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Abstract

Conventional geostatistics aims at creating models of heterogeneity and uncertainty in static
rock properties such as facies, porosity, and permeability. This is appropriate for calculating
in place resources and providing input to flow simulation. There are times, however, when
no flow simulation is going to be performed and we would like to directly predict the reservoir
flow characteristics of an area. Different techniques are required when the aim is to directly
create maps of the (uncertainty in) production potential. This note summarizes a practical
and useful technique for this purpose.

The petroleum industry is reliant on many types of secondary geological and geophysi-
cal information to predict reservoir performance. This data covers different areas, provides
data on different scales, and is variably correlated to the production characteristics we are
trying to predict. Statistical techniques can be used to summarize the relationships between
the variables but they do not account for spatial correlation. Geostatistical techniques in-
corporate the spatial structure but these techniques are cumbersome in the presence of many
secondary variables. We propose that all secondary data be merged statistically by a multi-
variate Gaussian approach into a single variable that contains all of the secondary variable
information; this provides a likelihood distribution. The spatial distribution of each vari-
able by itself is mapped independently of the secondary variable information; this provides
a prior distribution. The likelihoods and priors are merged to provide an updated posterior
distribution. This technique has been successfully applied in a number of cases. We describe
the methodology and show a synthetic example for illustration.

Introduction

Our goal is to directly predict reservoir performance potential summarized by some pro-
duction variables. The production variables we are predicting are measures of hydrocarbon
flow rate and projected cumulative production. Implicitly we assume that the wells are far
enough apart so that they are not interacting together in any significant way.

Reservoir characterization uses every data source and interpretive tool possible to im-
prove understanding of the reservoir performance potential at locations where we have no
wells. In general, we can group the available data into:

Geological variables that take two forms: (1) maps of interpreted variables where the
regional depositional setting is taken into consideration and some expert judgement
is accounted for in the map making, and (2) direct well measurements of variables
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such as porosity, pay thickness and so on. Another grouping of geological variables
is into structural and geological variables where the structural variables relate to the
container size and shape and the geological variables relate to the internal reservoir
quality.

Geophysical variables that have high areal resolution, low vertical resolution, and vari-
able correlation to actual rock properties and production variables. These variables
can be direct attributes such as amplitudes or processed variables such as interpreted
fracture densities or P/S impedances.

Production variables that we are trying to predict such as initial production rate and
projected cumulative production. These variables would typically be interpreted from
the production at existing wells, that is, some kind of decline analysis.

The production variables have some spatial correlation that we can exploit; however, we
must also exploit the information contained in the geological and geophysical variables that
are related to the production variables we are trying to predict. These secondary data
sources are also redundant with each other and we need to sort out the true information
content in all data sources. All this information must be combined to build maps of what we
expect the reservoir performance to be at undrilled locations. A summary of our prediction
could take the form of maps of P10, P50, and P90 values of our production variables. The
uncertainty and risk associated with new well locations could be assessed.

The results of data collection and assembly is a set of variables that can be used to
predict performance properties in the reservoir. These variables may include: 3-6 geophys-
ical variables, 2-6 structural, 2-4 geological, and 2-4 production variables of interest that
measure reservoir performance. The number of hard calibration data to establish the mul-
tivariate characteristics of these 10-30 variables may be few: the wells already drilled in the
basin/pool under consideration. Conventional multivariate techniques would require 1000s
or more data observations where all variables are present. This is simply not available in
petroleum exploration and production.

We must also consider that the coverage area for each variable is different. It is im-
portant that all correlated secondary variables be considered. Geoscientists and engineers
have been trained to work with data in such complicated settings. Expert judgement and
interpretation is extraordinarily valuable. There is a need, however, to supplement such ex-
pert assessment with quantitative numerical tools that integrate all information accounting
for the various interdependencies and to provide a measure of uncertainty in the predicted
variable.

