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Abstract 

Unstructured grids are commonly used in reservoir modeling and are being increasingly 
considered in complex mining engineering applications.  Block kriging of the attributes can be 
easily implemented; however, this implicitly assumes linear averaging, which is not the case after 
Gaussian transformation or with variables that do not average linearly such as permeability.  
Direct simulation has been proposed as a solution; however, there are a number of important 
implementation considerations.  This paper addresses the following considerations and develops 
a practical algorithm/software: (1) search for nearby relevant block and point data, (2) 
stabilization of the kriging equations and weights in presence of complex screening, (3) 
correction of the homoscedastic kriging variance to account for realistic proportional effect, (4) 
determination of valid conditional distribution shapes, (5) accounting for geological controls 
including stratigraphic surfaces and mixture of multiple facies within an unstructured grid block, 
and (6) accounting for directional permeability that does not average linearly. 

Introduction 

The use of unstructured grids, particularly in petroleum reservoir modeling, is increasing in 
popularity.  Structured grids, commonly defined using Cartesian coordinates, lack the ability to 
model complex reservoir geometries such as external boundaries and internal faults [1].  
Unstructured grids are being utilized to model the complex geology and geometry of reservoirs 
and to provide improved accuracy (a more refined grid) to more important areas.  Grids such as 
tartan grids are used to provide a high cell density perhaps near wells and low cell density in less 
influential areas. 

Sequential Gaussian simulation (SGS) is one of the most extensively used algorithms for 
continuous variable simulation; however, it is impractical when considering unstructured grids or 
data that come from significantly different volumes (such as seismic or production-related data).  
SGS relies on the multivariate Gaussian model where all conditional distributions are Gaussian 
and fully described by a mean and variance calculated by the well-known simple kriging 
equations.  Unstructured grids introduce a multitude of support volumes to deal with and the 
variables will almost certainly not average linearly through Gaussian transform, thus SGS cannot 
be implemented. 

There are ways to trick SGS into partially accounting for multiscale data.  The covariances can be 
calculated after transformation.  The volume scale can be ignored.  The data can be pre-processed 
to reduce or even increase variability.  The fact remains, however, that classical Gaussian 
techniques assume linear averaging after Gaussian transformation.  A significant bias can be 
incurred if this assumption is adopted.  The severity of the bias will be more pronounced when 
the univariate distribution is highly skewed. 
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Direct sequential simulation (DSS) [2] is becoming popular due to unstructured grids and the 
need to implement multiscale data.  Because DSS works with data in original units, the 
multivariate Gaussian assumption is not explicitly required even if it is invoked through the 
central limit theorem.  There is, however, no univariate transformation of the data and no bias in 
the resulting volume-averaged properties.  Non-linear averaging remains an issue; all kriging-
based techniques assume linear averaging in the unit system that kriging takes place. 

Implementation of DSS is done with the intention of keeping data in its original units and support 
volumes rather than simulating on a fine (regular) grid and block averaging a posteriori to an 
irregular grid.  Since data will be considered in its original form, larger volumes will have to be 
discretized to acquire a covariance value and relative to point data, this process can be very time 
consuming.  A fast method of calculating mean covariance values between any two volumes must 
be developed [3].  Suggested solutions to accelerate mean covariance calculations are to limit the 
number of discretizations, which may hinder accuracy, or to speed up the calculation using a 
variogram lookup table [3]. 

Data used to populate unstructured grids may consist of original data at a small scale or large 
regularly gridded soft data.  The grid volumes being populated may be of many different sizes.  
There is a need for an efficient search for nearby relevant data.  The popular method when 
dealing with a fixed set of data is the super block search strategy, a variation of which could be 
applied to unstructured grids.  A spiral search is often used when searching on a regular grid.  
There are also many search trees available to organize data [4, 5].  A type of search tree appealing 
for simulation is a quadtree for two dimensional data or an octree for three dimensions [6].  An 
efficient method of indexing and pointing to data prior to simulation is required such that upon 
simulating, searching is efficient and the data used are relevant. 

A major issue when considering multiscale data are the effects of screening.  If proper filtering of 
data prior to kriging is not used, screening can lead to anomalous weights, negative variance, and 
consequently inaccurate estimates.  Some filtering techniques such as the octant search, iterative 
kriging, and the template technique have been utilized to combat screening [3].  These methods 
work; however their efficiency is questionable.  The octant search should never exhibit screening 
if only one data per octant was used, however as soon as more than one data per octant is 
accepted; screening or the string effect is possible.  Iterative kriging removes data exhibiting 
extreme weights; however this data may be important to the estimate.  The template technique 
simply consumes computation time.  An efficient method of stabilizing the kriging equations in 
the presence of complex screening is required. 

