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Abstract

Sequential Gaussian simulation (SGS) is a common method used to create multiple equiprob-
able numerical models based on some conditioning data. The basic methodology is straight-
forward, but some implementation details are important for successful results. This paper
explores some of the issues associated with the implementation of SGS and the reasoning
behind choices such as: simulation path, search strategies, number of conditioning data,
some effects of secondary data, and ergodic fluctuations.

Introduction

Since the early 1990’s, SGS [5] has gained popularity in practice due to its simplicity,
flexibility, and reasonable CPU time [1]. SGS is a simulation algorithm based on kriging
where by more variability is injected into the model. The SGS work-flow can be described
in five basic steps:

1. Choose the stationary domain and transform the data to a Gaussian distribution.

2. Define a path to visit every location.

3. At each location:

(a) search to find nearby data and previously simulated values,

(b) calculate the conditional distribution, and

(c) perform Monte Carlo simulation to obtain a single value from the distribution.

4. Repeat step 3 until every location has been visited.

5. Transform the data and all simulated values back to their original distribution.

This will produce one possible realization. More realizations can be created by changing
the random number seed.

The theory behind SGS has been explained numerous times [1, 2, 4], but it is the details
behind these steps that warrant further explanation. In programs like SGSIM [2], many
assumptions are made about the data that must be satisfied or the final results may be
erroneous. Understanding these assumptions and their affect on the resulting realizations
will help users find deficiencies in their models and/or identify other potential problems.
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Data and Transformation

Before simulation can be performed the model area must be defined and the input data
identified. In general, the data must come from a single underlying distribution. For
geological data, this amounts to considering only data from the same rock type with similar
properties. Under the assumption of stationarity [6], the mean, variance, and higher order
statistics are assumed constant throughout the area, that is, E{u} = m and σ2(u) = σ2.

Sometimes the data will violate the assumption of stationarity and the mean or variance
will change with location. Typically these changes are smooth and there are no clear
boundaries between the high and low value regions. In these situations, trends in the
attribute should be modelled [1]. This trend can be used in one of two ways: remove the
trend from the data and work with the stationary residuals or treat the trend as secondary
data and use a specialized form of kriging to account for this information.

SGS is designed to work with input data that follows a Gaussian distribution. The
convention is to use the standard normal distribution, N(0,1). Rarely will the input data
fit this distribution exactly. Data transformation is then required to convert the input
distribution to the standard normal distribution. Before transformation can be performed,
the cumulative distribution function (cdf) for the input distribution and target distribution
must be known. These two cdfs are related by a one-to-one quantile transform; thus, the
transform is reversible and the simulated values can be returned to their original units. A
problem can arise when many data have the same constant value. This results in a spike or
vertical jump in one of the cdfs. This causes a problem in the transformation. A quantile in
one cdf is equal to a range of quantiles in the other, so the transform is no longer one-to-one.
To correct for these jumps, despiking [1] is required to break the ties in the data.

For simulation to be accurate, a good understanding of the original distribution is re-
quired. If no other information is available, the cdf will be created directly from the input
data. This data is not typically representative of the global distribution since this is not the
goal of the sampling process. If a reference distribution is available, it can be used as the
target distribution and the data is transformed relative to this distribution. If this is not
possible, declustering [2] can be used to try and correct for non-representative sampling.
Declustering techniques use different methods to account for the closeness of the surround-
ing data and then weights the data based on their spatial spread. The histogram is then
altered by accounting for the weights when calculating the distribution.

When the study considers multiple correlated variables for SGS, each variable must be
Gaussian. Typically, each variable is independently transformed to a normal distribution,
but this only ensures univariate Gaussianity. For correlated variables, the multivariate rela-
tionships must be accounted for in the transformation process, otherwise the relationships
will not be preserved. To achieve this, an alternative transformation process like stepwise
conditional transformation [9, 10] should be considered. Stepwise transformation creates
independent, multi-Gaussian variables that can be independently simulated. The relations
between the variables are preserved in the back-transformation process.
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Simulation Path

Sequential Gaussian simulation makes no assumptions as to the order in which the unsam-
pled locations are visited. However, previously simulated values will be used as conditioning
data , therefore, the order can influence the model. To minimize this influence, a random
starting location and path have been found to produce the least effect on the model over
multiple realizations. Alternatives, such as the regular path and spiral path [11], have been
considered but any perceived benefits in CPU efficiency or input data propagation comes
at the cost of variogram reproduction.

The random path can suffer from the preferential use of nearby data, resulting in poor
reproduction of the long range variogram features. To avoid this problem, a multiple grid
search [13] can be incorporated. A coarse grid, relative to the final grid size, is first defined
and simulated randomly. This grid size is then reduced in several increments until the
final model grid has been reached. As the grid size reduces so will the distance to the
conditioning data. In this way the long range features are first captured through the coarse
grid and each refinement in the grid will reproduce features at a shorter scale. The multiple
grid search used in conjunction with the random path will improve variogram reproduction
with almost no increase in CPU time [13].

