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Geostatistical modeling works best in Cartesian coordinates.  The basic approach is to take 
large-scale curvilinear structure, flatten it, model the variability, and put the values back in 
original coordinates.  A practical one-to-one reversible transformation is proposed with a 
straightforward set of functions to permit simple implementation. 

The approach allows for (1) improved variogram modeling: the directions for variogram 
calculation follow geological continuity, (2) improved characterization of the limits to geologic 
mineralization: the hangingwall and footwall can be modeled more realistically, (3) improved 
uncertainty characterization: it is easier to simulate uncertainty in the thickness, rock types, and 
grades in the unfolded coordinate space than it is to assess uncertainty in a sold/wireframe, and 
(4) improved trend modeling: it is possible to compute simplified trend models perpendicular to 
structure, along strike, and down dip. 

 

Background 
Geological modeling of vein type deposits is important.  There are three computer-aided 
approaches to modeling these deposits: 

1. A conventional block modeling approach may be used when the structure of the vein is 
very complex and there are many veinlets.  There is no attempt to explicitly model the 
structure of the vein; it is deemed to complex. 

2. A 2-D modeling approach may be used when the vein is fairly flat after a rotation of the 
original Cartesian coordinates {X,Y,Z} to along strike, down dip, and perpendicular to 
the structure coordinates {XR,YR,ZR}.  The hangingwall, footwall, thickness, rock types, 
and grades are all modeled in the rotated coordinate system.  The modeling may be 3-D 
in the corrected coordinates.  The rotation can be reversed at any time. 

3. A wireframe or geological solid may be defined to model the envelope of the mineralized 
vein.  There are various ways to assemble the 3-D mineralized volume.  There are various 
ways to represent/store the resulting model in the computer. 

The methodology developed in this paper is aimed primarily at the third approach.  The 
methodology for conventional block modeling and 2-D modeling is well understood.  The goal 
here is to simplify a reasonably complicated vein structure and permit improved heterogeneity 
modeling and uncertainty characterization.  The two main problems with geological solid 
modeling are that (1) the solid (mineralized envelope) is very deterministic and it is difficult to 
perform uncertainty assessment, and (2) the coordinates within the solid do not conform to the 
boundaries of the mineralization.  The proposed unfolding algorithm will facilitate uncertainty 
assessment and grade modeling using local vein coordinates. 

Unfolding is not a new concept.  A number of software packages perform some type of unfolding.  
The CCG research group is committed to providing source code to industry sponsors and to 
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developing new algorithms for geomodeling.  The unfolding algorithm presented here is a natural 
extension of well understood geometric modeling principles. 

 

Orthogonal Rotation 
It is often convenient to rotate the original coordinates (UTM or local) so that they are 
approximately along strike, down dip, and perpendicular to the vein.  This is most simply 
performed by two 2-D rotations.  The logic of all GSLIB coordinate systems is that the original X 
direction is in the East direction, the original Y direction is North, and the original Z direction is 
elevation – vertically upward.  The goal is to translate data and locations in this original 
coordinate system {X,Y,Z} to be along strike, down dip, and perpendicular to the structure 
coordinates {XR,YR,ZR}.  Let’s do this in two steps. 

Consider a translation to (xo, yo) and clockwise rotation by angle α to orient the X axis along the 
strike direction and the Y direction in the dip direction.  The Z direction remains unchanged while 
the X and Y axis are rotated in a clockwise angle α.  Note that the clockwise angle is looking 
down along the Z axis toward the origin.  The equations for this rotation: 
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The rotated XR coordinate is the final coordinate.  The YI coordinate is intermediate.  The next 
step is to rotate YI and Z around the XR axis to orient the Y direction down dip and the Z direction 
perpendicular to the structure.  Consider a translation of the Z coordinate to the top of the deposit 
(z1,o) and a clockwise rotation by angle β (looking along the XR axis toward the origin).   
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These two rotations can be put together into a single matrix multiplication.  Note that this is not 
exactly the same as described in Geostatistical Reservoir Modeling.  The approach there was to 
orient the X axis down dip.  Here, X is along strike, Y is down dip, and Z is perpendicular to 
structure. 
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The modeling may be 3-D in the corrected coordinates.  The rotation can be reversed at any time.  
It could be done by inverting this matrix or by reversing the transformations.  Reversing the 
transformations leads to the following. 
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The matrix equations (3) and (4) are useful to convert UTM or mine coordinates to a vein-specific 
coordinate system that is aligned along strike, down dip, and perpendicular to structure.  
Geostatistical models can be constructed in the rotated coordinate system {XR,YR,ZR} and all 
values can be rotated back to original coordinates {X,Y,Z}. 
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Unfolding 
The orthogonal rotation and translation described above should be performed before applying the 
unfolding algorithm if the deviations are large.  This may be convenient.  The unfolding 
algorithm creates a new along-strike coordinate (XU) and a new perpendicular-to-structure 
coordinate (ZU).  The down dip coordinate is not changed (YU=YR).  A number of different 
implementation decisions/alternatives are possible.  Figure 1 illustrates the basic idea.  Some 
remarks: 