A common characteristic that many data sets exhibit is a heteroscedastic relationship between the 
local mean and variance commonly referred to as the proportional effect [7].  Using simple 
kriging results in a variance that depends only on the data configuration and is independent of the 
data values, hence the variance is homoscedastic.  When kriging with data in original units, the 
resulting simulated values cannot reproduce a heteroscedastic feature; a method must be 
developed to account for the proportional effect inherent in original data. 

An important step in simulation is drawing a value from the local distributions at each location 
being simulated.  To perform this, the shape of the local distributions must be known, preferably 
from the kriging mean and variance.  A method of determining the local distribution shapes has 
been developed and will be revisited [3, 8, 9].  Basically, the local distributions are calculated and 
organized into a lookup table to be accessed using the kriged mean and variance. 
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Applying unstructured grids introduces two other issues: accounting for geological controls such 
as stratigraphic surfaces, and; dealing with grid blocks containing a mixture of multiple facies.  
An unstructured grid may not conform to the stratigraphic setting within it and this introduces 
problems relating to selecting relevant data for kriging and grid blocks containing multiple 
subsequence layers.  A technique to deal with blocks that do not conform to geological controls 
and that contain multiple facies and subsequences is needed. 

When simulating with data in original units, another problem that will be encountered is variables 
that do not average linearly, such as permeability.  This non linear averaging property becomes a 
major issue when incorporating multiple support volumes into estimating a location.  The location 
being estimated will likely have an intermediate volume different from that for the conditioning 
data.  These non linear variables must be transformed to average linearly for implementation in 
DSS.  Power law averaging can accomplish this transform [10]. 

This paper addresses these six important issues and proposes some novel approaches for 
resolution. 

Search for Nearby Relevant Block and Point Data 

A problem encountered in geostatistical modeling of unstructured grids is searching for nearby 
relevant block and point data.  The data may consist of original data at a small scale, regularly 
gridded soft data, and many varying sizes of grid blocks making current methods of indexing and 
searching for relevant data impractical.  There are many different data configurations of grid 
blocks along with their centroid locations (x,y,z) and geometric characteristics.  There could be 
millions of data points and previously simulated nodes. 

There are several ways a search for nearby data can be done.  Using a brute force method is 
possible for small problems and this involves using a matrix of distances ngb by ngb in size, 
where ngb is the number of grid blocks.  This is feasible for small data sets; however larger data 
sets would require so much memory it would be impractical for conventional computers RAM.  
Implementing the use of a super block search strategy is another option.  The centroids of all grid 
blocks and data locations would be indexed using the conventional super block search method 
[15].  Another possible method of indexing large data sets is the use of search trees, which may 
prove to be more efficient than the other search strategies. 

One type of search tree popular for use in computer graphics is a quadtree (2-dimensional) or an 
octree (3-dimensional) [6].  In the 2-dimensional case, a quadtree could be implemented to 
organize data so that operations such as point location, region location, and neighbor searches can 
be done quickly.  For applying search trees to geostatistics, nearest neighbor searches and region 
queries would be important for acquiring conditioning data and previously simulated nodes.  
Point location operations will be needed for inserting simulated nodes into the search tree.  
Quadtrees work by taking the initial set of data and dividing it up into quadrants.  If the number 
of points within each quadrant exceeds a specified maximum, they are divided into sub-
quadrants.  This process continues until all quadrants in the tree contain at most the specified 
maximum.  Octrees work identically to quadtrees except there are 8 regions created when an 
octant is sub-divided.  Quadtrees and octrees are often created such that all regions at a specific 
level in the tree are the same size. 

Another popular type of search tree is a multidimensional binary search tree (kd-tree) that can be 
used to sort data of higher (k) dimensions [4, 5].  Like the octree or quadtree, data can be sorted 
by having one or several data points per region.  A kd-tree works by splitting the data into two 
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regions per partition.  Each cutting plane’s location and orientation are chosen based on the 
median of the longest aligned axis for each region’s data.  As the process narrows to meeting a 
specified requirement of one or multiple data per region, a tree is built based on the median 
locations.  Figure 2 shows a schematic of how the data are separated along with a resulting tree. 

Screening occurs when near data shadow further data and also when data are configured into 
strings.  When data are shadowed they receive negative weights in kriging.  When there is an 
abundance of data not strongly clustered, the negative weights are very small relative to other 
weights and can normally be ignored [13].  They represent only up to a few percent of the total 
weights.  Negative weights become a substantial problem when relatively few data are used to 
estimate a location [13].  Large negative weights can result and may lead to a negative grade 
estimate.  When data are contiguously aligned finite strings and used in making an estimate, the 
string effect occurs [14].    Strings of data commonly occur in mining and petroleum applications 
since data are often collected along drill holes or wells.  The string effect occurs due to the end 
point data seeming less redundant than the central data within the string and results in the 
weighting patters shown in Figure 3. 