Searching for Local data

Before kriging can be implemented, the surrounding data must be identified. The search
is limited by a search radius in each principle direction. These distances should equal or
exceed the variogram range to ensure adequate variogram reproduction. The data beyond
the range will provide limited information to the kriging estimate.

It is common practice to assign the input data to the grid nodes. This has the advantage
that input data at the nodes will be reproduced exactly in the final model. The disadvantage
is that only the closest data is retained inside of each grid cell. Data cannot cross the cell
boundaries so the rest of the data inside the cell and any data beyond the modelling area is
lost; however, they will be used to define the input statistics. The input data and previously
simulated values now fall on the same regular grid system; this allows the covariance between
any two correlated locations to be conveniently stored in a look-up table. The spiral search
[2] utilizes this look-up table to develop a search path through the surrounding data based
on the covariance to the point being simulated. Starting at the simulated node, the most
correlated nodes are checked first. The search continues to spiral through increasingly less
correlated locations until the search radius is reached or the required number of data are
located.

If the input data are not assigned to the grid system then only previously simulated
values can be located using the spiral search. A second search, called super block search
[2], is required to locate nearby input data. This search starts by superimposing a coarse
grid over the modelling area to create blocks. These super blocks are usually much larger
than the simulation grid and are independent of the model. Starting at one corner, the
blocks are numbered and checked for input data. An array is built that keeps track of the
cumulative number of data that have been located in all preceding blocks. The data is
placed in a second array in the order they are identified. These two arrays can then be used
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to identify the number of data in any block and their corresponding location in the data
array. A template is constructed based on the number of super blocks that encompass the
search radius. When an unsampled location has been chosen, the super block containing
this location is identified and the template is centred on the block. This will identify all
super blocks that must be checked for conditioning data and this data is quickly assembled.
An exhaustive search is then used to calculate the covariances and the closest data are
identify.

The above search routines are only concerned with identifying the most correlated data
to the point being simulated. However, a good kriging estimate should consider data from
every direction. A classical example of this problem is drillhole data, where an estimate can
easily be based on data from only one drillhole. The vertical sample spacing of drillhole data
is usually several orders of magnitude smaller than the horizontal spacing. These data are
highly correlated to each other and the resulting estimate will be biased to one drillhole. An
octant search can be used to avoid this problem. The octant search divides the surrounding
3D area into equal octants. A search is performed and only a maximum number of data is
considered from each octant. This forces the data to come from different directions at the
expense of ignoring closer, but more redundant, data.

Kriging

The theory behind SGS is based on using every previously simulated value and input data
throughout the simulation process [5]. In practice, only the closest conditioning data are
used, up to a maximum number, to keep CPU time reasonable. The reasoning behind this
decision is that the closest data will screen data that are further away and the additional
information is deemed small enough to ignore [5]. This assumes the data comes from the
same stationary population. The choice of the maximum number is linked to two things:
the speed required to generate a realization, and the accuracy of the kriged estimate and
variance.

The kriging step in simulation consists of locating n conditioning data, inverting an n x n
covariance matric, and multiplying the inverted matrix by another n x 1 covariance matrix.
As n increases, the CPU requirements are proportional to n, n3, and n2, respectively. For
small values of n the CPU requirements will be a combination of all three steps, but as
n increases in size, the CPU time will be dominated by the inversion step. For example,
a 100 x 100 grid was simulated using 300 randomly placed input data and the CPU time
was tracked as the maximum number of conditioning data were varied between 5 and 300
(Figure 1). Initially, the change in CPU time is small since other operations still dominate
the time required to complete a full simulation. As the number of data increases, the CPU
requirements approach a slope of 3 in log-log scale, as represented by the solid line, and
CPU demands increase rapidly. This example was designed to use the specified maximum
number of conditioning data at every location.

The kriging system also provides a measure of uncertainty in the estimate by way of
the kriging variance. This variance is minimized for any set of conditioning data, but
this variance is reduced through the addition of more data. The change in the kriging
variance by adding a single datum can be predicted, within a bounding range, when the
least informative datum is removed [3].
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Figure 1: The CPU time required to simulate a 100 x 100 grid, starting with 300 randomly
placed input data, and the number of conditioning data are varied between 5 and 300. The
line is representative of n3 or a slope of three in log-log scale.