• The black dots are control points and would be digitized off XR-ZR cross sections.  The 
control points are tied together down dip (along the orange lines), therefore, there should be 
the same number of control points along each cross section: ncp. 

• The local perpendicular to structure coordinate ZU is rotated in the plane of the XR-ZR cross 
sections.  The red lines on the cross section illustrate this rotation.  The red lines bisect the 
angle created by the control points on either side of the control point under consideration.  
The gray dots at the end of each cross section are projected from the second-first and ncp-1 to 
ncp points. 

• The local perpendicular to structure coordinate ZU is not rotated in the plane of the YR-ZR 
cross sections.  Note that the red lines on the long section are perpendicular to the YR 
coordinate. 

• The spacing of the cross sections down dip (in the YR coordinate direction) is likely to be 
regular, but this is not required. 

The unfolding algorithm uses a grid of control points to achieve the flattening.  In the schematic 
Figure 1 there are four control points along strike (ncp =4) and there are three down dip (ny =3).  
The location of the control points must be digitized on hardcopy sections (unlikely) or electronic 
sections.  The control points are defined by the size of the grid (ncp and ny)and the following set of 
coordinates: 
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Three additional parameters are needed to define the unfolding algorithm: (1) grid refinement 
along strike – the number of intermediate lines defining iso-XU lines, see blue lines in the sketch 
below, (2) degree of grid refinement down dip – the number of iso-YU lines, and (3) the allowable 
distance from the flattened plane – the distance from the dark blue line.  The first and third 
parameters are illustrated in Figure 2. 

The down dip coordinate is unchanged: YR = YU.  As illustrated in Figure 3, the along strike 
direction coordinate XU is calculated to follow the piecewise linear center line digitized from 
cross sections.  The perpendicular to structure coordinate ZU is calculated to be approximately 
perpendicular to local structure.  The XU coordinate is equal along the red lines that bisect the 
angles at the control points.  A delta XU must be specified. ZU The  coordinate is zero at the 
centerline, positive above, and negative below. 

The XU and ZU coordinates on each cross section within each pair of control points is easy to 
visualize, see the little sketch below.  The region between two control points depends on the 
control points on either side; the orientation of the ZU coordinate bisects the two angles and the 
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XU coordinate is linearly scaled between the two bisectors.  For this reason, there are additional 
control points mirrored on both sides of the XR cross sections (see the gray dots on Figure 1). 

 
There is a 2-D grid of control points in the plane of the vein (the XR and YR coordinate plane) that 
is relatively widely spaced.   The conversion of XR/ZR coordinates to XU/ZU coordinates within 
each segment (see sketch above) may be quite sensitive to the relatively wide spacing along XU 
and along YU.  The interpolation of the XU coordinate is linear; there are 10 lines shown in the 
sketch above at a spacing of 1/11 of the spacing between the X spacing of the control points.  
Refinement in the YR coordinate is more important to avoid artifacts. 

The YR control sections are refined to minimize abrupt discontinuities.  Figure 4 illustrates Nyref 
intermediate sections between two pairs of control points.  The alternating colors indicate the 
region of influence of each section.  The Xs mark intermediate control points.  These values are 
interpolated linearly between each pair of control points, that is, along the orange lines connecting 
the black dots.  For example, the using the notation of Equation 5, the ZR coordinate of a 
particular k intermediate (refined) cross section: 
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The refined sections along the YR/U coordinate are considered just like the control sections, that is, 
the XU and ZU coordinates are constructed like in the sketch above. 