Stabilization of the kriging solution in presence of complex screening 

Having data sorted and indexed in some manner, perhaps using a search tree, will improve the 
efficiency of finding data to use in kriging.  A set of nearby data to be used for kriging a location 
can be quickly accessed from a search tree (see the next paper in this report for more details).  
The resulting data for that location can then be filtered further to reduce the effects of screening 
and the occurrence of anomalous weights. 

Screening can cause extreme positive and negative weights that lead to erroneous estimates and 
estimation variances.  One method of reducing the occurrence of extreme weights is to remove 
data from the kriging matrix: this iterative kriging technique [3] will remove data until the 
absolute value of all the weights are below a specified maximum.  Iterative kriging works; 
however, data that may be highly influential in estimating a location could be removed from the 
kriging matrix resulting in a less accurate result.  Another method of reducing screening is the 
template technique [3] which involves rejecting any data that are shadowed by a closer data.  
Figure 4 shows the template technique.  A downfall to the template technique is its high demand 
on computation time. 

The effects of screening can be observed using an Excel procedure for block kriging.  Each 
volume was made adjustable such that the effects of screening when dealing with various sized 
volumes could be better understood.  The example consists of estimating one location with six 
block data.  A spherical variogram model was used for covariance calculations.  Figure 5 shows 
one possible data configuration and the resulting weights. 

To understand the screening effect when considering different volumes, several data 
configurations were put together and the kriging weights calculated (Appendix A). 

An efficient method of filtering data of various support volumes for estimating a location is 
needed.  Using the template technique should eliminate screening; however, the string effect may 
still occur.  The template technique was applied in two dimensions and was very CPU intensive, 
so applying this to three dimensions would slow the process even more.  A new method of 
filtering data used in estimating a location is the sector search method, which is somewhat similar 
to the template technique.  The sector search method uses input dip and azimuth tolerances to 
create sectors in which only the nearest data is selected for kriging.  A schematic of the sector 
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search in two dimensions is shown in Figure 6.  This method reduces the occurrence of screening 
and depending on the size of each sector the occurrence of strings of data should be reduced as 
well. 

The sector search subroutine works fast in two dimensions as the sectors are all pre-constructed 
and then translated around to points being estimated; however in three dimensions, the sectors are 
built starting with the nearest point with more sectors being built as un-rejected points are 
encountered making the process more time consuming. 

Even though the sector search method removes much screened data, there may be unreasonable 
screening still present.  A case where two points in adjacent sectors with one much closer to the 
location being estimated than the other will result in screening effects.  Using large sectors will 
practically eliminate screening.  To determine an optimal sector size, multiscale data should be 
used since the occurrence of anomalous weights and estimates is more prevalent.  An attempt was 
made to determine an optimal size using point data; however anomalous weights did not occur 
regardless of the size of sectors or number of points being used. 

Correction of the homoscedastic kriging variance to account for realistic proportional effect 

Data in original units are often heteroscedastic; there is increased variability in high values area.  
This heteroscedastic behavior is commonly referred to as the proportional effect [7, 15].  An 
assumption in direct sequential simulation is that the kriging variance provides the variance of the 
local distributions of uncertainty; however the kriging variance depends only on the data 
configuration and is independent of their magnitude.  For data following the congenial Gaussian 
distribution this assumption is accurate; however for data exhibiting heteroscedastic features, it is 
unreasonable.  Because kriging will be applied directly to data in original units, the kriging 
variance must be adjusted such that proportional effect is reproduced. 

Simple kriging is utilized in DSS because it reproduces the covariance even if the conditional 
probability distributions are not Gaussian [2].  Covariance reproduction using SK can be easily 
demonstrated (Appendix B).  A problem with SK is that reproduction of the covariance only 
holds if the variance of the data is homoscedastic.  The local distributions of data in original units 
could be of any shape so SK will remain useful in this context; however the variance of original 
data will, in most cases, be heteroscedastic.  Covariance reproduction only holds if the variance of 
the data is homoscedastic. 

To see the effects of directly simulating data that show the proportional effect, a study was done 
using a lognormally distributed data set.  Lognormal data was chosen because there is a 
mathematical link between it and the more common Gaussian distribution and an equation 
describing the proportional effect of lognormal data exists [15].  Lognormal theory is explained in 
Appendix C.  Knowing these relations, the kriging variance can be calibrated to honor the 
heteroscedasticity inherent in lognormal data. 

An exhaustive lognormal data set was generated by transforming an unconditional Gaussian 
model (Figure 7).  The mean and variance of the lognormal data were chosen to be 100 and 
10000, respectively.  A set of 625 samples was drawn from the model and used for simulation 
experimentation. 

