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Abstract 

Geostatistical techniques, such as kriging and simulation, make strong assumptions of 
stationarity in the mean and the variance over the domain of interest.  Unfortunately, geological 
nature usually does not reflect this assumption and we are forced to subdivide our model area 
into stationary regions that have some common geological controls and similar statistical 
properties.  This paper addresses the significant complexity introduced by boundaries.  
Boundaries are often soft, that is, samples near boundaries influence multiple rock types. Due to 
the transitional nature of geological mechanisms is rather common that soft boundaries are 
characterized by a non-stationary behavior of the mean, variance or covariance. 

We propose a new technique that accounts for stationary variables within rock types and 
additional non-stationary factors near boundaries.  The technique involves the following distinct 
phases: (i) identification of the rock types and boundary zones based on geological modeling and 
the timing of different geological events, (ii) optimization of the non-stationary components of 
mean and variance in the boundary zone given the stationary statistical parameters of each 
domain and the data in the boundary region, (iii) decomposition of the covariance model into 
stationary and non-stationary components of a linear model of coregionalization and 
optimization of the latest, and (iv) estimation of grades using non-stationary cokriging.  The 
resulting technique can be thought of as non-stationary cokriging in presence of geological 
boundaries. The theoretical framework and notation for this new technique is developed and 
illustrated with an example.   

Introduction 

The most common geostatistical techniques, such as kriging and Gaussian/indicator simulation, 
are based on strong assumptions of stationarity of the estimation domains. In particular, they are 
based in a second order stationary hypothesis, that is, the mean, variance and covariance remain 
constant across the entire domain and they do not depend on the location of the support points but 
only in the distance between them. Therefore, geological domains should be chosen as 
statistically homogeneous zones, which are geologically significant and coherent, but with 
enough data to allow reliable inference of the required statistics. 

Once estimation domains have been selected, the nature of the boundaries between them must be 
established. Domain boundaries are often referred to as either ‘hard’ or ‘soft’. Hard boundaries 
are found when an abrupt change in the mean or variance occurs at the contact between two 
domains, such as coal seams or sedimentary zinc deposits. Hard boundaries do not permit the 
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interpolation or extrapolation across domains. In deposits where the disseminated 
mineralisation has a gradational nature, such as some porphyry copper deposits, and grades 
change transitionally across a boundary, the contact is referred to as a soft boundary (Figure 
1). Soft domain boundaries allow selected data from either side of a boundary to be used in the 
estimation of each domain.  
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Figure 1: Grade profile of two drill holes in a porphyry copper deposit in Northern Chile, 
showing an example of soft boundaries (left) between mineralisation units as well as an example 
of hard boundaries (right). Notice how the mean and variance change across the boundaries. 

 

It is rather common that soft boundaries are characterized by a non-stationary behavior of the 
variable of interest in the proximities of the boundary, that is, the mean, variance or covariance 
are no longer constant within a zone of influence of one rock type into the other, and their values 
depends on the location relative to the boundary. There could be an increase or decrease in the 
mean or variance towards the boundary. An example is the increased frequency of fractures 
towards a boundary between geological domains of structural nature. Faults or brittle zones are 
examples of this transition. The fractures, if mineralized, may cause the average to increase close 
to the boundary. Alternatively, fractures near the surface of the deposit may be leached by 
meteoric fluids, which may translate to a decrease in the average grade. The increase in the 
presence of factures will often lead to an increase in the variance closer to the boundary. 
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Although soft boundaries are found in several types of geological settings due to the transitional 
nature of the geological mechanisms, conventional estimation usually treats the boundaries 
between geological units as hard boundaries. This is primarily due to the limitations of current 
estimation and simulation procedures. We will show that non-stationary features in the vicinity of 
a boundary can be parameterized into a local model of coregionalization through the optimization 
of the non-stationary components of the mean, variance and covariance given their stationary 
ones. With a legitimate spatial model, estimation of grades can be performed using a form of non-
stationary cokriging. This proposal provides an appealing alternative when complex contacts 
between different rock types exist. The correct representation of soft boundaries should ensure 
the reproduction of the correlation of the grades across the boundary and ensure reproduction 
of non-stationary variations of the mean, variance and covariance in the zone of influence of 
each rock type. Boundaries are of special interest in the short mine planning and improved 
modelling of boundaries would benefit the design and operation stage in both underground 
and open pit deposits. We develop the methodology in the context of mining geostatistics, but it 
is widely applicable in many different settings. 

