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Abstract 

Multiple-point statistics can be used to model high-order relations found in complex geologic 
features. These statistics are inferred from a training image deemed representative of the area to 
be simulated. The training image must contain all the relevant geologic features and structures. 
Often, a representative training image will have the wrong histogram or single-point distribution. 
A large scale trend causes the histogram to vary locally. For these reasons, an effective and 
simple method for scaling multiple-point histograms to reflect changes in the single-point 
distribution is desirable. This paper presents a robust method to scale/change multiple-point 
statistics to reflect arbitrary changes in the histogram. The method works by applying an 
equation to each class in the multiple-point histogram to account for the change in every facies 
type. The equation also accounts for the different proportions of facies contained in each class. 

Introduction 

Simulation of geological heterogeneity using geostatistical methods is an increasingly common 
practice. The variogram is the typical statistic used to express spatial continuity. Variograms 
adequately model the two-point connectivity and are simple to infer from data. Robust simulation 
techniques and software are have been developed for simulation with a variogram; however, 
many geologic phenomena do not follow linear patterns and cannot be properly modeled relying 
only on variograms. Curvilinear and higher-order arrangements are common. Multiple-point 
statistics can be used to better express these complex arrangements. 

Several different methods have been explored for utilizing multiple-point statistics in simulations. 
Using extended normal equations [4,7] is a direct method for honouring multiple-points statistics. 
Neural networks [1] utilize an iterative approach to enforce the desired distribution. Simulated 
annealing [2] perturbs an image based on an objective function and the Boltzmann probability 
distribution. All of these techniques infer the multiple-point statistics from a training image that 
must be exhaustively defined at the scale of the simulated grid and represents the area being 
simulated. Establishing a training image is not straightforward. I t must be at the scale and 
resolution we wish to simulate. We could not draw such an image because we would be unable to 
successfully position the fine scale details and structure of natural heterogeneity. Outcrop images 
may provide some assistance, but the orientation and irregularity of the outcrop would make it 
impossible to infer a 3-D image at the required resolution. We often resort to process- or object- 
based simulation techniques to create a training image. 

The inference and utilization of multiple-point statistics can be difficult. A large amount of data is 
required to infer even simple statistics adequately. The assumption of stationarity calls for extra 
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care to be taken in the determination of the multiple-point statistics. Because multiple-point 
statistics contain all lower-order statistics within the same configuration, even slight variations in 
the single-point distributions can have significant impact on high-order relations. Adopting the 
multiple-point statistics from a training image amounts to adopting the histogram that goes with 
it. 

The multiple-point histogram could be scaled to match different single-point distributions for 
different areas. The multiple-point statistics could be inferred from a single training image, and 
then scaled to varying single-point histograms for different zones. This would be useful in cases 
where stationarity can not be assumed. 

Scaling a multiple-point histogram could also be used to correct a bias in the training image; for 
example, if an outcrop map correctly identifies the underlying geologic structures but does not 
properly represent the proportions of facies for an area to be simulated. 

Multiple-Point Statistics 

Two-point statistics often cannot fully characterize geological arrangements containing 
curvilinear features and other complex shapes. Variograms have difficulty in characterizing 
distinct, complex shapes. An example of this is shown in Figure 1: with two facies the variogram 
for each will be the same. Indicator simulation cannot differentiate between black spheres on a 
white background and white spheres on a black background. Multiple-point simulation can 
differentiate between the facies. 

The most common multiple-point statistic to be considered is the multiple-point histogram [3]. 
Continuous variables are divided by cutoffs into k=1,…,K classes so every point is easily 
assigned one class. Facies for categorical variables are numbered in a similar way. Then, N points 
in a given arrangement are considered. For a given statistic there are KN classes. If the points are 
numbered n=1,…,N, the index j of each class can be found by the equation 
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This assigns a unique index j to every possible arrangement in the statistic [2]. 

Multiple-point statistics also contain all lower-order statistics as well. It is quite easy to calculate 
the single-point distribution from the multiple-point histogram. If the single-point proportion of 
facies k is represented by Pk then it can be found using fj and Pk,j, which is the proportion of facies 
k in class j. Pk,j can be found by converting (j - 1) to a base K number in the following process1: 

1. Take j – 1 and divide it by K 

2. The remainder of this division represents point n = 1. 

3. Divide the quotient from step 1 by K again. 

4. The remainder of this division represents another point. 

5. Repeat 3 and 4 until N points have been represented. 

6. To get Pk,j for facies k, divide the number of points (k – 1) by N. 
                                                 
1 The method for converting a number to a different base was found online at 
http://mathbits.com/MathBits/CompSci/Introduction/frombase10.htm 
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With all the fj and Pk,j values, the single-point proportions can be found using the equation: 
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An example is shown in Table 1. The statistic used is four points, with two facies in the training 
image. Other lower-order statistics could be found using a similar method. 