The methodology we develop below builds on very classical statistical and geostatistical
tools for probabilistic prediction. A Bayesian approach is adopted whereby the secondary
data are combined together to form a liklihood and the primary variables are mapped
independently to form a prior distribution. These can be merged using Bayesian inference
to arrive at posterior or updated probability distributions of the variables we are trying to
predict.
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Comments on Multivariate Statistics

The field of statistics provides a number of techniques that address the relationships between
large sets of multiple variables. A set of n correlated variables can be transformed to be
uncorrelated through techniques such as principal component analysis (PCA). PCA and
other techniques such as factor analysis can be used to reduce the number of variables
that must be considered. The variables can be non-linearly transformed to maximize linear
correlation through techniques such as alternating conditional expectation (ACE). The data
can be grouped together with techniques such as cluster analysis. There are a number of
multivariate regression techniques for prediction of response variables considering multiple
input variables. There are experimental design methods that aim at providing the best
setup of test runs to understand multivariate statistical properties.

Most geoscientists and engineers would have difficulty choosing the best technique; it
is often unclear which technique or sequence of techniques is appropriate for a particular
problem. Moreover, as in any field, there are many fads and a new technique is sometimes
thought of as a cure-all for any problem.

Another complicating factor is that multivariate techniques do not account for spatial
relationships between the variables. Multivariate techniques were largely developed in the
sciences where each observation of multiple variables can be thought of as independent of
other observations. A central feature of reservoir characterization is spatial correlation in the
underlying reservoir properties and the consequent production potential. We must integrate
geostatistical measures of correlation in the multivariate statistical tools we choose/develop
to account for the multiple secondary data.

A further complication is that not all variables are available at all locations. This
unequal sampling requires us to locally change the parameters of our multivariate analysis.

Finally, there is a need to provide a measure of uncertainty in any prediction we make.
There is often a high degree of uncertainty and risk associated with predicting performance
characteristics at unsampled locations. A measure of this uncertainty is required to protect
the geoscientist and engineer, that is, to avoid conveying a false sense of certainty in the
predictions. A measure of uncertainty also provides management with some performance
metrics that can be used to track the exploration/development program. The performance
of new wells should be within the P10 and P90 values 80% of the time.

Comments on Geostatistics

There are a number of geostatistical techniques designed to work with multiple variables.
These techniques account for the spatial relationships between the variables and provide a
measure of uncertainty at every estimated location. The main technique is cokriging that
can be applied in a multivariate Gaussian or an indicator framework. There are simplifying
assumptions such as collocated cokriging and the Markov- Bayes approach. A concern
with all these techniques is the inference of the direct and cross variogram measures of
correlation, which requires a large number of data. They often require a total of (n+1)n

2
variogram models, which is extremely difficult in practice.

Collocated cokriging, in the Gaussian [4] or Bayesian [2] form, simplifies the process to
consider only the collocated secondary variables. This also removes the need to model the
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large number of variograms mentioned above. There are some implementation problems
associated with this simplification, but the method has proved very practical.

These geostatistical methods for considering multiple variables really only consider 1
to 3 secondary variables; there is no simple way to consider 10 to 30 secondary variables
simultaneously. We must tailor the multivariate statistical and geostatistical tools to the
problem of production performance prediction.

Proposed Solution

We will keep the notation to a minimum in this short note. We use n to represent the number
of secondary variables, m is the number of production variables that we are estimating.
We will develop a solution in the well established multivariate Gaussian framework. This
requires each variable to be transformed to a univariate Gaussian distribution and, then,
the parameters of the multivariate Gaussian distribution must be inferred. The univariate
transformation is accomplished with the very classical normal scores transformation as
implemented in the NSCORE program in GSLIB [1].

All secondary variables are merged into a single likelihood estimate at each location. Of
course, the number of secondary variables available at each location could vary. The mean
of the likelihood distribution is calculated as:

y∗L =
n∑

i=1

λi · yi (1)

where n can be a subset or all secondary variables. The weights, λj , j = 1, · · · , n, are
provided by the normal equation:

n∑

j=1

λj · ρi,j = ρi,0, ∀i = 1, · · · , n (2)

where ρi,j is the correlation between the secondary variables and ρi,o is the correlation
between the secondary variables and a primary variable. The n x n set of linear equations
on the left hand side must be inverted and multiplied by the right hand side to solve for
the weights. These weights can be used to solve Equation 1 and to calculate the estimation
variance:

σ2
L = 1 −

n∑

i=1

λi · ρi,0 (3)

At each location and for every primary variable, Equations 1 and 3 provide the mean
and variance of a Gaussian likelihood distribution. These distributions are a collapsed
version of all available secondary variables. The final likelihood distributions account for the
relationships between the secondary variables and will be used to help inform the primary
estimate.