Theoretical Background and Notation 

The technique involves the identification of stationary variables within each rock type and 
additional non-stationary components near boundaries for the mean, variance and covariance. For 
a geological model with K rock types or estimation domains, there are a maximum of 

( 1) / 2K K −  boundary zones to be defined. Then, the continuous random function Z(u) that 
represents the distribution of the property of interest can be decomposed into K stationary random 
variables Zk(u) k=1,…,K and a maximum of ( 1) / 2K K −  non-stationary boundary variables 
Zkp(u), with k,p=1,…K and Zkp(u)=Zpk(u) (Figure 2). Then, at all locations, Z(u) can be 
explained by the sum of a stationary component from the collocated rock type and perhaps a 
single non-stationary boundary variable. By definition, the non-stationary variable will take 
values only for locations within the maximum distance of influence of rock type k into rock type 
p. 

The maximum distance of influence orthogonal to the boundary of rock type k into rock type p is 
denoted dmaxkp. A boundary zone is defined by two distances: dmaxkp and dmaxpk, since there is 
no requirement that the regions on each side of the boundary are symmetric, that is, dmaxkp≠ 
dmaxpk. The modeler using all geological information available and his expertise should establish 
these distances. An automatic optimization algorithm is unlikely to work given that the 
stationary portion of the mean and variance, as well as the non-stationary factors that affect 
this statistics, are also unknown. 

When more than two rock types converge at a boundary, two or more rock types may influence 
the boundary zone in the adjacent domain. In this case, precedence or ordering rules should 
determine the dominant boundary zone (Figure 3A). Although the behavior of a property near a 
boundary could be explained by the overlapping of different geological controls, the task of 
identifying the individuals effects of each rock type and their interactions can be quite difficult. 
Geological properties are not usually additive and therefore the response of a combination of 
different rock types is complex. Only one non-stationary factor will be considered at each 
location. The modeler should put together the precedence rules based on the geology of the 
deposit. The relative timing of intrusion, deposition or mineralisation events, geochemistry 
response of the protolith to an alteration or mineralisation process could be used to resolve timing 
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and important variables. If the geological data does not provide sufficient information to establish 
a geological order of events, a neutral arrangement can be chosen (Figure 3B). In this case, the 
precedent rock type p at a location will be the one to which the distance to the boundary is the 
minimum over all surrounding rock types. 
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Figure 2: Decomposition of a one-dimensional random function Z(u) in two stationary variables Zk(u) and 
Zp(u), with constant mean and variance, and a non-stationary boundary variable Zkp(u), with a mean and 
variance that are functions of the distance to the boundary. 
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Figure 3: (A) Three rock type example where a predefined precedence rule is used to determine 
the precedent rock type over two possibilities. In the region A of RTk, RTp

 is precedent over 
RTq, while in region B of RTp, RTq

 is precedent over RTk. (B) A neutral arrangement for the 
same example. 
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Stationary and non Stationary Statistical Parameters 

The mean function of the continuous random function Z(u) for an specific rock type k will be 
the mean of the stationary variable Zk plus the mean of any corresponding non-stationary 
variable Zkp(u):  

{ } { } { }( ) ( ) ( ) where i k kp i k kp i iE Z E Z E Z m m= + = + ∈ ku u u u RT  

where p is the adjacent rock type that shares a boundary with rock type k. 

The stationary component of the mean (mk) is independent of location and is a constant value. 
The non-stationary component of the mean (mkp) is a function of the distance to the boundary, 
dpk(u) and takes values different than zero for locations within the boundary zone defined by 
rock types k and p. The mean of rock type k: 
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( ( )) , otherwise

k pk i pk
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where p is the adjacent rock type that shares a boundary with rock type k and ( )f i  is an arbitrary 
function that describes the mean as a function of distance to the boundary. 

