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Abstract

Quantification of uncertainty of a spatially distributed variable at any scale can be handled
through geostatistical simulation. Large computation time, storage, and post-processing of
the realizations are required to obtain a final assessment of block uncertainty.

Multi-Gaussian kriging is a flexible alternative to Gaussian simulation. It computes
the kriging estimate and variance after normal score transformation of the original sam-
ples. Under the multi-Gaussian assumption, all marginal and conditional distributions are
Gaussian, hence fully defined by their mean and variance. These Gaussian conditional dis-
tributions are obtained by simple kriging and can be back-transformed to the original units
of the variable of interest. An estimate and any quantile can be easily retrieved.

The main disadvantage of performing multi-Gaussian kriging is that change of support
is not straightforward. We propose a methodology to overcome this limitation of multi-
Gaussian kriging by considering a matrix simulation to generate multiple probability fields.
Each probability field is used to draw spatially correlated point values from the point-support
conditional distributions, and multiple realizations of the average can be obtained. This
permits the calculation of the average over the block and its uncertainty. These blocks may
correspond to selective mining units or to volumes from longer production periods relevant
for engineering decisions. They can even be disjoint blocks, such as when several faces
are mined at the same time. POSTMG, a Fortran program to perform these calculations, is
described and a case study is provided.

Introduction

Geostatistical simulation is used to generate optimum estimates under different loss func-
tions and to assess uncertainty at different supports relevant for engineering decisions. A
typical application of simulation is to generate grade models in a mine and then evaluate
the uncertainty in grade for monthly, quarterly, and yearly production. However, when the
models are large, computing time and storage may prohibit the use of simulation. Further-
more, it is rarely possible to simulate more than a few tens of millions of nodes with current
computers and software.

The use of estimation methods that allow assessment of local uncertainty can be seen as
advantageous. Indicator kriging and multi-Gaussian kriging are two typical approaches to
define the point distributions. Unlike simulation methods, there is no requirement to keep
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all the previously simulated (or estimated) points in memory, since only the sample data are
used to calculate the estimate and its variance. Only one pass is required to fully assess the
local uncertainties. With simulation methods, the entire grid must be visited as many times
as realizations are required. Finally, postprocessing the results is required in both cases.
In the case of simulated models, block averages are calculated for every realization and
these are used to build the distribution of uncertainty for the block volume. If estimation
methods are used to define the point distributions of uncertainty, a fast simulation method
can be used to generate unconditional probability fields that allow the assessment of block
uncertainty.

We briefly review the methods to calculate point uncertainty. Then, we discuss the
approaches to evaluate the block uncertainty. The methodology and implementation details
for the program POSTMG are discussed along with a case study to illustrate its application.

Point-Scale Uncertainty

Indicator Kriging

Indicator kriging permits the direct estimation of the conditional distribution at an unsam-
pled location, that is, its point distribution of uncertainty [6, 7, 10]. It allows the random
variable to have different spatial continuity for high and low values, giving more flexibility
than Gaussian methods that lock the connectivity of extremes with the single variogram of
normal scores.

The indicator formalism requires the data to be coded as probabilities [1]:

i(uα; zk) =
{

1, if z(uα) ≤ zk

0, otherwise k = 1, ...,K (1)

where z(uα) is the value at the data location uα and zk, k = 1, ..., K is the threshold value.
Additionally, constraint intervals, soft categorical data, and soft continuous data can be
added to improve the estimation of the conditional probability.

At every data location, the z value is transformed into K indicator values. The point
distribution of uncertainty can be inferred by kriging the indicator function at every thresh-
old. The original n data are converted into K sets of n indicator variables. Each one of
those sets of data is used to estimate the value of the indicator at all unsampled locations
in the grid, that is, the probability of having z(u) ≤ zk, k = 1, ..., K.

To perform simple indicator kriging [14], the stationary mean of the indicator random
function is required. This mean is given by the cumulative distribution function of the
random function Z(u):

E{I(u; zk)} = Prob{Z(u) ≤ zk} = F (zk)

The stationary simple kriging estimate of the indicator at that threshold is written:

[i(u; zk)]∗SK = [Prob{Z(u) ≤ zk|(n)}]∗SK

=
∑n

α=1 λSK
α (u; zk) · i(uα; zk) + [1 − ∑n

α=1 λSK
α (u; z)]F (zk) (2)

where the weights λSK
α (u; zk) are the unique solution of the simple kriging system:
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∑n
β=1 λSK

β (u; zk) · CI(uβ − uα; zk) = CI(u − uα; zk) α = 1, ..., n (3)

Notice that a stationary covariance indicator function CI(h; zk) has to be inferred for
each threshold k = 1, ..., K in Equation 3.

