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Abstract 

Conventional geostatistical simulation techniques such as sequential indicator simulation (SIS) 
and truncated Gaussian only account for two point correlations through the variogram.  
Moreover, realizations from such categorical variable simulation techniques often have 
systematic biases in the proportions of the categories.  The restriction to two point statistics and 
bias in proportions significantly affect response variables calculated from simulated realizations.  
Simulated annealing can be used to change a specified starting image to match a set of desired 
statistics. Using simulated annealing with multiple point statistics to post process simulated 
realizations can capture realistic geologic features while removing bias in the results. 

We present an annealing post-processing program and demonstrate how it works.  The required 
multiple point statistics are taken from a training image, which must be deemed representative.  
The results are shown to visually match the initial features on SIS realizations while 
simultaneously reproducing the high-order character taken from the training image.  The results 
of a transfer function are shown to be unbiased.  

Introduction 

Stochastic simulation is increasingly used to predict uncertainty in physical models.  Typical 
stochastic methods use two-point statistics such as the variogram to produce the simulated 
realizations.  This process does not always capture all of the relevant spatial structures and 
arrangements, causing the physical parameters to differ from actual conditions.  Recently there 
has been interest in using multiple-point statistics to improve model characterization. This 
method could enhance the response characteristics of the models to better match reality. 

To account for as many spatial relations as possible, both two-point and multiple-point statistics 
can be integrated to produce realizations.  The method proposed here is to produce an initial 
realization honouring the two-point statistics, then post-process the realization to reproduce the 
desired multiple-point characteristics. Sequential indicator simulation (SIS) is the two-point 
technique chosen for this purpose. Once realizations have been generated with SIS, simulated 
annealing is the post process selected to honour the multiple-point statistics. 

Simulated annealing could be used to generate the images directly; however, there are a number 
of advantages to working in post-processing mode.  First, the statistical fluctuations generated as 
part of SIS are preserved in the resulting models giving a more realistic measure of uncertainty.  
Second, the use of a multiple-grid search and long range variogram structure in SIS makes it 
easier to reproduce long-range features in the final simulated realizations.  Finally, the CPU time 
is very manageable and the features coming from the training image are easily appreciated. 
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Sequential Indicator Simulation 

Sequential indicator simulation is a geostatistical technique that can be used to characterize 
variability for models based on categorical variables such as facies types [1,3,5]. The kriged 
probability of facies k at location u∈A can be expressed by the equation: 
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where n is the number of data and ( )ku;αλ  are the kriging weights, which can be found by 
solving the SK system: 
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Once the kriging probabilities are determined, Monte Carlo simulation is performed using the 
local distribution of uncertainty.  The facies corresponding to the random number is assigned to 
location u.  Note that the indicator covariance functions CI must be inferred for each facies type 
before the kriging is possible. 

SIS reproduces two point statistics based on the covariance function. Since indicator kriging can 
produce negative probabilities and probabilities that do not sum to 1, the single point statistics are 
not always reproduced by the realizations.  This issue may cause a systematic bias over many 
realizations and can lead to facies types being over- or under- represented [5]. 

Multiple Point Simulated Annealing 

Simulated annealing is a method for changing an initial image by perturbing1 it based on some 
objective function that is used to minimize image’s mismatch from the desired characteristics [1]. 
The starting image can be randomly generated or produced by some stochastic method such as 
SIS. The objective function could be the difference in the realization variogram from a model 
variogram, the tonnes above a cutoff, the single point variance, or any other feature that can be 
quantified and expressed as a function. Usually the objective function is calculated from a 
training image2 or control pattern to ensure that there is at least one realization in which all the 
desired features are reproduced. 

This process of perturbing realizations is analogous to the heating and subsequent cooling of solid 
metal. Annealing is the process of hot metal cooling and forming new arrangements in its 
crystalline structure. At higher temperatures the points have more freedom to move to less 
desirable arrangements. Lower temperatures allow for a crystalline structure at a state of lower 
energy while giving less freedom in the layout. The objective function is akin to the energy state 
of the cooling metal. The objective function is allowed to fluctuate up and down slightly at the 
beginning of the simulation to escape local minima and reach an ultimate optimized value. 

                                                 
1 Changing one point at a time. 
2 A realization of facies usually produced from outcrop mapping, zones with large amounts of conditioning 
data, or from programs that simulate first principles of geologic processes. A training image or control 
pattern is assumed to be fully representative of the area to be simulated [1]. 
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If a perturbation lowers the objective function it is always accepted and the objective function is 
adjusted to reflect the change. However, if a perturbation increases the objective function it may 
be accepted with the probability  
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where Oold is the old objective function, Onew is the new objective function, and t is the 
temperature of the annealing process. It is analogous to the temperature of solid metal as it is 
being cooled. 