Starting with n data the kriging weights, λα, and variance, σ2
sk,n, are calculated. The

location with the smallest absolute kriging weight, k, is then found and removed. A second
kriging is performed using the remaining n − 1 conditioning data and a new set of kriging
weights are found, λ′

α:
n∑

α=1,α �=k

λ′
α · C(uα,uβ) = C(u,uβ), β = 1, . . . , n, β �= k (1)

where the number of conditioning data is n−1 but the location of k is any one value from 1
to n. This second set of kriging weights, λ′

α, will produce a slightly higher kriging variance,
σ2

sk,n−1.
Moving to location k, a third set of kriging weights, λ̂α, are calculated using the same

set of n − 1 data as above:
n∑

α=1,α �=k

λ̂α · C(uα,uβ) = C(uk,uβ), β = 1, . . . , n, β �= k (2)

It is now possible to predict the initial kriging weights, λα, by using the λ′
α and λ̂α

kriging weights:
λα = λ′

α − λ̂α · Pn, α = 1, . . . , n, α �= k (3)

where the k weight can not be predicted and the variable Pn is based on the following
relationship:

Pn =
P ′

n

C(uk,uk) −
∑n

α=1,α �=k λ̂α · C(uk,uα)
(4)
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where C(uk,uk) = 1 when the data is standard normal, weights are from the third kriging
and P ′

n is equal to:

P ′
n = C(u,uk) −

n∑

α=1,α �=k

λ′
α · C(uk,uα) (5)

where the weights come from the second kriging.
The difference between the σ2

sk,n−1(u) and the σ2
sk,n(u) variances can be predicted within

a bounding region based on Pn and P ′
n. The following inequality provides the limits for the

upper and lower bounds [3]:

(Pn)2 ≤ σ2
sk,n−1(u) − σ2

sk,n(u) ≥ (P ′
n)2 (6)

The above prediction is performed on a small example in shown in Figure 2. Starting
with n = 5 the kriging variance is calculated as σ2

sk,n(u) = 0.3097. Removing the fifth
datum, the least informative, a second kriging is performed yielding a slightly higher kriging
variance at σ2

sk,n−1(u) = 0.3112. Shifting the location of interest to the fifth data, a third
kriging is performed. The last two sets of kriging weights are then applied to Equations 4
and 5 to calculate (Pn) at -0.0799 and (P ′

n) at -0.0195. The upper and lower bounds for the
variance change are then calculated to be 0.0064 and 0.0004, respectively. The true change
in the variance is 0.0015 and this falls with in the bounding limits.

In application, the calculation of three sets of kriging weights at every location is im-
practical. To provide some better guidelines, three locations were chosen to track how the
accuracy of the kriging estimate and variance changed as the number of conditioning data
increased. Starting with 100 randomly placed data, three locations were chosen (Figure 3).
At each location the kriging estimate and variance were tracked as the number of condition-
ing data was varied between 1 and 100 (Figure 4). The best possible values are shown as
dotted lines and occur when all available conditioning data are used. Initially, the kriging
estimate and variance, for each location, show a large degree of deviation for the best value.
As the number of conditioning data increased to 8 or 10, both the estimate and variance
begin to converge. Past 10 data, both the estimates and variances show only a limited
degree of improvement.

Kriging in SGS provides an estimate and variance for every unsampled location. To
create a simulated value a random value is drawn from a residual distribution with a mean
of zero and a variance equal to the local kriging variance. This residual value is added
to the kriged estimate to produce a simulated value. If few conditioning data are used,
then the estimate will be poor and the variance high. This gives rise to the potential to
draw simulated values outside the plausible range. As more conditioning data are used the
estimate will be improved and the kriging variance is reduced. The reduced variance will
limit the possibility of drawing implausible values.

Accounting for Secondary Data

The possibility of drawing outside the plausible range is also a problem when secondary data
are incorporated into the process. Simple kriging can be applied with a locally varying mean
(LVM). A secondary source of information is used to predict the mean over the modelling
area. When the kriging estimate is close to the global mean of zero, in normal space, the
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Figure 2: The top figure shows the location, kriging weights and kriging variance for the five
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kriging when the fifth point is excluded. The bottom figure shifts the point of interest to
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Figure 3: Location of the three points of interest (large dots) and the 100 input data in the
100 x 100 example.

kriging variance can take on any value between 0.0 and 1.0. As the estimate deviates away
from the global mean, a large variance increases the probability of drawing a value beyond
the expected range (Figure 5). These outliers can cause the global variance to increase and
this causes problems in the back-transformation.

A variance inflation problem can also be seen with collocated cokriging (CCK) [14].
CCK is a simplified version of full cokriging that uses only the collocated secondary data
and assumes an intrinsic model of coregionalization [8]. Removing the need to model the
linear model of coregionalization greatly simplifies the simulation process, but limiting the
number of secondary data causes the kriging variance to be higher than expected. This
increase in variance at every unsampled location causes the global variance to be inflated
and again problems arise in the back-transformation.