To show the proportional affect inherent in the lognormal model as well as the homoscedastic 
nature of Gaussian data, plots of the y(u) and y(u+h) values were created using a lag distance 
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equal to half the variogram range.  By dividing the results into fifty quatiles and calculating the 
mean and standard deviation of each, the plots in Figure 8 were produced. 

To apply direct simulation, the SGSIM program [16] was altered such that it could be used to 
simulate conventionally or directly with lognormal data.  For the direct method, there is also the 
option to use a variance correction (utilizing Equation 10C in Appendix C) or to perform kriging 
and Monte Carlo simulation (MCS) in a naïve manner with no variance correction.  This was 
done for comparison purposes. 

Three options of simulation were explored: 

 Option 1  Transform a set of lognormal samples to normal space and perform 
kriging and MCS, then back-transform to lognormal space.  This is the 
standard/common approach. 

 Option 2 Perform direct kriging with the lognormal values with an adjusted 
variogram and do MCS without correcting the kriging variance.  This is 
the published approach to DSS.  The limitation is that 
heteroscedasticity/the proportional effect is not accounted for. 

 Option 3 Perform direct kriging on the lognormal values with an adjusted 
variogram and correct the kriging variance prior to MCS.  This is the 
new approach that we are advocating in this paper.  Multiscale data can 
be used in direct kriging and the proportional effect is explicitly 
accounted for. 

For each option, 100 realizations were produced and the mean and variance for every location 
was determined.  Figure 9 shows the simulation results for all three options.  To check the 
validity of each simulation method, reproduction of the global statistics as well as the variogram 
were checked.  These are shown in Figure 10. 

Figure 9 shows that the resulting mean and variance when a correction is applied is very similar 
to the SGS results; however when no correction is made as in option 2, the variance is clearly 
homoscedastic.  To better compare the three options, plots of the mean and standard deviation 
were created to display reproduction of the proportional effect in a realization (Figure 11). 

By performing simulation using lognormal data, it was possible to introduce a solution for 
dealing with the proportional effect.  Lognormal data was particularly useful because the 
proportional effect is one of its prominent features and is analytically known.  The proportional 
effect is a common feature of many data sets in original units and it cannot be reproduced with 
kriging alone as kriging only related the data configuration, not the data values.  The resulting 
kriging variance is homoscedastic and must be corrected to reproduce the proportional effect. 

By imposing a correction to the kriging variance prior to simulation it was possible to perform 
direct sequential simulation on a lognormal data distribution with positive results.  The outcome 
from applying SGS and DSS with variance correction compare very well.  These findings provide 
insight into a possible solution to DSS when dealing with the proportional effect.  It is apparent 
that the kriging variance must be corrected such that the proportional effect is reproduced with 
simulation. 

In the general case, a relation describing the proportional effect of a data set can be determined 
prior to simulation using regression (linear or curvilinear).  A moving window average or the 
technique used to produce Figure 8 could be utilized to acquire the data for regression.  Having a 
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relation, one can calculate the variance based on the estimate for all locations.  The resulting 
realizations should reproduce the proportional effect observed in the initial data set. 

Determination of valid conditional distribution shapes 

The simple kriging system provides an estimate and an estimation variance.  Once the estimation 
variance is corrected if needed (to account for the proportional effect), it along with the estimate 
are required to determine the shape of the local distribution of uncertainty at a location prior to 
simulation.  With sequential Gaussian simulation, kriging is performed in Gaussian space and all 
resulting local distributions are parametric; they are Gaussian and fully described by the kriging 
mean and variance.  Throughout simulation, all local distributions used are Gaussian and this 
ensures that the global distribution is reproduced.  A method to determine the shape of the local 
distributions in original units such that the global distribution is reproduced is required.  Figure 12 
shows a schematic of the method. 

Since the global distribution in direct space (z space) will unlikely represent any type of 
mathematically known distributions, a method of relating it to a Gaussian distribution is needed.  
Having this relation, one will be able to develop a large set of local distributions in z space from a 
set of local distribution in Gaussian or y space.  If a specific quantile q of a y space distribution 
with mean m and standard deviation σ is known, the corresponding direct space quantile can be 
calculated using the following procedure.  Equation 3 is used to acquire the inverse of the 
nonstandard Gaussian function G{m, σ} for the quantile value q. 

 )(1 },{
1 qGVal m σ
−=  (3) 

The corresponding probability value is then calculated from the standard Gaussian distribution, 
G{0,1}. 

 ]1[2 }1,0{ ValGVal =  (4) 

 or, )]([2 },{
1

}1,0{ qGGVal m σ
−=  (5) 

Utilizing the link between global y space and global z space, the z space value corresponding to 
the probability, Val2 can now be calculated. 