The primary variables are predicted independently using kriging. For every location the
kriging step provides an estimate, yP ∗, and variance, σ2

P , that describes the prior distribu-
tion of the variable. The prior distribution will be Gaussian in shape. The kriging process
accounts for spatial structure through the variogram model for each primary variable.
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The likelihood and prior distributions are then combined to get the final updated dis-
tribution. Since the two input distributions are Gaussian in shape, the resulting updated
distribution will be Gaussian. The updated distribution is defined by the updated mean:

y∗U =
y∗LσP + y∗P σL

(1 − σL)(σP − 1) + 1
(4)

and the updated variance:
σ∗

U =
σP σL

(1 − σL)(σP − 1) + 1
(5)

Note that the standard deviations are used and not the variances. The resulting updated
distribution defined by Equations 4 and 5 must be back-transformed to return the produc-
tion variable to their original distributions. Any summary statistics of the local distributions
can be calculated including the expected value, P10, P50 and P90 values. These summaries
can be used to assist with land decisions, well placement, and reservoir development.

The proposed technique is summarized as Bayesian Updating under a Multivariate
Gaussian model - or a BMG model for lack of a better acronym. The elements of this
technique are not new; however, this is a novel way of putting everything together for
reliable and simple estimation.

Limitations and Assumptions

Most practitioners will appreciate the simplicity of the proposed approach. More compli-
cated procedures inevitably require additional parameters and greater risk of misapplication.
We are accounting for all major aspects of the problem including redundancy between the
secondary data variables, correlation to the production variables, spatial correlation of the
production variables, and uncertainty in the prediction. No technique is without inherent
assumptions and limitations. Here are the major ones for the proposed approach.

There is a strong assumption of representative data, that is, we assume that the statis-
tical distributions of each parameter are fairly sampled with no systematic biases. Declus-
tering techniques could be used to correct for minor sampling bias; however, the technique
cannot correct for any systematic bias in the data. A systematic bias may be intentional
(wells are supposed to be drilled in good areas) or unintentional (just bad luck). The data
should be looked at carefully.

There is an implicit assumption of spatial homogeneity or stationarity, that is, that
the statistical properties are the same across the entire study area. Gradational trends or
abrupt changes in the depositional style will invalidate this assumption. Subdividing the
study area and trend modeling may help, but there is always a point where we must group
the data together for (geo)statistical inference.

A further assumption is that the data are multivariate Gaussian, that is, all relationships
are linear, with constant variance, and with no abrupt constraints. Moreover, under the
multivariate Gaussian model, all multivariate relationships are summarized by correlation
coefficients. Inspecting each bivariate distribution for the reasonableness of this assumption
is good practice. Of course, we really should check the trivariate and higher distributions
for multivariate Gaussianity, but that is difficult in practice.
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The estimates of production assume no interaction between wells, that is, the production
at one location does not take away from the production at another location. Adding up
all of the cumulative production estimates on the generated maps will lead to more volume
than is present in the reservoir. Basic material balance calculations must be undertaken to
supplement these calculations of local production. Moreover, some local flow simulations
may be warranted to establish if the wells are indeed independent.

Uncertainty prediction is problematic because our estimates at any one location can
always be wrong: there is a 10% probability to be below the predicted P10 value. The
reasonableness of probability estimates must be checked over a number of outcomes. It
would be a significant problem if 10 wells in a row were drilled below their predicted P10

values.