To fix the variance inflation problems in LVM and CLK a Self-Healing algorithm [12] was
developed. Self-Healing is a dynamic correction factor that is applied to reduce the global
variance. As simulation progresses, the algorithm tracks the global variance and identifies
problem locations. At these locations, a correction factor between 0.0 and 1.0 is calculated
based on the severity of the problem. This factor is then applied to the local variance and
translates to an improved global variance. Self-healing does not affect the expected value
of the local distribution and is only applied when the global variance is inflated.

Ergodic Fluctuations

Statistical fluctuations are inherent in simulation; however, the fluctuations should be rea-
sonable and unbiased. Simulation in normal space produces simulated values that are
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Figure 4: The top two plots shows the change in the kriging estimate (left) and variance
(right) for location (42,56) as the number of conditioning data is varied. The middle plot
shows the results for location (55,10) and the bottom plots are for location (35,94). The
dotted line on each plot is the best possible estimate when 100 conditioning data are used.
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Figure 5: Illustration of a locally varying mean (solid line) versus location, u, and three
conditional distributions. The shaded regions of the two outside distributions cause variance
inflation because there is a too high probability to draw large and small values.

approximately standard normal in expected value. For any one realization, minor fluctu-
ations from a zero mean and unit variance are expected; however, when these values are
back-transformed to original units a slight shift of the mean in normal space may translate
to a more significant shift of the mean in original units. This problem is compounded when
shifts in the variance are incorporated. This is particularly true for skewed distributions,
which is the case for most geological variables.

Deviations from the limit standard normal distribution could be due to a number of
factors. Firstly, the algorithms employed are based on an assumption of stationarity. Sim-
ulation of non-stationary data can lead to shifts in the mean and/or variance of simulated
values in normal space. Secondly, SGS assumes the data are multiGaussian in a spatial
context. There are no techniques to ensure multiGaussianity in the spatial domain.

For example, consider the positively skewed distribution and its corresponding normal
scores shown in Figure 6. The effect of deviations from the standard normal distribu-
tion can be assessed by generating approximately standard normal distributions and back-
transforming the data to original units. For this exercise, a series of deviations of the
standard normal distribution were tested: 17 different standard deviations ranging between
0.80 to 1.2 at intervals of 0.025. For each standard deviation, nine different mean values
were assigned ranging from -0.1 to 0.1 at intervals of 0.025. Each Gaussian distribution is
then back-transformed to the original units and the corresponding mean and variance in
original space is calculated.

In total, this yields 153 conditioning data for the global mean and standard deviation
in original space, the two variables of interest. This data was then kriged to produce maps
of how the two variables are affected in original space when the variables deviate in normal
space, Figure 7. The change in the mean in original space is most pronounced when the
normal space mean and standard deviation is greater than the standard (0,1). Alternatively,
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Figure 6: Distribution of original data (left) and its corresponding normal scores (right).
Histograms (top) and cumulative histograms (bottom) are shown for both.

when the normal space mean and standard deviation is both lower than the standard (0,1),
a region of low values appears in the lower left corner; this region may be due to edge effects
in kriging.

The estimated map of standard deviation in original space shows similar features as the
original space mean. The region of high values is larger than that observed in the estimated
mean, while the edge effects are more apparent at low values of the normal space standard
deviations. Overall, this small exercise shows the sensitivity of the original space summary
statistics to the ergodic fluctuations inherent in stochastic simulation in normal space.

To mitigate the effects of fluctuations in normal space and its translation to original
space of the data, a standard transform can be applied to the simulated values to ensure
reproduction of the histogram and its corresponding summary statistics [7]. The transform
is applied over individual realizations to ensure reproduction of the global histogram for
each realization. Alternatively, “sets” of realizations can also be transformed and data
would still be honoured; however, this does not guarantee that the global histogram per
realization is reproduced.

Final Remarks

Once the modelling process has been completed, each realization should be checked for
problems. The things to look at include, but are not limited to, the following list: basic
statistical parameters, histogram, variogram, data reproduction and geological structure.

1. In original units, the global mean and variance should be close to the input values for
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Figure 7: Effect of deviations of the mean and standard deviation in normal space on the
mean (Top Left) and standard deviation (Top Right) in original space. The corresponding
histograms of the mean and standard deviation are shown on the bottom.
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each realization and for the average of all realizations.

2. The global histogram should follow the same shape as the input histogram and any
extreme values should be checked.

3. The output variogram should reproduce the model variogram. This includes the
nugget, short range and the long range structure, and the sill.

4. When the data are assigned to the grid, they should be reproduced in every realization.

5. The model should be visually inspected to check that the basic geological structure is
honoured.

Ensuring that each of these checks are performed and satisfied will help to catch major
errors in the resulting model. If the model fails a check some time must be spent to either
identify the problem or to determine if it is acceptable under the given conditions and data.
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