The temperature is typically set high at the start of simulation to allow more undesirable 
perturbations. As the temperature is lowered fewer increases will be accepted. Permitting some 
small increases in the objective function allows the simulation to “escape” from local minima to 
reach lower values and therefore more closely represent the training image. The initial 
temperature and the rate at which it is decreased is called the annealing schedule. This schedule is 
described by these parameters: 

t0 The initial temperature, which usually ranges from 0.1 for a random initial image 
or 10-5 for post processing. 

λ A reduction factor for the temperature, 0 < λ < 1. Usually set to 0.1. 

Kmax The maximum number of perturbations allowed at any single temperature; once 
Kmax perturbations have been performed t is multiplied by λ. This is typically on 
the order of 25-100 times the number of grid nodes. 

Kaccept The maximum number of perturbations to accept at any single temperature; if 
Kaccept perturbations are accepted t is multiplied by λ. Usually 5-10 times the 
number of grid nodes. 

S A stopping number. If Kmax is reached S times the simulation is stopped. 
Typically this is 2 or 3. 

∆O The target objective function. It is set very low (i.e. 10-21) but is not reached 
before the simulation stops. 

Simulated annealing is not constrained to representing only one or two types of functions; 
multipoint statistics can be combined with two point and single point statistics to make the 
simulation truly representative of all the required properties of the training image. Multiple point 
statistics are useful because they can capture many significant and complex features of an image 
without being very complex in and of themselves. One type of multiple point statistic is the 
arrangement of points in a square; for four points and two facies types this is shown in figure 1. 
This kind of statistic has KN classes, where K is the number of facies types and N is the number of 
points used for characterization. The points need not be arranged in a square; any pattern could be 
used to better characterize the geology of the particular case being considered. 

It is apparent that for large numbers of facies and/or points this statistic can quickly have many 
classes. If the distribution among these classes is to be inferred from a training image then there 
should preferably be at least a hundred points in the training image for every class to ensure even 
the rarest combinations of facies are properly represented. For greater numbers of facies types 
this could lead to excessively large training images. Smaller control patterns might be acceptable, 
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but may not fully characterize all possible facies arrangements; this must be considered for each 
case based on the geology present. 

  
Figure 1: A four-point arrangement for multiple point statistics with two facies types, represented 
by black and white. This arrangement has 24 = 16 classes. [1] 

Methodology for Post Processing 

Proportions of the different facies as well as variograms for the K different facies types are 
needed to perform SIS. These can be found by user iteration or an automatic variogram fit 
program, but the quality of the variograms will reflect on the SIS output. At least one variogram 
per facies type is needed. Cross-variograms can be calculated; however, with a large number of 
facies this would greatly increase the time and effort to be put into the simulation, not to mention 
the effort in the inference of variograms. 

Once the two point statistics have been inferred, many realizations of the n points can be 
generated using sisim [2]. Statistics for these realizations, such as the proportion of each facies 
type, can be calculated and compared to the training image. 

To correct the single point histogram for the SIS realizations, the program trans [2,4] may be 
used. This forces the facies distributions to match the training image and will correct a systematic 
bias in the simulations. Some banding and artifacting may be introduced by this. 

Once SIS realizations are generated, they can be taken as initial images and perturbed using 
simulated annealing to generate post processed realizations. To preserve the long range 
characteristics of the SIS, a low starting temperature should be used for the annealing. A high 
temperature would force too many undesirable perturbations to be accepted and cause the SIS 
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realization to be completely rearranged by too many perturbations; this gives the same results as 
starting the simulated annealing with a random image. 

The simulated annealing process follows a random path around the initial image while ensuring 
every point has an opportunity to be perturbed in each pass. If conditioning data is being used for 
simulated annealing, a spiral path starting at the data and moving away should be used; for large 
simulations this significantly increases the process time. By performing SIS first and then post 
processing, the conditioning data is taken into account without having to develop this spiral path. 

Program: AFS (Annealing Facies Simulation) 

The program afs [1] follows standard GSLIB conventions. For this program one source code file 
and one include file are required: afs.for and afs.inc. The include file contains most of the 
parameter and variable definitions. This allows the easy modification of the program for use of 
larger and more complex simulations. The parameters required for the program are: 

 
Line START OF PARAMETERS: 
 1 100                                     \Number of simulations 
 2 200   100    1     5                    \nx, ny, nz, nr (input classes) 
 3 1006512                                 \Random number seed 
 4 ppanneal.out                            \Output File for realization(s) 
 5 ppanneal.sta                            \Output File for statistics 
 6 ppanneal.dbg                            \Output File for Debugging 
 7 ppanneal.tmp                            \Output File for Debugging 
 8 3   1000   100                          \Debug lev, Reporting, Max pert 
 