 

Some Issues 
The rotated coordinate system {XR,YR,ZR} is unfolded to {XU,YU,ZU}.  The continuity of the 
geometric structure, rock types, and grades is assumed to be better behaved in the unfolded 
coordinate system: {XU,YU,ZU}.  Clearly, there is a distortion of the coordinates where the XU 
coordinate is compressed in some places and expanded in others.  Grid blocks in {XU,YU,ZU} do 
not have the same volume/mass.  Three considerations result from this: 

1. The original data should be composited to a constant length in original coordinates 
{X,Y,Z}or rotated coordinates {XR,YR,ZR}.  This may pose problem at contacts where 
assays are started again.  A short compositing length can be used to mitigate this 
problem. 

2. The kriging/simulation of rock types and grades in {XU,YU,ZU} coordinate space should 
be performed at a relatively fine resolution relative to the volumes of interest.  This 
makes it reasonable to assign point values in the transformed coordinate space. 

3. Tonnages and average grades within grid blocks/stopes should be calculated in the 
rotated {XR,YR,ZR} or original {X,Y,Z} coordinate systems to avoid any bias. 

Clearly, the vein cannot be simultaneously wide/thick and highly tortuous.  It is easy to imagine 
that the bisectors at the control points could cross causing ambiguity in the coordinate.  Figure 5 
illustrates the problem.  An ad hoc correction is applied in the program. 
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Another issue is that bifurcations and multiple veins are not explicitly handled by the modeling 
procedure.  They may connect in a geologically realistic manner in the unfolded coordinate 
system, but multiple veins will likely need to be modeled separately.  Bifurcations and internal 
variations in the rock types may require modeling a categorical variable prior to modeling grades.  
Sequential indicator simulation and/or truncated Gaussian simulation are candidate techniques.  
Surfaces (see Figure 6), rock types, and grades will all be modeled in unfolded space and the 
results back transformed to original coordinates. 

 

Parameters for Unfolding 
The first step is to choose the original coordinates to unfold (xR,yR,zR).  An overall rotation and 
translation could be considered.  This can be reversed at any time.  The xR coordinate should be 
approximately along strike, the yR coordinate should be approximately down dip, and the zR 
coordinate should be approximately perpendicular to the structure. 

The number of YR slices for control points is chosen (nys).  There is no need to choose these slices 
too close together.  The spacing will depend on the scale of variability that you feel important to 
capture.  The number of control points along each YR slice is chosen (ncp).  Then, the XR,ZR 
location of the nys • ncp control points must be digitized. 

 

Key Programs for Unfolding 
The key algorithms/program required for unfolding is to take coordinate (xR,yR,zR) and calculate 
the corresponding unfolded coordinates (xU,yU,zU).  This transformation must, of course, be 
reversed.  Specialized programs for transforming drillhole data, surfaces, and 3-D gridded models 
are also important.  The key programs are: 

 UFprepare   creates a geometric specification from control points 
 UFtrans   transforms data from (xR,yR,zR) to unfolded (xU,yU,zU) 
 UFback   transforms data back to (xR,yR,zR) from unfolded (xU,yU,zU) 
 UFsecplt   creates a PostScript section 

The first program UFprepare prepares the geometric parameters for unfolding.  Subsequent 
transformation programs use the geometric specification prepared by this program.  The 
parameters for the program: 

Line   START OF PARAMETERS: 
 1     5                          -number of control points along XR 
 2     10.0                       -  unfolded distance between control points 
 3     9                          -  number of ribs between control points 
 4     15.0                       -  maximum distance from center line 
 5     2                          -number of slices down dip in YR direction 
 6     975.0 950.0                -  Y values for each slice 
 7     9                          -  number of refinements between slice 
 8     example01.dat              -data file with control points 
 9     1   2   3                  -  columns for Y slice, X and Z location 
10     example01.geo              -output file with geometry 
11     dummy.geo                  -unfolded geometry (for plotting only) 

The number of control points along strike (ncp) is specified on Line 1.  There must be the same 
number of control points on each slice.  If there are more, then the first ncp values are taken and 
sorted by increasing XR coordinate.  If there are less, an error is given and the program stops.  The 
unfolded distance between control points along strike (ncp) is specified on Line 2.  This value is 
10.0 in the parameters and in Figure 3.  The number of ribs between control points (specified on 
Line 3) leads to smoother variations in the transformation and to less distortion of the ZR 
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coordinate.  The maximum distance from the center line is specified on Line 4.  This value 
should be large enough to include the mineralized volume, but not so large as to cause ambiguity 
in the transformation (see Figure 5). 