Alternatively, ordinary kriging could be used, where the local mean is estimated from the
conditioning data in a neighborhood of the location being estimated, rather than considering
the marginal cumulative probability. Median indicator kriging can be used to reduce the
requirement of inferring and modelling K indicator covariances. It can be applied if the K
indicator random functions I(u; zk) have their indicator variograms and cross variograms
proportional to a common variogram model [8].

Since the estimations are made independently for each threshold, there is no guaran-
tee that the set of estimated indicators will give a valid cumulative distribution, hence
corrections for order relation deviations are routinely performed [2, 4].

Indicator techniques allow the integration of secondary information, as well as soft data.
They provide a flexible and powerful framework to estimate conditional distributions.

Multi-Gaussian Kriging

Multi-Gaussian kriging works by means of a transformation of the sample data into normal
scores [16, 17]. Under the assumption of multivariate spatial Gaussianity, all marginal and
conditional distributions are Gaussian in shape and only their means and variances are
required to fully define them.

The spatially distributed data z(uα), α = 1, ..., n are declustered and a normal score
transformation is performed, generating the normal values y(uα), α = 1, ..., n (Figure 1).

Variogram calculation and modelling of the normal values is then required. Notice
that the values required for variogram inference are the normal score transforms without
considering the declustering weights [2].

Kriging is performed to estimate the normal score value at every unsampled location
in a regular grid. Kriging provides a mean and a variance. Under the multi-Gaussian
assumption, the shape of the conditional distribution is known to be Gaussian, hence the
full conditional distribution in the original units of the variable can be retrieved by back-
calculating the z values for given percentiles. The mean can be back-calculated by numerical
integration, as illustrated in Figure 2. The full distribution of uncertainty in original units
can be retrieved in the same manner. In theory, the available information allows us to
calculate the estimate with minimum estimation variance by simple kriging. Ordinary
kriging could be used in case there are local variations in the mean, so long as the variable
can be considered locally stationary. The estimation variance in this case will be higher
than the one obtained by simple kriging. Ordinary kriging could be too conservative when
estimating the local uncertainty.

One of the advantages of transforming the variable to normal scores is that there is im-
plicit control over any heteroscedasticity of the variable, that is, change in the local variance
as a function of the local mean. In mining applications, this phenomenon is known as the
proportional effect. Practice has shown that in general for positively skewed distributions,
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Figure 1: The normal score transformation is illustrated for a data zi. The cumulative
frequency is read in the original distribution and the value yi of a standard normal distri-
bution, that is, a Gaussian distribution with mean 0 and variance 1, corresponding to that
cumulative frequency is assigned to the data location. The anamorphosis function is shown
at the bottom.
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Figure 2: Calculation of the mean by numerical integration. The local uncertainty distri-
bution is given by the kriging estimate and variance and the assumption that the shape is
normal (bottom right). Several quantiles are calculated in the illustration. The nine deciles
of the distribution, y1, ..., y9, are back-transformed (top) and the corresponding values,
z1, ..., z9, are used to calculate the mean (bottom left).
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the local standard deviation is directly proportional to the local mean. Furthermore, the
relationship is in general very close to linear [5, 11].

The process of transforming the value to a standard Gaussian distribution and then
back-transforming the conditional distributions “filters” the proportional effect, because of
the changing slope in the anamorphosis function (see bottom of Figure 1).

Multi-Gaussian kriging provides an easy approach to calculate the conditional distribu-
tions, with the same requirements, in terms of inference, as Gaussian simulation: a rep-
resentative histogram is transformed and the variogram of the normal scores is calculated
and modelled.

Block Uncertainty

Assessing block uncertainty can be done using geostatistical simulation methods. Sequential
methods work by visiting randomly all the uninformed nodes in the simulation grid. The
point distribution of uncertainty is computed at each location given the sample data and
previously simulated nodes, and a value is drawn from this distribution. This value is
used for all subsequent nodes as conditioning data; this ensures reproduction of the spatial
correlation [9]. Due to the requirement to include previously simulated points to condition
the subsequent nodes in the random path, storage may become an issue if very large grids
are considered (over ten million nodes). Furthermore, the time required to compute multiple
realizations may also be a problem. If N nodes are being simulated for L realizations, then
N ·L kriging systems must be solved. Since the simulated points are also used to condition
the estimation in subsequent nodes, the kriging matrices tend to be large in size, increasing
the computer time required to invert them. In estimation, only N kriging systems must be
solved and these are in general not as large as the ones considered in the case of simulation,
and storage is required only for the sample data as conditioning.

