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Abstract 
 
Sequential Gaussian simulation algorithm is based on two-points statistics to 
characterize the spatial distribution. Since Gaussian distribution maximizes the entropy 
beyond the covariance, the simulated realizations will tend to have less spatial structure 
than reality. Entropy has been used as a measure of spatial disorder. This paper shows 
how entropy measurements change as we increase the number of points used to estimate 
this statistic and after performing simulation. Further, the use of entropy as a measure of 
connectivity between values from a certain range of a continuous variable is also shown. 
 
 
Introduction 
 
Sequential Gaussian Simulation (SGS) is one of the most common simulation algorithms 
used for modeling continuous variables. The great advantage of this technique is that it 
reproduces the correct spatial variability. Also an assessment of local and global 
uncertainty is possible due to multiple realizations obtained from simulation are possible 
do. The statistical advantage of the Gaussian distribution is that in multivariate Gaussian 
space, all conditional distributions are also Gaussian. Further, the conditional expectation 
of a Gaussian variable is a linear combination of conditioning data, so the correct 
estimate corresponds to the one obtained from Kriging.  
 
On the other hand, the great disadvantage of choosing a Gaussian distribution is the 
characteristic of maximum entropy (Journel and Deutsch, 1993), that is, beyond any second 
order statistics imposed by the model the spatial disorder will be maximized. Indeed, the 
unbounded probability density function with finite variance that maximizes the entropy is 
the Gaussian distribution. SGS realizations will have less spatial structure than reality; 
extreme values are highly disconnected, while median values have greatest connectivity. 
Most geological processes result in spatial structures that cannot be fully characterized by 
two-point statistics, such as the covariance or the variogram. Entropy can be see as a 
summary statistic of a probability distribution, but like any summary statistic, such as the 
variance for example, it does not give information on the shape of the distribution.  
 
This “feature” of SGS may have great consequences when looking at specific properties, 
both for petroleum and mining applications. For example, in an SGS realization of 
permeability, high values and low values will not have simulated connected paths which 
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could lead to erroneous estimation of fluid flow rates. The design of short-term mine 
selection plans could be incorrect because of a bias in the variability. 
 
Other simulation algorithms like Sequential Indicator Simulation (Journel, 1983; Journel 
and Isaaks, 1984), Truncated Gaussian Simulation (Galli et. al., 1994) or Simulated 
Annealing (Deutsch, 1992) may have different characteristics of the connectivity of 
extreme values is an issue. 
 
The visual difference between low and high entropy can easily be appreciated; however, 
it is important to show how it changes from a reference image to a simulated realization. 
 
This paper shows (1) how entropy varies with conditioning data that have different 
spatial structures, and how certain spatial structures can influence the entropy 
measurements as we consider more points in the template to obtain the entropy 
measurement and (2) how entropy can be use as measurement of connectivity of extreme 
values. 
 
Methodology 
 
Entropy provides a measured of uncertainty associated with the probability density 
function (pdf) of a random variable. For a univariate continuous distribution with pdf f(z), 
of a random variable Z, the entropy is defined as: 
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If Z is a discrete random variable, that can take K outcomes values with probability pk, 

k=1, …, K, where 1
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In the case of n random variables Zj, j =1, ..., n, Equations 1 and 2 , can be rewritten to 
account for the n-variate probability density distribution (Journel and Deutsch, 1993). 
 
To determine the entropy of an image we need to calculate some set of probabilities pk 
for Equation 2. Lets consider three different templates (Fig. 1), where each position 
corresponds to an indicator variable, 
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 where zc corresponds to a certain threshold in the Z-variable distribution, α=1, ..., N, and 
N=4,9 or 16 depending on the template. 
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Fig. 1: (I.-) Different templates consider for entropy measurement. Each position corresponds to an 
indicator variable, i.e., is one or zero. (II.-) The sixteen possible configurations for the template with four 

positions, white squares are ones, blacks are zeros. 
 

 
Given that each location can take only two values, each template will have 2N possible 
configurations. For example the template with 4 locations has 16 different configurations, 
the template with 9 locations generates 512 possible configurations, and the pattern of 16 
points has 65536 possible configurations. 
 