Class, j Point 
1 

Point 
2 

Point 
3 

Point 
4 P1,j P2,j 

Frequency, 
fj 

P1,j x fj P2,j x fj 

1 1 1 1 1 1 0 0.0081 0.0081 0 
2 2 1 1 1 0.75 0.25 0.0189 0.014175 0.004725
3 1 2 1 1 0.75 0.25 0.0189 0.014175 0.004725
4 2 2 1 1 0.5 0.5 0.0441 0.02205 0.02205 
5 1 1 2 1 0.75 0.25 0.0189 0.014175 0.004725
6 2 1 2 1 0.5 0.5 0.0441 0.02205 0.02205 
7 1 2 2 1 0.5 0.5 0.0441 0.02205 0.02205 
8 2 2 2 1 0.25 0.75 0.1029 0.025725 0.077175
9 1 1 1 2 0.75 0.25 0.0189 0.014175 0.004725
10 2 1 1 2 0.5 0.5 0.0441 0.02205 0.02205 
11 1 2 1 2 0.5 0.5 0.0441 0.02205 0.02205 
12 2 2 1 2 0.25 0.75 0.1029 0.025725 0.077175
13 1 1 2 2 0.5 0.5 0.0441 0.02205 0.02205 
14 2 1 2 2 0.25 0.75 0.1029 0.025725 0.077175
15 1 2 2 2 0.25 0.75 0.1029 0.025725 0.077175
16 2 2 2 2 0 1 0.2401 0 0.2401 

         Σ 0.3 0.7 

Table 1: An example showing how Equation (2) can be used to derive a single-point histogram 
from a multiple-point one. The class frequencies were inferred from a simple training image. The 
multiple-point histogram has N=4 points and there are K=2 facies in the image. 

Scaling the Histogram 

Most simulation techniques leave some room for variance from the target histogram; however, 
there is still dependence on the training image and the assumption of stationarity. It is possible 
that the training image captures the proper essence of the area to be simulated, without correctly 
matching the desired single-point distribution. This could be the case for locally varying single-
point distributions where the geologic structures are global. An example of this is in Figure 2: the 
four pictures show realizations with the same structures but different proportions of the facies. 

Scaling would allow differing proportions of facies in several defined zones without the need to 
develop multiple training images. It would be necessary to preserve the structures of the facies 
while easily changing the proportions. A simple equation would be the best, but could be difficult 
to determine. There are also many possible equations that could be used to present scaled 
histograms; determining the “best” one would be very subjective. 
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Random Case 

The simplest case for determining a multiple-point histogram is a totally random case. For 
uncorrelated points, the arrangement does not affect the class frequencies and no conditional 
probabilities are required. The frequency fj of any class for an N-point statistic with K facies 
having single-point proportions Pk, k=1,…,K can be calculated by: 
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Since Pk,j is the proportion of facies k in class j, N x Pk,j is the number of occurrences of facies k in 
class j. 

Scaling the random case is quite simple; multiplying the original frequency by a series product of 
the desired frequency over the old frequency results in a simple equation: 

∏
=

×











×=

K

k

PN

k

k
jj

jk

P
P

ff
1

,ˆˆ   (4) 

∏

∏

=

×

=

×

×= K

k

PN
k

K

k

PN
k

j
jk

jk

P

P
f

1

1

,

,ˆ

   

j
j

j
j f

f
f

f ˆ
ˆ
=×=    

where kP̂  is the target single-point proportion of facies k and jf̂  is the resulting frequency of 
class j. Figure 3 shows a randomly-populated field and its corresponding fj values before and after 
scaling; the post-scaling frequencies perfectly match those expected both from Equation (3) and 
from a different randomly-populated field. For a non-random case, an extension of Equation (4) 
could lead to a more general formula with some modifications to account for correlation between 
the points. 

 

Non-Random Case 

For non-random cases Equation (4) returns Pk values that are scaled too much, that is, the 
probability classes are exaggerated. Classes that should be raised are raised beyond where they 
should be, and those that are lowered are lowered too much. The desired single-point statistics are 
not returned. Figure 4 shows a striped image and its calculated fj values before and after scaling. 
Note that the scaled frequencies are obviously out of proportion as they sum to 1.21 instead of 1. 

In order for a scaling technique to be useful and robust, it must return the desired Pk values and 
force the fj values to sum to 1. Equation (4) does not properly do this for non-random images. 
Removing the N term from the exponent in Equation (4) causes the class frequencies to be under- 
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rather than over- scaled. This modification still scales the multiple-point classes proportionally 
based on which facies they contain; this is due to the Pk,j in the exponent. 