Similarly, the variance of Z(u) for rock type k will be the sum of a constant stationary 
variance (σk

2) due to Zk and the independent non-stationary variance (σkp
2) due to Zkp(u). The 

variance of a random function Z(u) in a rock type k: 

{ }( ){ }
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k
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where p is the adjacent rock type that shares a boundary with rock type k and ( )g i  is an arbitrary 
function that describes the variance as a function of distance to the boundary. 

As with the mean and variance, the covariance structure between two rock types that share a local 
non-stationary boundary consists of: a stationary and a non-stationary component.  

( ) ( ){ }( , ) ( ) ( ) ( ) ( ) ( ) ( , )Z i i i i i i Z Z i iCov E Z m Z m Cov Cov= − ⋅ − = +S NSu v u u v v h u v  

where h=ui – vi. Since Zk and Zkp(u) are independent random variables, the cross terms are 
zero, therefore the covariance of Z(u) is the sum of the stationary and non-stationary 
components. The combination of these components corresponds to a local linear model of 
coregionalization. 

The stationary component of the covariance can be calculated and modeled from data pairs 
within the same internal stationary portion of a rock type, that is ui and vi belong to rock type 
k, and do not belong to any boundary zone.  

To obtain the non-stationary component of the covariance model we will assume that the 
shape, anisotropies and relative nugget effect of the correlation for the non-stationary 
variable Zkp(u) k,p=1,…,K are stationary and that they can be specified by the modeler. Due 
to the non-stationary nature of variable Z(u) at the boundary zone, this stationary spatial 
model shape has to by scaled at each point by a non-stationary mean and variance. The 
relative standardized variogram model for the boundary zone is: 
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where ( ) ( )kp km m m= +u u  and ( ) ( )kp kσ σ σ= +u u . Note that the stationary component of 
the mean can be either mk or mp depending whether ui or vi belongs to rock type k or rock 
type p. The same occurs for the stationary component of the variance. 

Expanding and reordering the terms of the squared difference, and since 
{ } { }2 2( ) ( ) ( ) and ( ) ( )i i i i iE Z m E Z mσ= + =u u u u u , we can simplify the previous 

expression as follows, 
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The non-stationary standard deviations of ui and vi are the ones to scaled the stationary shape 
of the non-stationary component of the covariance. Reordering the terms and replacing the 
mean and variance by the sum of their stationary and non-stationary components, we obtained an 
expression for the non-stationary covariance model: 

{ }( , ) ( ) ( ) ( ( ) ) ( ( ) )
ˆ(1 ( , )) ( ( ) ) ( ( ) )

Z i i i i kp i k kp i k

kp i i kp i k kp i k

Cov E Z Z m m m m

γ σ σ σ σ

= ⋅ − + ⋅ +

= − ⋅ + ⋅ +

NS u v u v v u

u v u v
 

Since the shape, anisotropies and nugget effect of the relative standardize variogram are 
inputs from the modeler, the only parameter that must be established for the non-stationary 
covariance model is the range. 

Optimization of the Statistical Parameters 

We need to find the optimum ( ( ))pk if d u , ( ( ))pk ig d u  and ( , )Z i iCovNS u v  that fit the distribution 
of the random variable Z(u) at the boundary zone given the stationary components of mean, 
variance and covariance, a set of precedence rules and the maximum distances of influence within 
the rock type model.  
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Although we know that the non-stationary behavior is a function of the distance of the sample to 
the boundary, there are several possible analytical expressions that fit the distribution of the non-
stationary random variable. For the purpose of showing the proposed methodology we will 
consider that the non-stationary component of mean and variance follow a linear function (Figure 
4) of the distance to the boundary (dpk). In this scenario, the optimization of the parameter mkp and 
σkp

2 will be equivalent to optimizing estimates of the intercepts: akp and bkp. 
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Figure 4: Mean and variance of the random variable Zkp (u), modeled by a linear function of the 
distance to the boundary. 

 

The mean mkp is optimized given that mk is known from the experimental average of data 
within rock type k, outside any boundary zone. The objective function is: 

2

1 1 1

ˆ( ) ( ( ))
kpNK P

m i k kp i
k p i

O z m m
= = =

 = − + ∑∑∑ u u  

where z(ui) is the outcome value at every location in the boundary zone, Nkp is the total number of 
data in zone k-p, km̂ is the experimental average of all data in RTk and outside any boundary 
zone, and mkm(ui) is the non-stationary mean at location ui calculated as: 

( )
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Although the experimental mean of rock type k should include all samples in this geological 
unit, the samples in any boundary zone are excluded since their non-stationary component is 
yet to be determined. 