Then for each template, pk, k=1, …, 2N 

 can be defined as the probability of a particular 
configuration to be found within a certain domain. This probability corresponds to the pdf 
of a 2N-multivariate random function and the entropy measured from these probabilities 
corresponds to a 2N-multipoint statistic. 
 
Continuous variables can be discretized into a finite number of classes C, then the 
number of configurations for each template will be CN. In this paper we will consider 
only two possible outcome values and its implementation is straightforward. As C or N 
increases the probabilities of the different configurations becomes smaller and likely at 
the same time more uniform so the entropy increases (Deutsch, 1992 and Tupin et al., 
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2000). Maximum entropy occurs only when all categories are equally probable, while 
minimum entropy is achieved when only one configuration can occur.  
 
A subroutine in FORTRAN was created to determine the entropy of an image, basically 
the program scans the image, with a step of 1 pixel, and at each node it determines the 
index of the template (Deutsch, 1992) centered at that location. As the image is scanned 
the indices of the different templates are saved as an array of size 2N, from this array, the 
probabilities and entropy are calculated using Equation 2. 
 
 
Application 

Four exhaustively sampled reference images were chosen to show how entropy of the 
reference image changes with respect to its corresponding simulated realization. These 
four images (Fig. 2) represent different stratigraphic textures, two of rippling deposition, 
the first (ripl01) with relatively thinner layering than the second (ripl02), the third image 
correspond to an example of cross-bedding deposition (cross-bed01), finally the forth 
image represent the layering of turbiditic deposition (turb01). All of them show a clear 
spatial structure, and connectivity at certain value ranges. These images correspond to 
scanned photographs; the grayscale was coded to numbers between 0 and 1. The 
histograms of the references images are shown in figure 3. 
 

 
Fig. 2: Exhaustively sampled reference images. The top left and right images correspond to rippling 
deposition. The bottom left is an example of turbiditic layering and the bottom right of cross bedding 

layering. 
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Fig. 3: Histograms of the references images. 

 
 
The entropy of the four references images was calculated using the three different 
templates (Table 1 and Fig. 4). As previously noted, the entropy increases as the number 
of configuration increases. In this case the number of possible configurations increases as 
more points are consider in the template. The rate in which entropy increases with an 
increased number of configurations is a function of the complexity of the image, with 
consideration for the thickness of the layers and the linearity of the contacts between 
these layers. 
 
The entropy of the four references images was also calculated for template (b) using three 
different thresholds zc in the indicator function for each location; the mean and the upper 
and lower quartiles (Table 2). The trend that follows the entropy for each image is 
significantly different and corresponds to the different features of their spatial structure. 
For example, the image ripl01 shows higher entropy when the threshold is the mean, 
reflecting the connectivity of the values around the. The entropy for the image cross-
bed01 with the mean as the threshold is still a little lower than the entropy using the 
upper-quartile threshold. This result is consistent with the high connectivity of the high 
values and the skewness of its distribution. Another interesting feature is the results of 
image turb01, the entropy varies more smoothly between the different possible 
thresholds, as one would expect given that the stratigraphic banding is thicker. 
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Fig. 4: Calculated Entropy for the four reference images, using different templates. 

 
 

Entropy Values for different Templates Image (a) N=4 (b) N=9 (c) N=16 
ripl01 1.86 2.27 5.61 
ripl02 1.57 2.62 4.33 
turb01 1.18 1.51 2.54 

cross-bed01 1.38 1.18 3.44 
 

Table 1: Entropy values for the references images, using different templates. 
 
 
 

Entropy Values for different zc Image Lower quartile Mean Upper quartile 
ripl01 2.27 3.53 2.90 
ripl02 2.62 2.81 1.88 
turb01 1.51 1.80 2.13 

cross-bed01 1.18 2.35 2.60 
 

Table 2: Entropy values for the references images, using different thresholds: the mean and the lower and 
upper quartiles. 

 
 
The variograms in two directions (X and Y of the image) were calculated for each image, 
and they were fitted using VARFIT program (Larrondo et. al., 1993). 
 