 9 3                                       \starting image option 
10 image.out                               \  starting image file 
11 nocond.dat                              \Conditioning data file 
12 1  2  3  4                              \  ixl, iyl, izl, ivrl 
13 2  1                                    \perturbation option and increm 
14 1.0e-21                                 \  target objective function 
15 0.000001   0.1    25    5    3          \  SA Schedule:t0,lam,ka,k,e 
 
16 train.dat                               \Training Image File 
17 200   100     1                         \nx, ny, nz 
 
18 8       10                              \TWO POINT HIST: ndir, cwt 
19 0.0  0.0  0.0  1.0  1.0                 \  ang1,ang2,ang3,anis1,anis2: 
 
20 1     0                                 \HIGH ORDER HISTOGRAM: ncube,nir 
21 5                                       \  number of points 
22 0  0  0                                 \  point i : ix, iy, iz 
23 1  0  0                                 \  point i : ix, iy, iz 
24 2  0  0                                 \  point i : ix, iy, iz 
25 3  0  0                                 \  point i : ix, iy, iz 
26 4  0  0                                 \  point i : ix, iy, iz 

 

Line 1 specifies the number of simulations to be performed. The dimensions of the area to be 
simulated and the number of facies are on Line 2. Line 3 contains the random number seed. Line 
4 contains the output file the program will write to. Lines 5 through 7 are the debugging and 
statistics files that will be created. Line 8 is the level for the debugging; 0 is no debugging, 10 is 
the maximum level. 
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Line 9 is the option for the starting image: 1 uses a randomly generated image honouring the 
univariate statistics, 2 uses a single starting image for all realizations, 3 uses each realization from 
the image file once. Line 10 contains the name of the image file to be used. If conditioning data is 
to be used, the conditioning file is outlined on Line 11 and Line 12. Line 13 is the option for 
perturbation: 1 uses an automatic annealing schedule; 2 uses the user-defined parameters 
contained on Line 15. Line 14 has the target objective function. 

The training image file is specified on Line 16 and Line 17. On Line 18 and Line 19 are the 
parameters for a histogram of two point relations. afs uses a limited number of these relations to 
ensure the training image’s essence is retained. The parameter ndir is the number of two-point 
relations that will be used; cwt is a weighting for how important the two point histogram will be 
considered in the objective function. The information on Line 19 is the definition of the search 
ellipsoid for the two point statistics. 

The definition of the multiple point statistics is on Lines 20 through the end of the file. The 
parameter ncube is the number of lags to look in each direction for the multiple point histogram; 
1 means a single lag or 4 points in 2D, 8 points in 3D; 2 means two lags which is 9 points in 2D 
and 27 in 3D; and so on. The nir parameter is the number of different shapes to use other than a 
square/cube: Line 21 is the number of points to use for one of these shapes and Lines 21 to 26 are 
the lags for each point. For this paper nir is 0 so only a square/cube multiple point statistic will be 
used. 

Example 

Figure 2 shows a training image and two SIS realizations before and after transforming and 
annealing. The training image is 200 by 100 points and has 5 facies classes [1]: 

1. A background grey facies 

2. Light blue ellipsoids 

3. Dark blue short horizontal bands that occur only within the ellipsoids 

4. A red facies that always and only appears on top of the ellipsoids 

5. Green diagonal banding 

100 realizations were simulated then post processed using afs. A four point square statistic was 
used, giving 54 = 625 different classes. Eight two point lags were used in the program. This 
configuration took 66:54 to perform 100 realizations on a 1.8GHz Pentium 4 with 512MB of 
RAM for an average of 40.14s per realization. For comparison the 100 SIS realizations took 6:08 
for an average of 3.68s per realization. The realizations were also post process-transformed 
separately to fix the single point histogram and provide a better basis for comparison. 

The SIS was performed using these variograms for each facies type: 
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Looking at figure 2 it can be seen that while the SIS captured the long range essence of each 
facies type, the relations between them and the short range features were not reproduced. The 
histograms in figure 3 show that SIS did not properly reproduce the histogram of single point 
statistics from the training image. In particular facies 5 (green) was under-represented 
systematically among all realizations. Figure 3 shows the histograms taken over all 100 
realizations, not just those pictured in figure 2. 

The transformed SIS images match the single point histogram almost exactly, even closer than 
the annealed-post processed realizations. However, there is some banding and artifacts in the 
resulting image inherent to the transformation. 

