixed vertices? (1=yes, 0=no)
0.0 0.0 10.0 10.0 -fixed vertices xs,ys(start),xe,ye(end)
1 -automatic schedule=1, user schedule=0
69069 - random number seed
2.0 0.5 1000 500 100 - SA schedule: t0, redfac, ka, k, num

50000 100 - maximum perturbations, reporting
0.5 1.0 - minimum and maximum interval length
0.4 - maximum perturbation distance

Figure 24: An example diglim parameter file.

� maxpert and nrepo: total number of perturbations to be carried out and the interval
for reporting.

� dismin and dismax: the minimum and maximum distance between nodes. If the
distance is smaller than dismin a node is removed and if the distance is greater than
dismax a node is added.

� dmax: the maximum distance that a node can be moved during a single perturbation.
The amount a node moves is drawn randomly from 0 to the maximum.

23