The typical procedure to assess uncertainty over block values using simulation is:

1. L dense grid simulated realizations are generated.

2. Block values are calculated for each one of the L realizations.

3. The L block values are used to construct the distribution of uncertainty (histogram)
for the block variable.

4. Mean and any quantile of the block distribution can be retrieved from the set of L
block values.

An alternative to simulation is to use the local distributions of uncertainty to infer the
block support uncertainty. In order to combine the point support uncertainty distributions
into a single block distribution, the spatial correlation must be taken into account.

Methodology

Probability field (p-field) simulation allows combining these point conditional distributions
into a block distribution by generating spatially correlated values from the point distribu-
tions [3, 15]. These values are averaged to obtain a simulated value that is used to build the
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distribution of block values. The idea is to generate spatially correlated probability values
that are used to draw from the point distributions. For example, if a strong spatial corre-
lation exists, the probability value used to draw from a point distribution will be similar to
the probability value used to draw from the point distribution at a nearby location. This
permits generating correlated values from these point distributions.

Because the p-field is used to draw from the conditional distributions, it can be generated
unconditional, hence a quick algorithm such as spectral methods or matrix decomposition
can be used.

The following methodology is proposed to assess block uncertainty:

• Calculate a representative distribution by declustering the z data.

• Transform the data to normal scores considering the declustered distribution.

• Infer and model a three-dimensional variogram of the normal scores.

• Calculate the multi-Gaussian kriging estimate and variance at point support by kriging
the normal score data using the corresponding variogram of normal scores.

• Define the blocks of interest for uncertainty calculation, based on the objective of the
study:

– Regular blocks can be defined for the calculation of recoverable reserves or for
resource or reserve classification.

– A production volume (irregular shape and probably disconnected) can be consid-
ered for assessing uncertainty in average grade for a planned production period.

• For every block of interest, retrieve the points located within the block and their
locations.

• Generate multiple unconditional probability fields using a matrix method, with the
normal score variogram.

• For every probability field:

– Generate the simulated values by drawing from the conditional distributions
using the probability field.

– Back-transform every simulated value to the original units, using the transforma-
tion table, and average the values in original units to obtain a single realization
of the average.

• Pool together the average values for a particular block, and retrieve its variance or
any probability interval as a measure of uncertainty.

This methodology has been implemented in a Fortran program called POSTMG, which is
described in the Appendix.
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Figure 3: Declustered histogram of copper grades.

Case Study: Porphyry Copper Deposit

The objective of this study is to show the implementation of the method proposed for
calculating the uncertainty at block support from point grade uncertainties.

Drillhole Data

A drillhole database with copper grades in 12m composites from a porphyry copper mine
is available for this study. The data base contains East, North and elevation coordinates,
and the grade in percent by weight.

Figure 3 shows the declustered histogram of composites. 1281 samples are available.
The data range from 0 to approximately 7 % Cu and the distribution is positively skewed.
The coefficient of variation is approximately 0.5, which can be considered relatively low. It
is a typical value for deposits of this type. The median is very close to the mean value.

A plan view of the drillholes at a particular bench is shown in Figure 4. The copper
grades are shown at the bench level with a tolerance of 12 m. The average spacing between
drillholes is around 50 m. In many zones drillholes are spaced even closer.

Variogram of Normal Scores

The variogram of the normal scores is calculated and modelled. The final model is presented
in Table 1 and the experimental and fitted variograms in the three main directions of
anisotropy are shown in Figure 5.

Multi-Gaussian Kriging

Multi-Gaussian kriging is performed, that is, the normal scores of the data are used as
conditioning information to obtain kriging estimates and variances at point support within
the domain of interest.

The grid simulated is defined in Table 2.
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Figure 4: Plan view showing the drillhole information for bench 3922.

Nugget Effect 0.20
Structure 1 Spherical

Sill Contribution 0.15
Range N30oW 20.0
Range N60oE 60.0
Range Vertical 45.0

Structure 2 Exponential
Sill Contribution 0.70
Range N30oW 160.0
Range N60oE 105.0
Range Vertical 220.0

Table 1: Normal scores variogram model parameters.

