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Abstract

The assumption of permanence of ratios allows integration of data from different sources,
and with different types, and precision. It originates from the assumption of conditional
independence between the different sources of information, given the event of interest.

This concept is known as the Naive Bayes Classifier in statistics. Under the same
assumption of conditional independence, it aims at classifying multivariate events given
the conditioning information. The conditional probabilities are inferred from training data,
which is similar to using a training image for inferring multiple-point statistics used to
condition geostatistical simulations.

We recall the theory behind these two concepts, and comment on some future avenues
of research.

Introduction

Journel introduced the concept of permanence of ratios as an alternative to the hypothesis of
data independence in geostatistical applications, when integrating information from multiple
sources [5].

Consider the estimation of the probability of occurrence of an unknown event A, given
information from several sources. For now, let us consider only two sources of information,
B and C. Bayes’ law permits the calculation of the conditional probability P (A|B,C):

P (A|B,C) =
P (A,B,C)
P (B,C)

(1)

with

P (A,B,C) = P (A) · P (B|A) · P (C|A,B)
= P (A) · P (C|A) · P (B|A,C)

However, the calculation of this probability requires the knowledge of the joint probabil-
ity between B and C, and the conditional probability of C given A and B (or equivalently,
this last requirement can be replaced by the knowledge of the conditional probability of B
given A and C).
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Data Independence

The assumption of data independence states that B and C are independent, therefore:

P (B,C) = P (B) · P (C)

Contrary to what is stated in the paper by Journel [5], this condition by itself does
not resolve the problem. An additional assumption is required to simplify Expression 1:
conditional independence of B and C given the event A [2], that is:

P (C|A,B) = P (C|A)
P (B|A,C) = P (B|A)

These two assumptions entail:

P (A|B,C) =
P (A) · P (B|A) · P (C|A)

P (B) · P (C)
(2)

Recall that:
P (B|A) =

P (A,B)
P (A)

=
P (A|B) · P (B)

P (A)
(3)

Hence, Expression 2 can also be written:

P (A|B,C) =
P (A|B)
P (A)

· P (A|C)
P (A)

· P (A) =
P (A|B) · P (A|C)

P (A)

Although correct, this expression is not robust against departures from the assumption of
independence. Consider the case when P (A) = 0.1, P (A|B) = 0.8, and P (A|C) = 0.8.
The conditional probability P (A|B,C) is 6.4. Since a probability is being estimated, a
good property of the estimators would be to generate results that always fall in the interval
[0, 1]. The previous assumptions do not provide an estimate (by Bayes’ law) that satisfies
with this property. This motivates the search for alternative assumptions.

Conditional Independence

A less constraining and, as we will see, more robust approach is to assume the data are con-
ditionally independent given the event A. There is no need to assume they are independent.
The expression for the conditional probability of A given B and C is:

P (A|B,C) =
P (A) · P (B|A) · P (C|A)

P (B,C)
(4)

The joint probability between B and C is required in order to compute the conditional
probability; however, as Journel pointed out, there is a simple way around this problem
that gives the expression for the permanence of ratios assumption [5]. We can consider the
expression for P (A|B,C) and the expression for P (Ā|B,C), where the event Ā represents
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the complement of event A, that is, the event of A not occurring, which is equal to 1 −
P (A|B,C). The two expressions and the ratio between them are:

P (A|B,C) =
P (A) · P (B|A) · P (C|A)

P (B,C)
(5)

P (Ā|B,C) =
P (Ā) · P (B|Ā) · P (C|Ā)

P (B,C)
(6)

P (Ā|B,C)
P (A|B,C)

=
P (Ā) · P (B|Ā) · P (C|Ā)
P (A) · P (B|A) · P (C|A)

(7)

Using Expression 3, the terms in Expression 7 can be rearranged to end up with the
permanence of ratios expression:

P (Ā|B,C)
P (A|B,C)

P (Ā|B)
P (A|B)

=
P (Ā|C)
P (A|C)

P (Ā)
P (A)

(8)

This expression states that the incremental information provided by one event C before
and after knowing another event B is constant (and vice-versa).

