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Abstract

Bayesian updating is a robust method that can be used to incorporate secondary data in the
estimation of reservoir properties. It’s ability to capture non-linear relationships between
primary and secondary data give it an advantage over other estimation methods. The re-
quired theory and equations are derived. Some implementation details are presented. A
short, comparative case study shows the benefits of sequential Gaussian simulation with
Bayesian updating. A new version of sgsim, sgsim bu, has been developed to perform
Bayesian updating.

Introduction

Most geological phenomenon exhibit complex behaviour. These complex behaviours are also
present in the relationship between the reservoir properties that we are trying to predict
and the secondary data that we have available. It is difficult to reproduce the complex non-
linear relationship between data types in the estimation of reservoir properties with existing
methods. Bayesian updating is developed as a way to incorporate secondary data in the
estimation of reservoir properties with the ability reproduce these complex relationships
between different data sources.

Collocated cokriging is used extensively to incorporate two- or three-dimensional sec-
ondary information in the prediction of a primary variable. The primary variable may be
a petrophysical property of the reservoir, i.e. porosity, or it may be a geological control,
i.e. the top surface of the reservoir. The secondary information is typically a seismic re-
sponse or interpreted from seismic such as fraction of shale or impedance. A limitation
of conventional collocated cokriging is the assumption that there is a linear relationship
between the primary and secondary variable. Consider a case where the correlation is high
in areas where the secondary variable is low and the correlation is low when the secondary
variable is high. When the secondary data is low this limitation reduces the influence of the
secondary variable and when the secondary variable is high the influence of the secondary
data is increased. Bayesian updating overcomes this limitation.
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A cross plot of the primary variable versus the secondary is used to calibrate the sec-
ondary data to the primary. Unlike collocated cokriging, which uses the secondary variable
and a constant correlation, Bayesian updating uses the mean and variance of the primary
variable given the secondary variable. This allows Bayesian updating to adjust the influence
of the secondary data according to the amount of information that it contains.

The standard version of sgsim has been updated to allow Bayesian updating in addition
to the standard estimation options. The new sgsim bu allows simple kriging or collocated
kriging to be used to calculate the prior distribution that will be updated using the secondary
data. Currently only one secondary variable can be used to perform the Bayesian updating
in sgsim bu. With many possible sources of data available there may be several data types
that could be included in the estimation of reservoir properties. Incorporating multiple
secondary variables into the estimation process is relatively simple and straightforward [4].
The methodology developed in this paper deals with a single secondary variable, but could
easily be expanded to n variables.

Notation

Let Zα(u) be the primary data available in the field of interest where u is the location
vector. Zα(u) is the reservoir property being predicted available at the well locations. Let
X(u) be the secondary data available at all locations over the field of interest. X(u) is the
seismic variable available at all u used to aid in the prediction of Z(u).

Let y(u) be the estimate and σ2(u) be the variance of the estimate at the location u.
At each location three estimates of Z(u) are considered: the likelihood yL(u) and σ2

L(u),
the prior yP (u) and σ2

P (u), and the updated yU(u) and σ2
U (u). The likelihood distribu-

tion is calculated at each location from the bi-variate relationship between the secondary
and primary data. Kriging is used to determine the prior distribution at each location.
The Bayesian updating process combines the likelihood and prior distributions to get the
updated distribution.

Bayesian Updating Equations

The Bayesian updating methodology presented in this paper is expanded from Doyen’s work
[2]. Taken directly from his paper:

xSCC
i =

ρziσ
2
SK(i) + xSK

i [1 − ρ2]
ρ2[σ2

SK(i) − 1] + 1
(1)

σ2
SCC(i) =

σ2
SK(i)[1 − ρ2]

ρ2[σ2
SK(i) − 1] + 1

(2)

where xSCC
i is the updated estimate, σ2

SCC is the updated variance, xSK
i and σ2

SK are the
simple kriging estimate and variance using the primary data, ρ is the correlation between
the primary and secondary variables, and zi is the secondary variable. We want to rewrite
Doyen’s equations into our notation.
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Table 1: Notation differences.

Doyens Notation New Notation
Updated Mean xSCC

i YU (u)
Updated Variance σ2

SCC(i) σ2
U (u)

Prior Mean xSK
i Y 2

P (u)
Prior Variance σ2

SK(i) σ2
P (u)

Secondary Variable zi X(u)

� = 0.6

Y

X

-4 -3 -2 -1 0 1 2 3 4

-4

-3

-2

-1

0

1

2

3

4

Figure 1: Bi-variate Gaussian relationship.