To better investigate the practicality of post processing, each facies type was assigned a grade and 
then every realization was block averaged to test the overall response variability of the methods. 
The grades assigned were: 

• Grey / Rock Code 1:   0 – Host rock 

• Light blue / Rock code 2:  2 – Low grade mineralized bodies 

• Dark blue / Rock code 3:  5 – Enhanced mineralized zones 

• Red / Rock code 4:   10 – Extra enhanced mineralized 

• Green / Rock code 5:   20 – Heavily mineralized veins 

Every realization for each process was block averaged and all realizations were considered for the 
analysis. The block averages were taken for a 5 by 5 square area, resulting in 40 squares by 20 
squares over the entire area. Grade maps of the training image and two realizations for each 
process are shown in figure 4. The realizations shown are the same two used in figure 2. 
Histograms for the block averages over all realizations are shown in figure 5. It should be noticed 
that the SIS histogram has too low of an average grade due to a shortage of facies 5; the 
transformed realizations match the average grade the closest out of any process but do not match 
the distribution as well as the post process annealing. The transform also leads to an excess of 
very high grade blocks. 

Grade-tonnage curves calculated across all realizations for each process are shown in figure 6. In 
reference to the training image curve, the SIS realizations systematically take too little material as 
ore and consequently end up with too low of a grade. This is mainly due to the under-
representation of facies 5 (green), which has the highest grade. 

Once the SIS images have been transformed to match the single point histogram of the training 
image there is not longer a bias in the amount of ore squares present. However, he transformed 
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realizations do not match the reference values for ore and grade because the spatial distribution of 
the high and low grade material is not correct. At low cutoff grades the wide dispersion of lower 
grade ore squares forces too much material to be considered ore at too low of a grade. At higher 
cutoff grades the bunching of the highest grade squares causes too little material to be taken as 
ore at too high of a grade. 

Post processing by simulated annealing of all realizations matches the reference grade-tonnage 
curve very closely at all cutoffs. This is because the single point histogram from the training 
image is matched closely and the spatial characteristics are honoured. 

Figure 6 shows the histograms from each process for average grade and proportion of ore for each 
realization using a cutoff grade of 3.0 per unit square. The cutoff grade is higher than that for the 
lowest grade ore (facies 2, light blue). Calculated from the training image, the reference 
proportion of ore is 0.403 and the reference grade is 4.700. Because significant amounts of ore 
may be contained in the waste blocks, the SIS realizations have too low of a grade at 4.214 and 
take too little material as ore at a proportion of 0.236 because of the single point bias. When the 
bias is corrected by trans there is the correct amount of high grade points; however, the 
distribution over the area is not correct so not enough material is considered ore (0.341) and the 
grade is too high (4.843). This is because of the grouping of high grade values too closely 
together. Post processing by annealing has an average ore grade of 4.663 while taking 0.399 of 
the material as ore. This is the closest to the reference values. 

Conclusions 

Simulated annealing is a powerful post processing tool.  The processing time is significantly more 
than SIS, but it is not prohibitive and the response results are much closer to the reference.  
Simulated annealing could also be used to post process the results of any other simulation 
technique to develop more robust realizations. 

The assumption of stationarity means that a representative training image is important for this 
technique to be effective.  The range of responses for each realization also seems to be too 
confined to being close to that of the training image.  Adding variability in the statistics from 
realization to realization or making a much larger training image than the area being simulated to 
improve the distribution of facies arrangements could potentially fix this issue. 
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Figure 2: Top: the training image used to generate statistics for simulation 1. Lower six images: 
two realizations from sisim before and after post processing. The top images are SIS realizations; 
the middle are the same realizations transformed to fix the single point histogram; the bottom 
images are post processed with multiple point simulated annealing. 
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Figure 3: Single point distributions of the 5 facies classes in all different cases from figure 2. The 
training image is at the upper left, all SIS realizations the upper right, all of the transformed SIS 
realizations the lower left and all annealing post processed realizations the lower right. Notice 
how the SIS realizations have a slightly skewed distribution, particularly for facies 5. 
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Figure 4: Grade block average values for the training image (top) and the same realizations of all 
processes shown in Figure 2. The blocks are 5 squares by 5 squares. The highest grades (greater 
than 10 per unit square) are red; the lowest grades (approaching zero) are blue. 
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Figure 5: Histograms for the block averaged grades among all realizations. Upper left: training 
image histogram. Upper right: SIS output. Lower left: SIS transformed output. Lower right: SIS 
realizations after being post processed by simulated annealing. 
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Figure 6: Grade-tonnage curves for each process. Top: SIS. Middle: transformed SIS. Bottom: 
annealing post processed. The dotted lines are the grade-tonnage curves for the training image. In 
black is the proportion of material taken as ore; in red is the average grade of ore. The grade is 
taken per unit square. 
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Figure 7: Histograms of all realizations showing average ore grade (left) and proportion of 
material considered ore (right) using a cutoff grade of 3.0 per unit square. The SIS realizations are 
at the top; the corrected-histogram SIS realizations in the middle; and the realizations post 
processed by simulated annealing at the bottom. Reference values inferred from the training 
image are shown as dots under each scale. 