  ]2[3 1 ValFVal −=  (6) 

 or, )]]([[3 },{
1

}1,0{
1 qGGFVal m σ

−−=  (7) 

Val3 is the z quantile of a distribution of uncertainty associated with the probability value q [3]. 

By creating a series of y space distributions from a list of means and variances and repeating the 
above procedure for a range of quantiles, a set of z space distributions can be generated.  The 
mean and variance of each z space distribution can be calculated and used as reference values.  
Upon kriging at a particular location, the resulting mean and variance can be used to reference a 
distribution from the previously calculated set from which a value can be simulated. 
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Accounting for geological controls including stratigraphic surfaces and mixture of multiple 
facies within an unstructured grid block 

Some geological settings are characterized by a series of genetically related strata.  The geology 
may consist of a sequence stratigraphic framework; the bounding surfaces between the layers 
correspond to a specific geologic time that separates two different periods of deposition or a 
period of erosion followed by deposition [17].  Figure 1 depicts a stratigraphic sequence. 

There are issues related to dealing with unstructured grids superimposed on a system of 
stratigraphic surfaces that control anisotropy or facies boundaries, see Figure 13.  Some of the 
issues shown by Figure 13 are fairly obvious; the grid does not line up with the stratigraphic 
surfaces; grid blocks may contain multiple facies and subsequences, and; searching for relevant 
data to estimate unknown locations is a problem.  Another consideration is the differences in 
sample volume relative to the volumes being estimated.  Integration of seismic data may also be a 
consideration.  Also, the correlation of data within each subsequence and across multiple 
subsequences should be considered. 

A possible method of dealing with data within various subsequences is to flag the data by 
subsequence and only use data within genetically related strata.  During simulation, only data 
flagged the same as that being estimated will be used.  When simulating blocks crossing multiple 
subsequences, flagging and simulating its value poses a problem.  Perhaps discretizing the block, 
flagging the smaller components and estimating them to acquire a value or multiple values and 
structure within a grid block may be feasible.  Because blocks may cross into multiple 
subsequences as well as contain multiple facies, a method of determining which portion of a grid 
block to use in estimating a different location is needed.  What is required is an idea of the 
subsequence structure within grid blocks being estimated as well as those being used for 
conditioning data.  Figure 14 shows two grid blocks and their structure to better explain why the 
structure within grid blocks is important in estimating unknown locations.  It is possible to 
estimate proportions of subsequence and facies types within a grid block and retain those, 
however retaining the structure within each would likely be memory intensive. 

Upon estimating grid blocks, the proportions of facies within each can be determined overall, but 
it may be better to retain the facies proportions within each subsequence within each block.  
Because storing information relating the subsequence structure within each block would get 
cumbersome, a more efficient method may be to store the overall subsequence geometry for the 
entire model and use an indexing method through out the blocks such that the structure for each 
block could be referenced when needed.  Every block would then retain the facies proportions 
within each subsequence and a pointer telling it what the subsequence geometry is. 

Since the data is multiscale, the use of direct sequential simulation will be required.  The 
multiscale data might consist of well data, seismic data, and previously simulated nodes of 
varying sizes (depending on the grid). 



101-9 

Accounting for directional permeability that does not average linearly 

To account for data that do not average linearly, such as permeability, DSS must be implemented.  
Conventional simulation techniques require the data to be transformed to a Gaussian distribution; 
however permeability does not average linearly after Gaussian transformation.  Because data 
exist in vastly different scales such as small core based permeability and large scale production 
data, problems arise due to the scale difference and highly non linear averaging of permeability.  
By implementing a power law transform, permeability values will average linearly for use in 
modeling using a direct simulation approach [10].  To deal with unstructured grids, data must be 
linear with scale and this is accomplished using power law averaging [10]. 

The general formulae for power law averaging of the continuous or categorical variable K are 
shown by Equations 8 and 9, respectively. 
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where n is the number of classes, pi is the volume fraction of class i, and Ki is the permeability of 
class i.  Equation 9 can be rewritten as Equation 10 for a system consisting of shale and 
sandstone. 

 [ ]ωωω
1

)1( ssshshsheff KVKVK −+=  (10) 

where Ksh and Kss are the permeability values of shale and sandstone respectively and Vsh is the 
volume fraction of shale. 

Because DSS utilizes kriging as an estimator, the variables being used must average linearly with 
scale.  By using a power law transformation, the problems generated by multiscale data can be 
avoided and transformed variables will average linearly with scale.  In order to transform 
permeability, an idea of the spatial continuity and geological setting is required.  The averaging 
exponent depends mostly on the spatial features in the formation and not on the distribution of the 
data.  The following procedure is used to determine a ω value: construct multiple permeability 
realizations based on a specific geological model; determine the effective KX, KY, and KZ values 
via flow simulations; calculate the directional ω values, ωX, ωY, and ωZ based on the flow 
simulation results; plot a histogram of the directional ω values [10]. 