Direction Number Coordinate Centre Size
of Nodes of First Block (m) (m)

Easting 100 24551.0 2.0
Northing 150 25201.0 2.0
Elevation 12 3881.0 2.0

Table 2: Grid definition.
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Figure 5: Normal scores variogram model. The solid line corresponds to the vertical di-
rection, the dashed line is in the N30oW direction, and the dotted line corresponds to the
N60oE direction.

The search strategy was defined considering 4 and 16 samples as minimum and optimum
numbers for estimating a location. The search ellipsoid was defined with its main axis
rotated to N30oE. The maximum, minimum and vertical radii that define the ellipsoid were
160, 110, and 220 m.

Figure 6 shows the estimates and variances in transformed units.

Block Distributions

The multi-Gaussian output was post-processed with the program PostMG. Averaging of the
point distribution was done to blocks of 10 by 10 by 12 m. The numerical discretization of
the Gaussian distributions to obtain the mean, variance and quantiles in original units was
set to 200 quantiles. Finally, 100 realizations of the probability fields were considered, from
which the simulated point values were drawn, back-transformed and averaged to obtain the
distribution of block grades. Figure 7 shows the estimates and variances in original units
at point support (top) and at block support (bottom). Notice that the variance does not
depend exclusively on the spatial configuration of the data, but also on its local mean.

Possible Applications

These block grade distributions of uncertainty could be used to determine recoverable re-
serves. One of the output files of PostMG contains quantiles for each block. The number
of quantiles reported is set by the user. These distributions could be used to calculate the
proportion of each block with a grade higher than a given cutoff. Adding these proportions
and calculating the grade of the material above the cutoff grade provides an estimate of the
recoverable reserves.

A second possible application is the use of PostMG for classification. The program
could be modified to calculate locally an estimated distribution of uncertainty for blocks
of different sizes. These could represent production for different periods. Blocks could be
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classified based on their spread around the mean, at a given confidence level.

Comments

Although it is known that p-field simulation generates some artifacts [13], it is still used in
practice. The argument to justify its use is that when considering block averages, the bias
in the spatial correlation and the local extrema are no longer relevant problems.

It is the opinion of these authors that the bias in the variogram is of importance and the
realizations generated with this method do not reproduce the target measure of continuity.
It is therefore advisable to correct the variogram used to generate the p-fields to obtain
realizations that correctly reproduce the variogram. This has not been implemented in the
previous example, but should be considered for future work [12].

Conclusions

A methodology to post-process the point distributions of uncertainty obtained with multi-
Gaussian kriging, to obtain block grades estimates with an associated measure of uncertainty
is illustrated. The methodology has been implemented for an application to a copper
deposit. The program PostMG is provided along with the documentation for its use.

The block grade distributions of uncertainty account for the spatial correlation between
the points inside the block, via a p-field simulation of the point grades. The correlated
probabilities contained in every realization of the probability field are used to draw from the
conditional distributions from multi-Gaussian kriging. The simulated point values are back-
transformed with the corresponding global transformation table and averages in original
units are calculated. These averages can be pooled together into a histogram that represents
the block grade uncertainty. Any summary measure of uncertainty can be retrieved from
these histograms, and they can be used for classification, production uncertainty assessment
and calculation of recoverable reserves.
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Appendix:Program POSTMG

A Fortran program has been prepared to post-process multi-Gaussian output. The input
information required is: the multi-Gaussian kriging grid with means and variance of the
local point distributions, the transformation table to back-transform the Gaussian values
simulated, and the variogram of normal scores, which is required to generate the p-fields.

The program requires the following parameters (see also the parameter file in Figure
8):
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Parameters for POSTMG
*********************

START OF PARAMETERS:
1 - 1=grid, 0=arbitrary prod. volume
kt3d.out - input file with Gaussian mean and var.
1 2 - columns: if 1:m,var; if 0:X,Y,Z,m,var
50 0.5 1.0 - if 1: point support: nx,xmn,xsiz
50 0.5 1.0 - ny,ymn,ysiz
50 0.5 1.0 - nz,zmn,zsiz
5 5.0 10.0 - block support: nbx,bxmn,bxsiz
5 5.0 10.0 - nby,bymn,bysiz
5 5.0 10.0 - nbz,bzmn,bzsiz
nscore.trn - file with transformation table
postMG.out - output file with point m and var in original units
quantiles.out - output file with selected quantiles of point ccdfs
postMGbl.out - output file with block m and var in original units
quantilesbl.out - output file with selected quantiles of block ccdfs
200 - number of quantiles for numerical integration
0.10 - quantile interval
0.0 15.0 - zmin,zmax(tail extrapolation)
1 0.0 - lower tail option, parameter
1 15.0 - upper tail option, parameter
100 - number of realizations for change of support
1 0.1 - nscores variogram: nst, nugget effect
1 0.9 0.0 0.0 0.0 - it,cc,ang1,ang2,ang3

