
Random Number Generation with acorni:

A Warning Note

Julián M. Ortiz (jmo1@ualberta.ca) and Clayton V. Deutsch (cdeutsch@ualberta.ca)
Department of Civil & Environmental Engineering

University of Alberta

Abstract

The use of acorni in scripts is common. Initializing the random number generator with
seeds that are incremented by a constant value facilitates the generation of multiple realiza-
tions. However, if the seed numbers are shifted by a constant, there is a constant difference
between the random numbers generated. This can introduce artifact correlation in the re-
sults of multiple variables. Some examples are provided in this note and a simple solution
is suggested to avoid this problem.

The Additive Congruential Random Number Generator

Additive generators calculate each pseudo-random number as some additive combination of
the previous numbers in the sequence [2]. R. S. Wikramaratna [3, 4, 5] proposed the acorn
generator and its integer version acorni. The latter version is used in GSLIB [1].

The Kth order generator XK
j combines the previous number in the sequence with a

corresponding number from the (K − 1)th order sequence. XK
j is defined recursively from

a seed X0
0 (0 < X0

0 < maxint) and a set of K initial values Xk
0 , k=1, ..., K each satisfying

0 ≤ Xk
0 < maxint, where maxint = 230, just over a billion. The generator is defined by:

X0
n = X0

n−1, n ≥ 1

Xk
n =

(Xk−1
n +Xk

n−1)mod maxint
maxint , n ≥ 1, k = 1, ..., K

This generator has three main features:

1. It is faster to compute than other generators,

2. The period length can be set arbitrarily large, and

3. It gives the same sequence in any machine (differing only in the number of significant
digits).

The current implementation of acorni is shown in Figure 1. All the numbers in the
Zero Order row are the same (the seed number X0

0 equal to a constant C). The arrows show

1



which previous numbers are used to calculate the current one. The numbers generated in
the row of the Kth order are considered to be pseudo-random numbers, in this case K = 12.

The standard implementation of this random number generator considers K additional
seeds that could be specified by the user, but that are set to zero by default, X1

0 = X2
0 =

. . . = XK
0 = 0. It is recommended to initialize the sequence not considering the first

thousands. In most cases, the random number generator is initialized by running it up to
a certain value, say 10000. The random numbers needed are then taken starting at the
10000th value in the sequence.

Under this implementation, and considering a seed number C, the generation of random
numbers would be as shown in Figure 1. It can be seen that the random numbers in the
12th row are equal to the constant seed C multiplied by a factor m. This factor changes
as we consider new terms in the sequence of pseudo-random numbers. To obtain the final
sequence of random numbers in ]0, 1], the remainder of dividing the terms in the last row
by maxint must be taken, that is, we find the value m · C − p · maxint, for some p such
that the new value is in ]0, maxint]. Then this value is standardized to the interval ]0, 1]
by dividing it by maxint one more time.

Zero Order : C → C → C → C → · · ·
↓ ↓ ↓

1st Order : 0 → C → 2 · C → 3 · C → · · ·
↓ ↓ ↓

2nd Order : 0 → C → 3 · C → 6 · C → · · ·
↓ ↓ ↓
...

...
...

↓ ↓ ↓
12th Order : 0 → C → 12 · C → 81 · C → · · ·

Figure 1: Schematic showing how acorni generates pseudo-random numbers.

The Problem

Consider the use of acorni within a script, where multiple realizations are required. Com-
mon practice consists on calling the simulation algorithm several times, but changing the
random number seed C. This change is commonly done by adding a constant to the previous
random number seed, starting the new realization with a seed number C + ∆C.