A concern of implementing power law transformation especially when dealing with unstructured 
grids is that ω may not be constant over every volume support.  An unstructured grid may involve 
many different volume support sizes to be estimated and when there is an immense scale 
difference, ω may change.  Other concerns that affect the ω value are arbitrary boundary 
conditions and if the formation approaches the percolation threshold. 
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Power law averaging can be used to transform volume dependent variables (that scale non-
linearly) to scale linearly.  These variables can then be used for modeling using a direct 
simulation formalism, independent of their volume support.  Once simulation is performed, 
results can be back transformed for further processing. 

Conclusions 

Multiscale data and unstructured grids are practically relevant for realistic reservoir modeling.  
Simulating in the units of the original data provides significant benefits such as unbiased 
accounting for multiscale data and permitting different local distributional shapes.  In practice, 
implementation of DSS has been limited.  Even something as seemingly straightforward as 
searching for data is complicated by the multiscale nature of the problem.  In these instances, 
quadtrees or octrees may be particularly efficient.  Grid blocks of different volumes also leads to 
important screening effects and destabilization of the kriging matrix, thus a preferential filtering 
of the data through a sector search may be appropriate.  Multiscale issues are further complicated 
when dealing with variables that do not average linearly; a pre-processing power-law transform is 
a first approximation. 

Accounting for small scale facies control is a challenge particularly if the blocks are large with 
respect to the facies variations.  The grid blocks will cross multiple sequence or sub-sequence 
stratigraphic layers.  Despite all these issues, perhaps the most important advance presented in 
this paper is the correction applied to the SK variance to account for the heteroscedastic nature 
that is often inherent to real data.  The lognormal case was used to illustrate a corrective approach 
to effectively reproduce heteroscedasticity. 
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Figure 1: Quadtree (top-left) and octree (top-right) data organization.  The corresponding tree 
representation is shown for each tree structure (bottom).  The quadtree is regular whereas the 
octree is created based on median locations.  The leaf nodes (1, 2, 4, 5, 7, 8, 10-12, and 13-16 for 
the quadtree and 9-16 for the octree) would contain pointers to the data within them.  Cells that 
are split like octant 5 in the octree (bottom-right) contain pointers to the first of a set of children 
(cell 9). 
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Figure 2: A kd-tree applied to two dimensions (top-left) and three dimensions (top-right) along 
with a representation of the tree (bottom).  The data is partitioned based on median locations until 
there are at most a specified maximum number of points per region. 
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Figure 3: Examples of the string effect.  Grey bars depict the kriging weight for that particular 
data point.  Ordinary kriging with the estimation location beyond the variogram range results in 
the configuration on the left.  When the estimate location is within the variogram range, the 
middle kriging weight configuration occurs.  The right image shows the resulting weight 
configuration if simple kriging is used. 

 

 
Figure 4: The template technique to reduce screening.  White points are already chosen as 
conditioning data and black points are those rejected.  The white square is the location being 
estimated and it acts like a light source such that the conditioning data create shadows in which 
all other data is rejected. 
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Figure 5: An example data configuration with varying block volumes.  Covariance calculations 
were done using 4 discretizations (64 points per block).  Simple kriging was used. 
 

 
Figure 6: Results using sector search in two dimensions.  The azimuth tolerance was set to 18 
degrees to produce 20 sectors.  Data shown with a bullet will be used in kriging and any denoted 
by an x were filtered out. 
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Figure 7: Unconditional Gaussian model and resulting lognormal model after transformation.  
The sample set used is also shown (bottom). 
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Figure 8: Scatterplots of Y(u) versus Y(u+h) for Gaussian (upper left) and lognormal (upper 
right) data.  Gaussian data showing the variance is homoscedastic (lower left) and lognormal data 
displaying the proportional effect (lower right).  The analytical line in the lower right plot was 
determined using Equation 10C in Appendix C. 
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Figure 9: The mean and variance taken over 100 realizations for all three simulation approaches.  
Top – option 1; traditional method of data transformation prior to kriging and simulation, then 
back transformation to get results.  Middle – Option 2; naïve direct simulation with no variance 
correction.  Bottom – Option 3; direct simulation with a variance correction to account for the 
proportional effect. 
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Figure 10: A check for mean, variance and variogram reproduction for the 100 realizations.  Top 
– mean reproduction; both options 2 and 3 result in a slightly higher mean than option 1.  Middle 
– variance reproduction; the three option compare well.  Bottom – variogram reproduction; all 
options are close to following the analytical variogram model.  Bullets represent the average of 
the 100 variograms. 
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Figure 11: Local mean versus standard deviation at every estimated location for options 1 (left), 
2 (middle), and 3 (right).  Options 1 and 3 show the proportional effect and compare nicely.  
Option 2 shows a homoscedastic variance since no correction was applied. 
 