Removing the N term from the exponent in Equation (4) does not force the frequencies to sum to 
exactly 1; however, the frequencies are all scaled so that the single-point proportions approach 
the target values. This modified equation is therefore: 
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This equation can be repeated, obtaining a new set of fj and Pk values each time. Iterating 
Equation (5) leads to convergence with the frequencies summing to 1 and the single-point 
proportions precisely matching the desired distribution. The number of iterations performed does 
not need to be large, as convergence is approached rapidly. As the Pk values move closer to the 
target proportions the changes caused by each iteration become smaller. 

This iterative approach works for the previously solved random case as well; after 50 iterations, 
all classes converge to within 0.0001% of their true calculated values from Figure 3. This amount 
of divergence is easily within the margin for error of any training image that would be developed. 
Performing 50 iterations requires less than a second on an old PC. The process is not memory 
intensive. 

The random case takes longer to converge than others. This is because the scaling product values 
are the most extreme due to the significantly higher exponent in Equation (4) as compared to 
Equation (5). Better-ordered images require fewer iterations. 

Example 

Figure 5 shows training images created by truncated sequential gaussian simulation with 30% 
high values in the image at the top, with 35% and 50% high values in the lower left images. The 
high values are represented by the shaded areas. The different shades of grey represent different 
ranges of the high values, with darker being higher. In all the training images 20% of the high 
values are very high (assigned an arbitrary value of 3), 60% is somewhat high (value of 2), and 
20% is low-high: lower than the rest but still above the background low values (value of 1). All of 
the low value points, shown as white, were assigned a value of 0. The lower right of Figure 5 
shows two realizations produced by simulated annealing using a four-point statistic arranged in a 
2x2 square pattern. One of the images has a target of 35% high values, the other 50%. With three 
high value codes and one low value code there are 44=64 potential classes. All of the grids are 
200x200 squares in size. 

The simulations were performed using histograms calculated from the 30% high value training 
image then scaled iteratively with Equation (5) to match the proper distribution of high and low 
values. Scaling from 30% high value rock codes to 50% is probably at the limits of what would 
be done in practice; the 30% to 35% scaling is likely to be more common. The 50% scaling was 
done to show more variation in the change of support graphs for various sizes and to investigate 
the limits of practicality for scaling. Convergence for scaling the histogram was taken to be when 
the sum of the differences between the Pk values and the target Pk values was less than 10-7. At 
this threshold, the difference between the target and scaled Pk values is insignificant on a grid 
with 40 000 nodes. 
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Upon visual inspection, the simulations do seem to capture the general arrangement of the facies 
properly; the very high values are in clusters of various sizes, surrounded by medium high values 
with low-high values on the outskirts. Some noise is obviously present in the background areas of 
the simulations. 

Block averaging was performed to investigate simple response characteristics for the simulations 
and to give some quantification to the effectiveness of the technique used. Figure 6 shows the 
block averaged maps of the same images as Figure 5. The block averaging was performed over a 
5x5 grid. Once again, visually the simulations appear to have similar form to the training images. 

To check the results, cutoff grade-tonnage curves were made for all of the images. For the 
training images these were taken over 10 SGS realizations; for the multiple-point annealing 
simulations they were taken over 5 realizations. The resulting cutoff value vs. fraction above 
cutoff curves are shown in Figure 7. The curves for the scaled realizations match the training 
image curves well. Even the realizations using a histogram scaled from 30% high values to 50% 
high values is very close in shape to the reference curve. Some noise is present, but there is no 
systematic bias. 

Procedures 

Figure 8 shows a flowchart of the procedure used to calculate a multiple-point histogram. This 
can be used for any arrangement of N points for any size of field and number of facies, K. The 
basis behind the process is to go through all of the points in the training image field, then 
calculate what class j the statistic using that point as n=1 falls into. The number of occurrences of 
class j are counted and then divided by the total number of points for which an arrangement of n 
points can be found. This results in frequencies fj for each unique KN class in the statistic. 

The flowchart shown in Figure 9 is the iterative scaling process proposed by this paper. It 
involves iterating Equation (5) as many times as needed to meet the convergence criteria. For the 
example given here convergence was taken when the sum of the differences between all target 
and scaled single-point proportions Pk was less than 10-7. Other criteria could be used, such as a 
sum of squared differences. 