The optimization of the mean can be achieved by iteratively modifying akp ∀k,p, in a random 
fashion while accepting all changes in akp that reduce objective function. This is a simplified 
version of the simulated annealing formalism.  
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Since the variance is a statistic of second order that depends on the mean, once the optimum 
of mkp is found, we can proceed to optimize σkp

2 assuming the σk
2, k=1,…,K values are known 

from the experimental variance of data within the internal stationary portion of rock type k.  

The optimum σkp
2, will be the one that minimizes the following objective function: 

2

22 2 2

1 1 1

ˆr( ) ( ( ))
kpNK P

i k kp i
k p i

O
σ

σ σ
= = =

 = − + ∑∑∑ u u  

where r(ui) is the residual value at every location in the boundary zone, that is, 
( ) ( ) ( ( ))i i k kp ir z m m= − +u u u . 2ˆ kσ is the experimental variance of all data within the 

stationary region of rock type k, and σkp
2(ui) is the non-stationary variance at location ui 

calculated from: 
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To find the optimum covariance model we minimize the following objective function: 

( ) ( )
2

1

ˆ ( ), ( ) ( ), ( )
N

Cov i i MOD i i
i

O C z z C z z
=

 = − ∑ u v u v  

where Ĉ denotes the experimental covariance of the pair located at ui and vi, which is just the 
multiplication of the two residual values: ( ) ( )i ir r⋅u v , and CMOD the modeled boundary 
covariance, which is the sum of the stationary and non-stationary component. 

Find the optimum covariance model of a boundary zone is equivalent to optimizing the range of 
the relative standardized variogram scaled by the non-stationary standard deviation (Figure 5). 
This assumption provides some advantages over a full optimization algorithm to find the non-
stationary covariance structure. Simplicity and fewer artifacts are the main advantages. The range 
is iteratively modified by a random amount until the difference between the experimental and 
modeled covariance is minimized. 
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Figure 5: The non-stationary covariance of Zkp(u) is defined by its non-stationary mean and 
variance and the shape of the correlation, which for the same mean and variance can be different 
as represented by the outcomes profile. The range of correlation is higher in the right. 

Estimation in presence of local non-stationary boundaries 

The basic linear regression equation for non-stationary simple kriging is: 

[ ]
1

* ( ) ( ) ( ) ( ) ( )
n

z m z mα α α
α

λ
=

− = ⋅ −∑u u u u u  

where z*(u) is the estimate at unsampled location u, m(u) is the stationary plus the non-stationary 
mean value at location u, λα(u) is the weight assigned to datum z(uα), n is the number of close 
data to the location u being estimated, and m(uα) are the n stationary plus the non-stationary mean 
values at the data locations. 

To find the optimal weights λα(u),  α=1,…,n the kriging system must be solved: 

1
( ) ( , ) ( , ) with , 1,...,

n

Cov Cov nβ α β α
β

λ α β
=

⋅ = =∑ u u u u u  

where λα(u),  α=1,.., n are the simple kriging weights, Cov(uα, uβ), α,β=1,.., n correspond to 
the data-to-data covariances, and Cov(u, uα), α=1,.., n are the data-to- unknown location 
covariances. In the presence of local non-stationary boundaries, the terms of the data covariance 
matrix and the vector of data-to-estimate covariances are obtained combining the stationary and 
non-stationary covariance model components. If both locations are in the same rock type and one 
or both locations are in the same boundary zone, the covariance is the stationary plus the non-
stationary covariances; otherwise, it is only the stationary component. If they are in different rock 
types and both samples are in the same boundary zone the covariance is the non-stationary 
component only. The covariance is zero in all other cases. 