The number of slices down dip is specified on Line 5.  One slice can be used to unfold data in 
one dimension (like the little examples shown on Figures 2, 3, 5, and 6).  The YR location of each 
slice must be specified on Line 6.  The spacing of the YR slices should be the same; however, 
UFprepare will create a regularly discretized set of slices even if the control points are not 
regular.  The number of intermediate slices between the digitized control points (specified on 
Line 7) leads to smoother variations in the transformation and to fewer artifacts down dip. 

The digitized control points are contained in a single GSLIB data file (specified on Line 8).  Each 
control point must be specified with three coordinates: the YR slice number, the along strike XR 
location, and the ZR perpendicular distance location.  Columns in the GSLIB data file are 
specified on Line 9. 

The name of the output geometry file is specified on Line 10.  The geometry is specified by six 2-
D grids of numbers: 
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The xu/zu grids are the coordinates of the upper end (large ZR values) of the control lines 
perpendicular to location structure.  The xc/zc grids are the coordinates of the center control point 
surface and the xl/zu grids are the coordinates of the lower end (small ZR values) of the control 
lines.  The number of control lines along strike: 

 ( 1)cp cp refnx n n nx= + − i  

Where ncp is the number of control points and nxref is the number of ribs between each pair of 
control points.  A GSLIB format origin and spacing is also kept in the geometry data file.  The 
number of control lines down dip: 

 ( 1)
YsYs refny n n ny= + − i  

Where nYs is the number of slices down dip and nyref is the number of intermediate slices between 
each pair of slices.  A GSLIB format origin and spacing is also kept in the geometry data file.   

The geometry in unfolded coordinates is also saved in the output file specified on Line 11.  This 
file is not needed for any subsequent calculations; it is only for plotting. 

 

The second main program UFtrans calculates the unfolded coordinates (xU,yU,zU) from the 
original coordinates (xR,yR,zR).  The parameters for the program: 

Line   START OF PARAMETERS: 
 1     data.dat                   -data file 
 2     1   2   3                  -  columns for X, Y, and Z coordinates 
 3     example01.geo              -file with geometry 
 4     data-uf.dat                -output file 

The parameters are simple   Line 1 specifies the name of a GSLIB data file with the original 
coordinates.  There is no need for the Y/YR coordinate if unfolding is being done on a slice, but 
the X/XR and Z/ZR coordinates are required.  The column numbers are specified on Line 2.  The 
geometry file from UFprepare is specified on Line 3. The name of the output data file is 
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specified on Line 4.  The input data file will be the same with three additional columns for the 
unfolded coordinates.  The YU coordinate is the same as the input Y coordinate, but it is included 
anyway.  The coordinates are set to -999 if the point falls outside of the Y or X limits.  The ZU 
coordinate is the distance from the center line. 

 

The third main program UFback calculates the original coordinates (xR,yR,zR) from unfolded 
coordinates (xU,yU,zU) and the geometry file.  The parameters for the program: 

Line   START OF PARAMETERS: 
 1     data-uf.dat                -data file 
 2     1   2   3                  -  columns for unfolded X, Y, and Z 
 3     example01.geo              -file with geometry 
 4     back.dat                   -output file 

The parameters are also simple   Line 1 specifies the name of a GSLIB data file with data in 
unfolded coordinates.  The column numbers are specified on Line 2.  The geometry file from 
UFprepare is specified on Line 3. The name of the output data file is specified on Line 4.  The 
input data file will be the same with three additional columns for the back transformed original 
coordinates.  The YU coordinate is the same as the input Y coordinate, but it is included anyway.  
The coordinates are set to -999 if the point falls outside of the Y or X limits. 