10.0 10.0 10.0 - a_hmax, a_hmin, a_vert

Figure 8: Parameter file for program POSTMG.

• IGRID: Flag that indicates if a regular grid is being input (IGRID=1) or scattered
points are used (IGRID=0)

• DATAFL: Name of file with multi-Gaussian kriging output. If IGRID=1, then only
the columns for the mean and the variance of the Gaussian conditional distribution
at point support is required for all the points in the grid; if IGRID=0, then the
coordinates are also required.

• COLX,COLY,COLZ,COLM,COLV: Column number for X, Y, and Z (if required),
and for means and variances of local distributions of uncertainty.

• NX,XMN,XSIZ,NY,YMN,YSIZ,NZ,ZMN,ZSIZ: Grid definition of the multi-Gaussian
kriging input at point support (only required if IGRID=1). The number of nodes
NX, NY, and NZ, coordinates of the first point in the grid XMN, YMN, and ZMN,
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and spacing of the three-dimensional grid XSIZ, YSIZ, and ZSIZ are required. These
values follow the convention of all the GSLIB programs.

• NBX,BXMN,BXSIZ,NBY,BYMN,BYSIZ,NBZ,BZMN,BZSIZ: Grid definition for the
required block output. The same parameters as for the grid input are required.

• TRANSFL: Name of the file with the transformation table. This table can be gener-
ated with the program NSCORE in GSLIB. It contains the original values and normal
score transforms in two columns without a header.

• OUTFL,OUTFL2,OUTFL3,OUTFL4: Names of the four output files generated. The
file OUTFL contains the mean and variance for the point support in original units.
The file OUTFL2 contains the values of the variable for a set of quantiles specified
by the user (see next). These two files also include the coordinates of the points if
IGRID=0. The file OUTFL3 has the mean and variance in original units at block
support. Finally, the file OUTFL4 writes out the quantiles for the block distributions.
The files OUTFL3 and OUTFL4 output values for a single block if IGRID=0, since
all the points are considered to belong to the same production volume.

• NDISC: Discretization of the point distributions for numerical integration. This allows
improvement in the accuracy of the back-transformation of the full point support
distribution of uncertainty.

• NQUANT: Quantile interval for reporting. This number must be greater than 0 but
smaller than 1. A typical value would be 0.10, in which case the nine deciles are
output to OUTFL2 and OUTFL4 for the point and block distributions.

• ZMIN,ZMAX: Minimum and maximum values for tail extrapolation during the back-
transformation of the quantiles.

• LTAIL,LTPAR,UTAIL,UTPAR: Parameters for the extrapolation of the tails. LTAIL
defines the model to extrapolate the lower tail. LTAIL=1 entails a linear extrapola-
tion to the value LTPAR; LTAIL=2 implies a power model with parameter LTPAR.
Similarly, UTAIL indicates the type of extrapolation for the upper tail. UTAIL=1
indicates a linear model up to the value UPAR; UTAIL=2 implies a power model with
power UPAR; UTAIL=4 considers a hyperbolic extrapolation with parameter UPAR.
In the case of the hyperbolic extrapolation, the values are truncated at ZMAX.

• NSIM: Number of realizations of the p-fields to compute the block support statistics.

• NST(1),C0(1),IT(i),CC(i),ANG1(i),ANG2(i),ANG3(i),AA(i),AA1,AA2: The normal
scores variogram model parameters. As with all programs in GSLIB, NST(1) corre-
sponds to the number of structures, C0(1) is the nugget effect, IT(i) is the variogram
type for the structure i, CC(i) is its sill contribution, ANG1(i), ANG2(i), and ANG3(i)
are the rotation angles for the principal directions of anisotropy, AA(1), AA1, and
AA2 are the ranges in the directions of maximum continuity (hmax), minimum conti-
nuity (hmin), and perpendicular to both (vert).
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