Considering the N th value of two different sequences generated with seed numbers C
and C + ∆C, there are two possibilities:

1. If m · (C + ∆C) − p · maxint < maxint, then:

Random Number 1 = m·C−p·maxint
maxint

Random Number 2 = m·(C+∆C)−p·maxint
maxint


Difference =

−m · ∆C

maxint
(1)

2



(1) (2) (3)=(1)-(2) (4) (5) (6)=(4)-(5) (7)=(3)-(6)
Seed 1 Seed 2 Difference Seed 3 Seed 4 Difference
69069 69071 69073 69075
0.8737 0.5058 0.3679 0.1380 0.7701 -0.6321 1.00
0.9092 0.6511 0.2582 0.3929 0.1347 0.2582 0.00
0.6413 0.4659 0.1754 0.2905 0.1151 0.1754 0.00
0.1061 0.9463 -0.8402 0.7865 0.6266 0.1598 -1.00
0.6178 0.5990 0.0188 0.5802 0.5614 0.0188 0.00
0.5318 0.0141 0.5177 0.4963 0.9786 -0.4823 1.00
0.5575 0.7861 -0.2286 0.0147 0.2433 -0.2286 0.00
0.5872 0.4639 0.1233 0.3406 0.2174 0.1233 0.00
0.8279 0.7783 0.0497 0.7286 0.6790 0.0497 0.00
0.2021 0.0196 0.1826 0.8370 0.6545 0.1826 0.00

Table 1: Example: the last ten numbers of four sequences of one million numbers are shown.
The difference between numbers in sequences that differ in their seed are calculated. These
differences are equal for two pairs of sequences, or they are shifted by one.

2. If m · (C + ∆C) − p · maxint > maxint then:

Random Number 1 = m·C−p·maxint
maxint

Random Number 2 = m·(C+∆C)−(p+1)·maxint
maxint


 Difference =

−m · ∆C + maxint

maxint
(2)

It can be noticed that the difference does not depend on the seed number C, but on the
increment between the two seed numbers ∆C. Hence, if we take the same N th number in
two other sequences, with seed numbers D and D + ∆C, then the difference between these
two random numbers will be either −m·∆C

maxint or −m·∆C+maxint
maxint , that is, the difference will be

the same as the one obtained from the two original sequences, or it will differ by one.
To further illustrate this point, consider the sequences presented in Table 1. One

million numbers were generated with each seed number and the last ten are shown on the
table. Considering a constant increment of ∆C = 2 between the random number seeds, four
sequences are generated and the difference between the numbers in sequences 69069 and
69071, and between sequences 69073 and 69075 are calculated. From the table, it can be
seen that these differences are equal for the same number in the sequences. For instance, the
difference between the one millionth number in the first and second sequences is 0.1826, the
same as the difference between the one millionth numbers in the third and fourth sequences.

A Proposed Solution

A simple solution to this problem is to initialize the sequences differently, say, as a function
of the seed number. Instead of discarding the first 10000 numbers of the sequence, as in the
current implementation of most algorithms in GSLIB, we propose to initialize the random
sequence by discarding the first C values of it, where C is also the seed number. That
is, the first number the user will see for the first sequence will be the Cth number in the

3



sequence. For the second sequence of random numbers, the first value the user will see is
the (C + ∆C)th number. If other two sequences are considered with seed numbers differing
by ∆C, no correlation should be found between differences, since in the expressions 1 and
2, the value of m will no longer be the same for different sequences.

References

[1] C. V. Deutsch and A. G. Journel. GSLIB: Geostatistical Software Library and User’s
Guide. Oxford University Press, New York, 2nd edition, 1998.

[2] J. Ortiz C. and C. V. Deutsch. Testing pseudo-random number generators. In Centre
For Computational Geostatistics, volume 3, Edmonton, AB, 2001.

[3] R. S. Wikramaratna. ACORN - a new method for generating sequences of uniformly
distributed pseudo-random numbers. Journal of Computational Physics, 83:16–31, 1989.

[4] R. S. Wikramaratna. ACORN random number generator user documentation. User
Documentation, October 1990.

[5] R. S. Wikramaratna. Theoretical analysis of the ACORN random number generator,
1990. SIAM Conference on Applied Probability in Science and Engineering, New Or-
leans, Louisiana.

4