Example

This procedure has been applied on real reservoirs; however, the results are considered highly
confidential. This synthetic example was created to demonstrate the updating process with
two primary production variables using six variables as secondary data. The two production
variables are initial production rate (IR) and total production (TP). The secondary variables
consist of two geological, two structural, and two geophysical variables: sandstone indicator,
reservoir quality, top elevation, formation thickness, impedance, and distance to a fault,
respectively. These six variables were normalized and can be seen in Figure 1. All of the
variables are inside of the 10,000m by 15,000m study area but the coverage changes between
the variables. These variables were created using a combination of hand contouring, kriging,
and cosimulation.

To create production data, 20 wells were randomly placed inside of the study area.
Total production at each location was assigned randomly and the five highest locations had
another two wells drilled in the surrounding area. The initial production rate was then
assigned based on the total production and some random variables. This provided a total
of 30 wells in the study area. The secondary variables were then sampled to obtain values
at the well locations.

The primary and secondary data were complied into a master data sheet for the well
locations. All of the variables were normal score transformed and the correlations were
calculated (Figure 2). The correlation matrix indicates the variables with correlation above
0.2 and below -0.2 with dots. These correlations will be used to create the likelihood
distributions.

A program was created that utilized the correlation matrix and available data to create
likelihood distributions at every location for the two primary variables. These distributions
are described by the likelihood estimate and variance maps shown in Figure 3. Note that
the variance changes depending on the availability of the secondary variables.

Prior distributions must be created before the likelihood data can be applied. The two
production variables were kriged separately with different variograms and only the well
data. The kriged estimates and variances are seen in Figure 4. Note that the variance is
zero at the data locations and increases as you move away.

The likelihood and prior distributions were then combined to create updated distribu-
tions at every location. The updated estimates and variances are seen in Figure 5. The
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Figure 1: Maps of the normal score secondary variables.
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Figure 2: Correlation matrix between the two primary and six secondary variables. The
dots indicate variables with a correlation above 0.2 or below -0.2.
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Figure 3: The likelihood maps for the initial production rate (top) and total production
(bottom) in normal space. The left hand side maps show the estimate of the production vari-
ables based on all available secondary data. The right hand side maps is the corresponding
variance at every location.
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Figure 4: The prior distribution maps for the initial production rate (top) and total pro-
duction (bottom) in normal space. The left hand side are the estimates and the right hand
side are the corresponding variances.

updated maps show some interesting features. If both the likelihood and prior maps show
high values in the same area for the estimate, the updated map will be even higher. The
same situation will occur in the low value areas. Alternatively, if one map is high and the
other map is low, the updated estimate will be in the middle. The updated variances are
decreased at every location, except at the wells. The central area with the highest number
of secondary data is reduced the most and the reduction is decreased as fewer data become
available. These features come from the likelihood variances. The contribution from the
prior variances is seen near the well locations. The effect is less noticeable compared to the
prior maps due to the reduced variance everywhere.

The updated maps can be used as is, but it is difficult to interpret the estimate and
variance maps at the same time. To make this process easier, maps were created for the
two primary variables to show the p10, p50, and p90 at every location (Figures 6 and 7),
respectively. To apply these maps you should start by looking at the p50 to look for areas
you are interested in. If you are trying to identify poor production areas then the p90 map
is used. Low values on this map are most likely low since there is a 90% chance that the
value will be lower than the one shown. If an area is low on the p90, it is highly likely to
find low values in that area. If you are trying to identify high value areas, the p10 map is
used. High value locations on this map are most likely high since there is a 90% chance the
value will be higher than the one shown.
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Figure 5: The updated maps of the initial production rates (top) and total production
(bottom) in normal space. The left hand side are the estimates and the right hand side are
the corresponding variances. Notice how features from the prior and likelihood maps can
be seen.
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Figure 6: The p10 (top), p50 (middle), and p90 (bottom) quantile plots for the initial
production rate. 11
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Figure 7: The p10 (top), p50 (middle), and p90 (bottom) quantile plots for total production.
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Conclusions

Predicting reservoir performance with multiple geological, geophysical, and production vari-
ables is an important new area of geostatistics. Bayesian updating under a multivariate
Gaussian model provides a simple and robust solution to this inference problem. There are,
of course, limitations and assumptions such as representative data, statistical homogeneity
and multivarate Gaussianity.
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