We will replace the SK subscript with P for the prior distribution, the SCC with U
for the updated distribution, and zi with X(u) for the secondary variable. Table 1 contains
the different notations. Now rewrite equations (1) and (2) in the new notation:

YU (u) =
ρX(u)σ2

P (u) + YP (u)[1 − ρ2]
ρ2[σ2

P (u) − 1] + 1
(3)

σ2
U (u) =

σ2
P (u)[1 − ρ2]

ρ2[σ2
P (u) − 1] + 1

(4)

Working in Gaussian space allows equations 3 and 4 to be further simplified. Figure 1
shows a bi-variate Gaussian relationship. The two equations from this relationship that we
use are:

E {Y |X} = YL

YL(u) = ρ · X(u) (5)
Var {Y |X} = σ2

L

σ2
L(u) = 1 − ρ2 (6)

Now sub equations 5 and 6 into equations 3 and 4 to get the final equations 7 and 8:

YU(u) =
YL(u)σ2

P (u) + YP (u)σ2
L(u)

[1 − σ2
L(u)][σ2

P (u) − 1] + 1
(7)
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σ2
U(u) =

σ2
P (u)σ2

L(u)
[1 − σ2

L(u)][σ2
P (u) − 1] + 1

(8)

where P refers to the parameters of the prior distribution obtained from kriging, L refers
to the likelihood distribution obtained from the secondary data, and U is the updated
distribution.

Methodology

Estimating reservoir properties using Bayesian updating requires four distinct steps: (1)
calibration of the primary and secondary data to define the likelihood distribution, (2) cal-
culation of the prior distribution using kriging, (3) updating the prior distribution with the
likelihood distribution to get the updated distribution, and (4) performing the simulation
using the posterior distribution. Steps 1 and 3 will be discussed here. For details on steps
2 and 4 see [1].

Calculation of the Likelihood Distribution

The likelihood distribution defines the bi-variate relationship between the primary and
secondary variables. Many of these relationships are too complex to be defined by a single
parameter; i.e. the correlation coefficient. Bayesian updating uses the mean and variance
of the primary variable given a specific value of the secondary variable as the likelihood
distribution. Complex heteroscedastic and non-linear relationships can be captured using
this approach.

The mean and variance of the primary variable given the secondary variable are required
to define the likelihood distribution. Splitting the primary variable into classes, or bins,
according to the secondary variable is the first step. Calculating the mean and variance
for each class is the second step. This set of means and variances defines the likelihood
distribution. In some cases the bin-by-bin mean and variance are quite noisy. A moving
window, inverse distance, or kriging type smoothing could be applied to the two calibration
curves,

The mean and variance of the primary variable have to be transferred to the estimation
grid for input to sgsim bu. A simple program, build lh, is included for this task. It takes
the two calibration curves and populates the estimate grid given the value of the secondary
variable at each node in the grid.

Likelihood Consistency Check It is a good idea to check the likelihood distribution
for consistency. The likelihood distribution has a mean and variance for all values of the
secondary variable. We can calculate the probability of the mean value given its associated
variance. This probability can be used as a measure consistency.

The probability is calculated by determining the cumulative probability up to the like-
lihood mean using a normal curve with a mean of zero and a variance equal to one minus
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the likelihood variance. Extremely small or large probabilities may cause problems. These
mean-variance pairs could be corrected. No correction scheme has been proposed yet. A
simple plot to assess the consistency of the likelihood is shown in Figure 12 in the case
study.

Calculation of the Prior Distribution

Any form of kriging may be used to estimate the prior distribution at the location u.
The updated version of sgsim, sgsim bu, allows simple or collocated kriging to be used to
calculate the prior distribution. In most cases simple kriging will be sufficient, but using
collocated cokriging allows the integration of an additional data type.

Bayesian Updating of the Likelihood and Prior Distributions

The Bayesian updating is performed after the prior distribution has been calculated in
sgsim bu. Since both the likelihood and prior distributions are Gaussian the resulting
updated distribution is also Gaussian [4]. Recall that the mean for the updated distribution
is:

YU (u) =
YL(u)σ2

P (u) + YP (u)σ2
L(u)

[1 − σ2
L(u)][σ2

P (u) − 1] + 1

and the variance for the updated distribution is:

σ2
U (u) =

σ2
P (u)σ2

L(u)
[1 − σ2

L(u)][σ2
P (u) − 1] + 1

where y and σ2 are the mean and standard deviation for a particular distribution, and P ,
L, and U are the prior, likelihood, and updated posterior distributions respectively, The
simulation is then performed using the updated distribution at each location.