 
Figure 12: The graphical representation of the transformations applied to calculate the local 
distributions of uncertainty with a shape such that the global distribution is reproduced.  The 
illustrated transformation is repeated for a sufficient number of quantiles to describe the local 
distribution. 
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Figure 13: Stratigraphic surfaces and superimposed unstructured grid.  Three hypothetical drill 
holes or wells are also shown. 
 

 
          Block 1    Block 2 

Figure 14: Unstructured grid block crossing multiple subsequence layers.  Block 1 contains 40 % 
subsequence 2 and 30 % of subsequences 1 and 3 and block 2 contains 65 % subsequence 1 and 
35 % subsequence 2.  If the structure, facies proportions, and other characteristics such as 
porosity are known for block 2 and nothing is known about the block 1 except where the 
subsequence layers are, only data within block 2 and subsequence 1 should be used to estimate 
data within block 1 subsequence 1. 
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Appendix A 

To observe the effects of screening and strings of data when dealing with volumes of various 
sizes, a kriging example was set up in Excel.  The conditioning data consisted of six volumes 
with variable sizes and locations.  By setting up the blocks in various configurations and 
performing simple and ordinary kriging, similar effects when kriging with point data can be seen. 

Initially, a three block configuration was tested with blocks of equal volume.  Figure A1 shows 
the initial configuration of blocks 1, 2, and 3.  Blocks 2 and 3 remained stationary and block 1 
was gradually translated along the x axis from 5 to 25 and the kriging weights calculated.  The 
graph in Figure A1 shows the resulting weights.  Initially, both blocks 2 and 3 are screened by 
block 1 and as the block is translated, the string effect can be observed at x = 16 and finally, 
blocks 2 and 3 screen block 1 after x = 17. 

Using the same data configuration as in Figure 3, the block being translated was also changed in 
size to see the effect on the kriging weights.  Three different positions were used with block one 
being at x = 10, 15, and 20 and blocks 2 and 3 being stationary.  The size of block one was 
changed at each location to produce the graphs shown in Figure A2. 
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Figure A1: Top left, middle and right show various block configurations throughout the test and 
the graph below shows how the kriging weights varied as the configuration was changed.  Both 
screening and the string effect can be seen. 
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The string effect that results from kriging with point data also occurs when kriging with volumes 
of equal or varying sizes.  Figure A3 shows several data configurations along with graphs of the 
resulting kriging weights.  The results are very similar to those found when using point data in the 
same configurations (Deutsch, 1994). 
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Figure A2: Plots of kriging weights versus block size.  The size of block 1 was increased from 
0.5 to 12 units at locations x = 10, 15, and 20 while blocks 2 and 3 where left stationary and with 
a side length of 6 units.  The same configuration as shown by Figure 3 was used for the three 
blocks and simple kriging was implemented. 
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Figure A3: Data configurations and resulting kriging weights.  Top left shows a string of data 
with varying volumes and resulting weights using ordinary kriging.  The same configuration 
using simple kriging is centered and on the right are multiple strings of unequal size.  The results 
are similar to those for point data. 
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Appendix B 
The Simple Kriging Principle 

Simple kriging is the key to direct sequential simulation due to the property of covariance 
reproduction even if the conditional probability distributions are not Gaussian.  Reproducing the 
covariance only holds if the conditional variance is independent of the data values 
(homoscedastic).  A proof of the covariance reproduction is provided with the following 
assumptions: the data stationary variable z has a mean and variance of 0 and 1, respectively.  The 
conditional distributions are fully described by the kriging mean and variance.  Equations B1, B2, 
and B3 describe the kriging mean and variance along with the simple kriging system considering 
N previous data: 
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Where z*(u) is the simple kriging mean, )(2 uSKσ is the simple kriging variance, and λα, α=1,…,N 
are the kriging weights. 

A random value RS(u) can be drawn from a distribution described by a mean of zero and a 
variance equal to the kriging variance )(2 uSKσ .  The kriged mean and RS(u) are added together to 
get the simulated value for the location, ZS(u).  An important aspect of RS(u) is that its value is 
chosen independent of the mean Z*(u). 

 )()()( * uuu SS RZZ +=  (B4) 

Now that one location has been simulated, there are N+1 data values for simulation of the next 
node which will be denoted u′=uN+1.  The simple kriging mean and variance at u′ are given by 
Equations B5 and B6 along with the kriging system shown in Equations B7 and B8: 
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Where Z*(u′) and )'(2 uSKσ are the simple kriging mean and variance at location u′ respectively.  
Note that the weights λα, α=1,…,N+1 are not the same as the weights λα, α=1,…,N in Equation B1 
to B3. 