Naive Bayes Classifier

Statistical classification helps in the decision to assign a given case into a class, given a set
of attributes. The problem is similar to the one of integrating several sources of information
(the “attributes”) to decide the probability of occurrence of an unknown event (the “case”).
In geostatistical applications, the event A is in general an indicator that represents the
presence or absence of an attribute at a given location. For continuous variables, it can
be defined as the probability of being below a given threshold. By defining the conditional
probability of the event A occurring given the information provided by the attributes B
and C, in the case with two additional sources of information, the problem of combining
knowledge from diverse sources is reduced to a statistical classification problem.

The Naive Bayes classifier was introduced more than forty years ago [1, 6]. It assumes the
attributes are conditionally independent, given the case being classified. The assumption
is typically displayed as a Bayesian network, as depicted in Figure 1. This assumption,
as seen before, entails the permanence of ratios. It is then reasonable to explore what
forty years of research in statistical classification can offer to further the application of the
permanence of ratios assumption in geostatistics.

Comments

The objective of many of the statistical and geostatistical methods is to predict an un-
known or unsampled attribute [4]. This prediction can consider a continuous attribute or
a categorical one. Unlike regression methods, classification techniques aim to locate the
unknowns into one of several (disjoint) classes. Both methods require some rule to assign
a value or a class to the unknown event, given the information available. The rule can be
based on almost anything. In order to obtain the probability of an unknown event, Bayesian
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Figure 1: Bayesian network representing the Naive Bayes classifier with attributes B, C,
D, and E. The conditional independence assumption is shown as no connectors between
the attributes.

statistics offers a framework to determine these rules. Classification is then simply made
by assigning the event to the class with highest probability.

Notwithstanding their simplicity, Naive Bayes classifiers are extremely successful in
terms of accuracy, that is, when the number of incorrect versus correct assignments to
classes are computed [3, 4]. This success is mainly due to the fact that they do not need
to be precise in estimating the probability, but only have to discriminate correctly between
the classes. Thus, the class with highest probability is selected and the case is assigned to
it. Hence, there is no requirement for the estimation of the probability to be accurate, but
the ranking of the probabilities has to be correct to have good classification.

One of the main advantages of the assumption of conditional independence is the great
simplification that it entails in the expression for the conditional probability of A given B
and C. However, in a spatial context, this assumption appears as unrealistic. This problem
also occurs in statistical applications, where it is common to find that many of the attributes
are strongly correlated.

Research in statistics has shown that the Naive Bayes assumption performs well because,
despite generating a considerable bias in the estimation of the conditional probability, it
generates a low inter-class error, which results in good classification performance. This has
been shown in the binary case, although extensions to cases with multiple categories are
likely similar [4].

Another interesting application found in the statistical literature is the use of incomplete
training data sets to infer the conditional probabilities used in the Naive Bayes model.
Depending on the reason for these missing data events, it is possible to infer from the
available data intervals for the missing conditional probabilities. These intervals can then
be used to improve classification.

A simple extension to the Naive Bayes model consists on considering an additional
parameter in the expression of the permanence of ratios. This parameter τ should account
for the correlation between the sources of information. This implies a departure from
the assumption that the incremental information of C remains constant regardless of the
additional information provided by B to the estimation of the probability of A occurring:
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P (Ā|B,C)
P (A|B,C)

P (Ā|B)
P (A|B)

=




P (Ā|C)
P (A|C)

P (Ā)
P (A)




τ

(9)

This can be written equivalently as:

P (A|B,C) =
P (A) · P (B|A) · P (C|A)τ

P (B,C)

Expression 9 accounts for the redundancy between B and C regarding event A. We are
looking for the value of τ , such that:

P (C|A)τ ≈ P (C|A,B)

The question is now how to infer τ . A possible solution would be to look at experimental
data and try to understand how τ changes with the nature of the dependence. If B and
C are fully redundant, then τ = 0. If they are independent, then τ = 1. The behavior
between these extremes could be inferred from other synthetic cases.

The assumption of conditional independence opens a new avenue of research in integra-
tion of information from multiple sources. We can build from the experience in statistics.
There are many potential applications and several unsolved issues that must be addressed
in future research.
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