Simple kriging estimator is unbiased and provides the minimum estimation variance estimate, 

2 2

1
( ) ( ) ( ) ( , )

n

E Covα α
α

σ σ λ
=

= − ⋅∑u u u u u  

where σ2(u) is the variance, which in our case has a stationary and a non-stationary 
component as well.  
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The greatest disadvantage of kriging is that the estimates are smooth and the joint variability 
of the kriged estimates is incorrect. The amount of missing variability is the kriging variance. 
Sequential Gaussian simulation overcomes this problem by adding back this missing 
variability, as it adds a random residual to the estimate, drawn from a normal distribution 
with zero mean and variance equal to the kriging variance. In the case described in this 
thesis, the estimation variance has also a non-stationary component that makes the 
implementation of sequential Gaussian simulation in the presence of local non-stationary 
boundaries delicate. This implementation is part of the proposed future work. 

1-D Example 

To illustrate the concepts and methodology described above will use a small 1-D synthetic 
example. Three independent unconditional simulations, with different variogram models were 
used to build the variable Z(u), that will represent the metal grade across a boundary between 
two rock types. Two of the simulations were transformed to a non-standard normal 
distribution to reflect different average grade and variability across a boundary. The third 
simulation was transform to a non-standard normal distribution but with mean and variance 
as functions of distance to the boundary. The mean was assumed to follow a linear function 
with a symmetric maximum distance of influence of 20 meters and an intercept a12=2.0 while 
the variance follows a linear function as well, with the same maximum distance of influence 
and an intercept b12=1.0. The final random variable was obtained by joining the two first 
simulations to obtain a 1-D array of 200 points and adding the third simulation to the values 
from locations 80.5 up to 199.5 (Figure 6). 

The first step in this methodology is to infer all stationary and non-stationary statistical 
parameters for each rock type and boundary zone. For this the FORTRAN optimization 
programs: opt_mean, opt_var and opt_cov were used (Larrondo and Deutsch, 2004). 
This programs mimic the optimization algorithm describe above. 

Variable profile from RT1 to RT2
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Figure 6: Dataset for 1-D example. Random variable profile of metal content against location 
along the X-coordinate. SGS1, SGS2 and SGS3 correspond to the underlying simulations used to 
generate this synthetic example. 
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The optimum intercept value a21 is 3.22 (Figure 7), slightly higher than the target value of 
2.0, used to create this synthetic data, since the 20 values closest to the boundary are 
relatively higher than the rest of the values of rock type 1, due to ergodic fluctuations in the 
simulation. The discontinuity in the optimum mean profile after the boundary is a 
consequence of the difference between the stationary means of rock type 1 and rock type 2. 
The reference stationary means are well reproduce by the optimization algorithm within the 
ergodic fluctuations of the simulations used to build the reference. 

 

Optimized Mean for Z (u)
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Figure 7: Optimized mean obtained for dataset of 1-D example. 

 

The stationary and non-stationary components of the mean are used as an input to find the 
stationary variances of each rock type and the optimum non-stationary component of the 
boundary zone. The objective function in this case is the squared difference between the 
stationary plus the non-stationary variance and the residuals squared. The residuals are 
obtained using the already optimized expression for the mean: 
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The optimum intercept value of b21, in this example is attained at 0.50 (Figure 8). The 
optimized intercept is slightly different to the one used to created this synthetic dataset, due 
to statistical fluctuations from the mean and variance near the boundary zone. The reference 
stationary variances of rock type 1 and 2 are well reproduced by the optimization algorithm 
within the ergodic fluctuations of the simulations used to build the reference.  
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The optimization algorithm used to find the optimum range of the non-stationary covariance 
structure that fits the experimental covariance (Figure 9) calculated for each pair within the 
40 meter zone of influence of the boundary, require as an input from the modeler: the shape, 
anisotropies and nugget effect of the relative variogram model. In this case a spherical 
isotropic model with a nugget effect of 0.0 was adopted. The optimum range obtained is 6.37; 
acceptably similar to the range of 10 used to build this synthetic dataset given the natural 
variations we have seen for mean and variance. 

 

Optimized Variance for Z (u)
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Figure 8: Optimized variance obtained for 1-D example. 

Optimum Non-stationary Covariance
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Figure 9: Experimental covariance from pairs within the boundary zone, optimum non-stationary 
covariance obtained from opt_cov and original covariance of the non-stationary component, 
SGS3, used to build the synthetic dataset Z(u). 
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Data configuration for Estimation at location (*)
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Figure 10: Data configuration for the estimation of an unknown location with the 1-D example. 