For each one of the references images, 1% of the number of points contained in the 
images was randomly sampled to perform the simulations. For each set of samples, 100 
realizations were simulated using SGSIM (Deutsch and Journel, 1998); a realization for 
each scenario is shown in figure 6. 
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Fig. 6: Selected realizations of SGS for each image. 

 
 
Using the mean as a threshold, the entropy was calculated for each of the one hundred 
realizations. A histogram of the results is shown in figure 7, where they are compared 
with the entropy measured for the reference image. The variance of the entropy 
distribution is very small for all images, and there seems to be almost no difference in the 
variance of the entropy distribution when comparing different images with different 
original entropy values. The characteristic of maximum entropy of the Gaussian 
distribution used for the simulation does not translate this property to the results (Journel 
and Deutsch, 1993). The mean value of the entropy distribution for the realizations is 
consistently higher than the entropy value of the corresponding reference image (Fig. 7). 
The increment in entropy due to the simulation process is higher for those images with 
high connectivity of extreme values. In the case with image cross-bed01 may be a little 
different, since the cross-bedding stratification is more difficult to reproduce by the 
simulation process, and therefore the realizations are more unstructured compared with 
the other images. 
 
Comparison between the reference and the simulated realization entropies, it is done 
considering the lower or upper quartiles threshold, two results became notorious. The 
first one is that, for the lower quartile threshold in the ripl01image, the entropy calculated 
from the realizations is less than the entropy measured in the reference with the same 
threshold. This also happens for the turb01 image using the upper quartile as the 
threshold for comparison. 
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Fig. 7: Histograms of the one hundred realizations of each realization. The black bar represents the entropy 

measured for the reference image. 
 
  
Entropy was also compared between the simulated realization of image ripl02, generated 
with different amounts of conditioning data; 5% and 0.25%, and yet the results are 
remarkably close to the ones resulting from using 1% of conditioning data (3.31; Table 
3), 3.30 for the realization done with 5% samples and 3.26 with 0.25% samples 
 

 
 

Entropy Values of Simulated Realization Image Lower quartile Mean Upper quartile 
ripl01 2.06 3.96 3.05 
ripl02 2.86 3.31 2.13 
turb01 1.98 2.36 1.82 

cross-bed01 1.83 3.33 3.63 
 

Table 3: Mean entropy values for the hundred realizations, using different thresholds: the mean and the 
lower and upper quartiles. 
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Conclusions 
 
Most simulation algorithms are based in two-points statistics to characterize the spatial 
distribution of the variable to model. Most geological processes lead to spatial structures 
that are more complex than fully described by a variogram.  
 
Sequential Gaussian simulation uses the Gaussian distribution to obtain the simulated 
values. Its simplicity is balanced against the property of maximum entropy beyond the 
two-point statistics. As a result SGS realizations could have less spatial structure than 
reality. Entropy can be seen a measure of spatial disorder. 
 
Entropy was measured in four reference images, using three different templates with an 
increasing number of possible configurations. The results confirm that as the number of 
configurations increases the entropy increases as well. The rate in which entropy 
increases with more possible configurations depends on the spatial complexity of the 
reference image. 
 
Entropy was also measured at different thresholds for the indicator variable in the 
template. Results show that entropy will be higher when the threshold belongs to that 
range of the distribution that shows more spatial connectivity. 
 
Entropy was also measured for one hundred realizations, obtained by SGS, the results 
show that entropy increases in the simulated images when the threshold chosen is the 
mean. When the chosen thresholds are the lower or upper quartile, entropy of the 
simulations can be lower than the entropy of the reference if there is higher connectivity 
in one of the extreme values. Of course, if the multiple point distribution was used in the 
geostatistical simulation, then the entropy would be the same as the original reference 
image. 
 
The two serious problems faced by geostatistics is (1) inference of reliable statistics, 
perhaps multiple point, from data or structures we deem relevant to the location being 
studied, and (2) estimation or simulation using all deemed-relevant statistics. Future 
research will continue in these directions. 
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