Once Z*(u′) and )'(2 uSKσ  are known, a random value RS(u′) can be drawn from a distribution 

with a mean of zero and a variance equal to )'(2 uSKσ .  The simulated value at u′ is calculated as 
follows: 

 )'()'()'( * uuu SS RZZ +=  (B9) 

Let’s calculate the covariance between the two simulated values: 
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Where )}'()({ * uu SRZE ⋅  and )}'()({ uu SS RRE ⋅  are zero since )(* uZ and )'(uSR  are 
independent of each other and )(uSR and )'(uSR are also independent.  The remaining portions 
of the right hand side are non zero since the kriged means depend on one another and also 
because the kriged mean at the second location depends on the randomly drawn value at the first 
location. 
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Expanding and simplifying the first term from the right hand side of Equation B11: 
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Now, expanding the first term of Equation B12 and recalling Equation B3: 
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Expanding the second term of Equation B12: 
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Knowing that 0)}()({ =αuu ZRE S and )()}()({ *
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Substituting B13 and B15 back into B12: 
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Now, let’s go back to Equation B11 and expand and simplify the second term of the right hand 
side: 
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The ∑
=

N

SRZE
1

)}()({
α

ααλ uu  term is zero since Z(uα) and RS(u) are independent. 

By expanding the )}()({ uu SS RZE  portion of the second term in Equation B17, it can be shown 
that it is equivalent to the simple kriging variance: 

 )}({)}()({)}()({ 2* uuuuu SsSS RERZERZE +=  (B18) 

Since )}()({ * uu sRZE  is zero (the variance is homoscedastic.  If the variance was 

heteroscedastic, 0)}()({ * ≠uu sRZE  and the covariance would not be reproduced): 

 )()}({)}()({ 22 uuuu SKSSS RERZE σ==  (B19) 

Substituting B19 back into Equation B17: 
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Substituting B16 and B20 into B11 and simplifying: 
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By working through from Equation B11 to Equation B21, the covariance is correct.  The marginal 
covariance is reproduced. 
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Appendix C 

Transforming normal values to lognormal 

A variable, Z | z(u)>0, is lognormal with a mean m and standard deviation σ if the natural 
logarithm of Z(u), X(u) = ln(Z(u)) is normally distributed with mean α and standard deviation β.  
Knowing the relation between Z(u) → logN(m, σ) and X(u) → N(α, β), one can convert a 
Gaussian distribution, Y(u) → N(0,1), into a lognormal distribution.  Equations 1C and 2C show 
the relation between X(u), Y(u), and Z(u), and Equations 3C and 4C show the relation between m 
and σ with α and β. 

 )()( uu YX ⋅+= βα   (1C) 

 )()( uu XeZ =   (1Ca) 

Substituting 1C into 1Ca: )()( uu YeZ ⋅+= βα   (2C) 

  
2

)ln(
2βα −= m  (3C) 

  







+= 2

2
2 1ln

m
σβ   (4C) 

Equations 5C and 6C describe the normal and lognormal probability distribution curves, which 
are quite similar in arrangement; however the value of the lognormal function is largely 
dependent on the variable value z(u).  This dependency introduces the proportional effect into the 
data set.  Figure 1C shows the change in the distribution shapes as Y(u) is converted into X(u) and 
as X(u) is transformed into Z(u). 

 
πβ

β
α

2

)ln(
2
1exp

)(

2

x

x

xf
⋅



















 −
−

=  (5C) 

 
πσ

σ
µ

2

2
1exp

)(

2


















 −

−

=

x

xg  (6C) 

Variogram Relationship 

There is an analytical relationship between the correlograms of Gaussian and lognormal data.  
Equation 7C relates the correlograms and using Equations 8C and 9C, the variograms can be 
obtained.  Knowing the variogram for lognormal data was useful for simulating in original units. 
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where r(h) is the correlation in Y-space and ρ(h) is the correlation in Z-space. 
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Figure 1C: Normal and corresponding lognormal distributions.  The lognormal distribution was 
calculated from the Gaussian distribution by using the transformation equations (1 to 4) above.  
The lognormal distribution has a mean of 6 and a standard deviation of 3. 

Homoscedastic Variance Correction 

Because kriging is a linear estimator, the resulting kriging variance is homoscedastic and this is 
not correct for data exhibiting the proportional effect.  With lognormal data, an equation exists for 
correcting the variance using the mean or estimate and it can be derived from Equation 4C. 
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Zm  is the estimate from kriging it can be denoted by z*(u).  From Equation A1 in appendix 
A it is shown that the local 2

Lβ  value can be determined from the kriging variance in Y-space and 
the global 2

Gβ  value. 
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Where 2
,Z Cσ  is the corrected variance, 2

Yσ  is the local variance in normal space, and 2

Gβ  is the 
global variance of ln(Z) 