 

For the estimation we also need the stationary covariance models for rock type 1 and rock 
type 2, we will assume that the variogram models are the ones used to generate the 
underlying unconditional simulations. 

Estimation in the presence of soft boundaries was performed using kt3d_bound (Larrondo 
and Deutsch, 2004) using the mean, variance and covariance previously obtained from 
optimization. First we will show how estimation is performed with 8 surrounding data 
(Figure 10) at a single location, and then we will review the results of estimation considering 
a conditioning dataset of one out of four grid nodes from the reference.  

The data covariance matrix in terms of the stationary and non-stationary component, for the 
example configuration is: 
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Similarly, the data-to-estimate covariance vector in this case is: 
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Completing the data covariance matrix and the data–to-estimate covariance vector, 
calculating the stationary and non-stationary component as shown before, the resultant 
kriging system is: 
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Given that the data covariance matrix is invertible, and calculating the mean at each data 
location and the mean at the estimate location, as the stationary plus the non-stationary mean, 
the estimated value is 1.15. The “true” value at this point was 0.89. 

The reproduction of the reference values using a conditioning dataset of one out of four grid 
nodes is fairly good as shown in Figure 11 and 12. The only problem arises at the edges of 
the boundary zone, where unusual kriging weights occur leading to discrepancies between the 
estimate and reference. These weights are originated because the covariance of the estimate 
to data is higher than the covariance of the data to itself due to a non-stationary component in 
the first one, but not for the data-to-data covariance; in this case the estimate is inside the 
boundary zone, while the sample is outside. For example, the kriging system for the block at 
80.5 meters is, 
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In this case the kriging weight for the closest data sample is unusually high, although the 
mismatch between the estimate and the reference it is not large. There are other examples for 
which the differences are more dramatic (see Larrondo and Deutsch (2004) in this volume). 
The origin of this non-physical covariance model needs to be reviewed in the future. These 
relatively rare problems in kriging will become more important for the implementation of this 
technique in simulation where the correct estimate and estimation variance are essential for 
the reproduction of the conditioning data and its variability. 

1-D Example
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Figure 11: Grade reproduction profile along the X-coordinate. Reference values versus kriging 
estimates. 

 

1-D Example
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Figure 12: Scatter plot reference values versus kriging estimates, for the 1-D example. 
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For a larger grid, 2000 meters instead of 200, the reproduction of the reference improves 
(Figure 13) as the ergodic fluctuations have less influence in the underlying unconditional 
simulations use to build the reference and more samples are available to find the stationary 
and non-stationary components of mean, variance and covariance. 

1-D Example (2000 nodes)
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Figure 13: Reference values versus kriging estimates considering 2000 nodes instead of 200. 

Conclusions and Future Work 

The geological mechanisms involved in the formation of a deposit are in most cases transitional 
in nature, which yields contacts between domains that are diffuse or gradational. 

This new technique provides a theoretically robust methodology to handle non-stationary soft 
boundaries. To apply this methodology the user must distinguish between stationary regions 
within each rock type and boundary zones where the statistical parameters such as the mean, 
variance or covariance are no longer constant. The non-stationary components of the mean 
and variance are optimized assuming a linear relationship with the distance to the boundary. All 
the optimization algorithms are a simplified version of the simulated annealing formalism, where 
only perturbations that minimize the objective function are accepted.  

This work has considered that the mean and variance increase towards the boundary. A 
decreasing mean near a boundary could be handled by a negative non-stationary mean, but 
this could lead to negative grade estimates. Decreasing variance near a boundary cannot be 
handled with this formalism. The non-stationary variance must be positive. A decreasing 
mean plus the proportional effect could decrease the variance, but it is a limitation of the 
presented methodology.  

The non-stationary features of the mean, variance and covariance are parameterized into a 
legitimate local model of coregionalization. Through this spatial model a non-stationary form of 
cokriging accounts for the changes in mean and variance at the vicinity of boundaries. The 
kriging estimates reproduce the non-stationary behavior of a reference distribution at the 
boundary zone  
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By construction, the kriging variance also has a non-stationary component. Since the kriging 
variance is the missing variability that is reintroduced in simulation, its implementation in the 
presence of local non-stationary boundaries will be delicate and is part of the future work. 
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