Conclusions 

A process to scale a multiple-point histogram to an arbitrary histogram is a valuable tool in the 
development of multiple-point statistics for simulation. The iterative approach is one possibility 
that could be used. The advantage of this approach is that it is unbiased and is independent of 
complex user inputs. Also, it correctly matches the target single-point distribution to whatever 
precision is desired. The disadvantage to a formula-based approach is the potential for 
oversimplification resulting in important features not being scaled to the desired degree and the 
essence of the training image not being properly retained. For small changes it is unlikely that 
iterating Equation (5) would result in errors in the histogram greater than the margin for error of 
the original training image. 



110-7 

References 
1. J. Caers, A.G. Journel. Stochastic Reservoir Simulation Using Neural Networks Trained on 

Outcrop Data. SPE 49026. In Proceedings of SPE ATCE, New Orleans, LA, October 1998. 

2. C.V. Deutsch. Annealing Techniques Applied to Reservoir Modeling and the Integration of 
Geological and Engineering (Well Test) Data. PhD thesis, Stanford University, Stanford, CA, 
1992. 

3. C.V. Deutsch, E. Gringarten. Accounting for multiple-point continuity in geostatistical 
modeling. In 6th International Geostatistics Congress, Cape Town, South Africa, April 2000. 
Geostatistics Association of Southern Africa. 

4. F.B. Guardiano, R.M. Srivasava. Multivariate geostatistics: Beyond bivariate moments. In A. 
Soares, editor, Geostatistics Troia ’92, volume 1, pages 133-144. Kluwer, 1993. 

5. J.M. Ortiz. Characterization of High Order Correlation for Enhanced Indicator Simulation. 
PhD thesis, University of Alberta, Edmonton, AB, 2003. 

6. J.M. Ortiz. Selected aspects of multiple-point statistics. In Centre for Computational 
Geostatistics, volume 5, Edmonton, AB, 2003. 

7. S. Strebelle, A.G. Journel. Sequential simulation drawing structures from training images. In 
6th International Geostatistics Congress, Cape Town, South Africa, April 2000. Geostatistics 
Association of Southern Africa. 

8. S. Strebelle, A.G. Journel. Reservoir Modeling Using Multiple-Point Statistics. SPE 71324. 
In Proceedings of SPE ATCE, New Orleans, LA, October 2001. 



110-8 

 

  

  
Figure 1: Top: Two simulated realizations with spheres as the geologic features. Each has 30% 
black area and 70% white area. Bottom: Sequential indicator simulated images produced using 
the variograms of the top images. Note that the SIS images appear the same; this is because of the 
inability of the variogram to distinguish between the top two images. 

 

  

  
Figure 2: Four realizations of facies. The black ellipses in the top left, top right, bottom left, and 
bottom right make up 30%, 40%, 50%, and 60% of the fields respectively. The underlying 
features are the same in all realizations. 
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Class f j 

1 0.0625 0.1296
2 0.0625 0.0864
3 0.0625 0.0864
4 0.0625 0.0576
5 0.0625 0.0864
6 0.0625 0.0576
7 0.0625 0.0576
8 0.0625 0.0384
9 0.0625 0.0864
10 0.0625 0.0576
11 0.0625 0.0576
12 0.0625 0.0384
13 0.0625 0.0576
14 0.0625 0.0384
15 0.0625 0.0384
16 0.0625 0.0256

jf̂

 
Figure 3: Frequencies pre- and post-scaled for a random image; K=2 and N=4. The proportions 
are scaled from P1=0.5, P2=0.5 to P1=0.6, P2=0.4. 

 

  

Class f j 

1 0.45 0.93312
2 0 0
3 0 0
4 0.05 0.04608
5 0 0
6 0 0
7 0 0
8 0 0
9 0 0
10 0 0
11 0 0
12 0 0
13 0.05 0.04608
14 0 0
15 0 0
16 0.45 0.18432

jf̂

 
Figure 4: An image with stripes 10 units thick, K=2. The frequencies for a statistic with N=4 are 
to the right. The initial proportions are P1=0.5, P2=0.5; the target scaled proportions are P1=0.6, 
P2=0.4. The output proportions are P1=0.9792, P2=0.2304. 
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Figure 5: Top: Truncated gaussian training image with 30% high values. Lower left: truncated 
gaussian training images with 35% and 50% high values. Lower right: simulated images created 
by multiple-point simulated annealing using histograms scaled from the 30% training image. 
Darker shading represents higher values. 
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Figure 6: 5x5 block averages of all the images from Figure 5. Darker shading represents higher 
values. 
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Figure 7: Cutoff value vs. fraction above cutoff curve for the block average images in Figure 6. 
The solid lines are the training images, dashed lines the simulations. Black is 30% high values, 
red 35%, green 50%. 
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Figure 8: The procedure used to calculate multiple-point histograms for the example. 
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Figure 9: The scaling procedure used. It involves iterating Equation (5) until the resulting Pk 
values converge with those desired. 

 