Case Study

This case study compares 3 simulation methods for modelling porosity in a 2-D reservoir.
The methods used were sequential Gaussian simulation (sGs), sGs with collocated cokriging,
and sGs with Bayesian updating. The well data is complemented by seismic data. The data
set contains (1) the porosity at the well locations, and (2) the fraction of clay interpreted
from seismic.

Figure 2 shows the well porosity data and Figure 3 shows the histogram of the porosity
data. The fraction of clay from seismic is shown in Figure 4 and Figure 5 shows the fraction
of clay histogram.
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Figure 2: Porosity location map.
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Figure 3: Porosity histogram.
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Figure 4: Fraction of clay from seismic.
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Figure 5: Fraction of clay histogram.
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Figure 6: Scatterplot of normal score poros-
ity versus fraction of clay.
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Figure 7: Smoothed porosity mean curve.

Likelihood Distribution Calculation

First the porosity data were declustered and normal score transformed. The scatterplot of
normal score porosity versus fraction of clay is shown in Figure 6. The correlation is good
at -0.71 and there is an obvious decrease in the porosity variability as the fraction of clay
increases.

The next step was to bin the data and calculate the mean and variance for each bin.
The resulting mean and variance curves were very noisy, so an inverse distance smoothing
of the curves was done. The smoothed mean and variance curves are shown in Figures 7
and 8. An interesting plot can be made by placing the smoothed mean curve and the ±1
standard deviation curves on top of the scatterplot. This is shown in Figure 9.

The mean and variance were then transferred to the simulation grid using build lh.
This program takes the mean and variance curves and populates the simulation grid based
on the fraction of clay value at each grid node. These two grids are required as input to
sgsim bu. The mean and variance maps are shown in Figures 10 and 11.

The likelihood distribution was checked for consistency before running the simulations.
This check is done for each point along then mean and variance curves. Figure 12 shows
the consistency plot for the likelihood distribution. The points that lie at the extreme end
of the probability distribution may cause problems during the simulation. The problems
could be inflated variance or a shifted mean. No correction will be done.

It is interesting to note that bi-variate relationship is not simple. The decrease in
porosity in relation to the fraction of clay is almost linear, but the variance is not constant
or linear. Our goal is to reproduce the porosity versus fraction of clay relationship in the
simulation.
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Figure 8: Smoothed porosity variance curve.
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Figure 9: Scatterplot of normal score poros-
ity versus fraction of clay with the mean
porosity curve.
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Figure 10: Gridded likelihood mean for
Bayesian updating.
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Figure 11: Gridded likelihood variance for
Bayesian updating.
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Figure 12: Consistency plot for the likelihood distribution.
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Simulation Comparison

An identical setup was used for the three simulations. The sGs used the porosity at the
well locations. The sGs with collocated cokriging used the fraction of clay as the secondary
variable with a correlation of -0.7. The sGs with Bayesian updating used the likelihood
mean and variance as the secondary data. Several realizations were run for each case to
compare.

Figure 13 shows the results of the 2nd realization for the three simulation methods.
Sequential Gaussian simulation with Bayesian updating reproduces the bi-variate relation-
ship between porosity and the fraction of clay the best.

Implementation Details

The Bayesian updating method has not been without its growing pains. To date two issues
have been identified. The first is variance inflation and the second is the mean shifting from
zero. We do not propose a solution for the mean implementation issue here.

The variance inflation is very similar to the variance inflation that occurs with collocated
cokriging. The approach used for collocated cokriging is to use a variance reduction factor.
We take a similar approach here. A variance reduction factor can be specified in the
parameter file. This reduction factor is applied to the variance after the Bayesian updating
has been done and before the random number for the simulation is drawn. This has had
good results.

Future Work

The initial applications of sGs using Bayesian updating have given good results. However,
there are many aspects of the Bayesian updating technique that need to be further ex-
plored and documented. These included, but are not limited to: (1) variance inflation, (2)
reproduction of the input histogram, (3) variogram reproduction, and (4) honouring the
non-linear bi-variate relationship between the primary and secondary data.

Conclusions

Bayesian updating is a robust method that can be used to incorporate secondary data
in the estimation of reservoir properties. The ability to capture non-linear relationships
gives it an advantage over collocated cokriging. There have been several application of
this idea to date. All of the applications have given good results, but there have been some
implementation issues. Additional work is required to document and fix the implementation
issues.
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Figure 13: Results from the three simulation methods. sGs with Bayesian updating repro-
duces the bi-variate relationship the best.
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