 

Small Example 
Three drillholes on a cross section and an unfolding scheme defined by five control points are 
shown on Figure 7.  The maximum perpendicular distance from the center line was set to 50.0, 
the distance between control points was set to 100.0 and 9 intermediate lines were specified 
between the control points.  The data within the maximum perpendicular distance are shown in 
unfolded coordinates in Figure 8.  In practice, only the data within the mineralized vein would be 
transformed (not all of the data within some maximum distance).  The unfolded data were back 
transformed to original locations; see Figure 9.  There are some minor differences – about 0.2m 
on average.  An iterative scheme could be considered to improve the results. 

Figure 10 shows five models for the hangingwall and footwall geometry.  These surfaces could be 
used to clip the grade modeling.  The clipping could be done in unfolded or original coordinates.  
These surfaces were constructed independently, but it would be more common to simulate the 
footwall location and then simulate the mineralized thickness.  The simulated realizations of the 
footwall and thickness would be used in pairs to clip the kriged or simulated mineralization 
models. 

Figure 11 shows a realization of grades in unfolded and original coordinates.  These grades have 
not been clipped by footwall and thickness grids. 

 

Future Work 
There are many area of future work.  Most importantly, the algorithm needs to be tested and used 
on a number of examples where the glitches can be worked out.  I also want to use splines instead 
of linear segments for the center lines (this is not practically important, but it will look better).  
The basic structure worked out here is planned for use in the stope optimization research that is 
being launched by CCG. 
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Conclusions 
The goal of this work is to provide a geometric framework for the geostatistical modeling of vein 
type deposits that is amenable to transfer uncertainty in structure, rock types and grades through 
to the optimization of stope boundaries.  Working within a fixed wireframe or solid model is 
unacceptable; the limits of the mineralization must be modeled stochastically.  Unfolding the 
coordinates prior to surface, rock type and grade modeling greatly simplifies the application of 
geostatistical modeling techniques. 

Unfolding is not new.  Many commercial software applications have the capability.  Those 
applications were not reviewed for this implementation.  This is a fresh implementation with no 
legacy issues.  Of course, the accumulated learning of previous applications and other good ideas 
are not accounted for.  The approach will likely be refined with application.  The concept of open 
and transparent source code is important; anyone can extend the basic ideas seeded here. 
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Figure 1: Basic structure of unfolding algorithm.  There are three views: plane of vein – upper 
left, cross section – lower left, and long section – upper right. 

 

 

 

 
Figure 2: Schematic illustration of the grid refinement along strike (the intermediate blue lines 
between the control point angle bisectors) and the maximum distance from the flattened plane 
(the distance perpendicular to the solid central blue line. 

 

 



 307-10 

 

 

 

 

 
Figure 3: Schematic illustration of the unfolded XU and ZU coordinates.  The XU interval between 
the control points is fixed at 10 in the example. 

 

 

 

 

 
Figure 4: Schematic illustration of how multiple YU sliced are considered between every set of 
control points.  This refinement is performed automatically. 
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Figure 5: Problem with ambiguous coordinate calculation when the curvature and distance from 
centerline are simultaneously large. 

 

 

 
Figure 6: Example surfaces in unfolded coordinates (top) and in original rotated coordinates 
(bottom). 

 

 

 



 307-12 

 

 

 

 
Figure 7: Example data for illustrating the unfolding programs.  The black dots represent 
composite centroid locations, the red lines are at the control points, the blue lines are between the 
control points, and the green line connects the control points at a ZU coordinate of 0.0. 

 

 

 
 

Figure 8: Example data (same as Figure 7) in unfolded coordinates.  Note how data outside of the 
transformed space is omitted.  There are some minor distortions at the top of the drillhole on the 
left. 
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Figure 9: Data from Figure 8 back transformed to original coordinates.  These points should be 
compared with those in Figure 7.  There are some minor distortions. 

 

 
Figure 10: Five top and base surfaces that are constrained at the drillhole locations.  
These surfaces could be used to clip the grade modeling. 



 307-14 

 

 

 

 
Figure 11: A grade realization in unfolded and original coordinates. 

 

 

 


