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One well known artifact of the probability field (p-field) simulation algorithm is a too large co-
variance near conditioning data.  We derive the increased covariance as a function of the input 
ergodic covariance model and the locations of the conditioning data.  The correct covariance in 
the multivariate Gaussian case is derived.  A non-stationary covariance correction for p-field is 
proposed.  Several examples are presented to illustrate the correction. 

Introduction 
Probability field (p-field) simulation was proposed by Srivastava [5] in 1992 and Froidevaux [2] 
in 1993.  P-field simulation is performed in 2 steps: (1) the local distributions of uncertainty 
(conditional cumulative distribution functions or ccdfs) are established at each location, and (2) 
simulated values are drawn from the ccdfs with correlated uniform random numbers.  The ran-
dom numbers must be correlated, or the simulated values will be too random.  An appealing as-
pect of p-field simulation is that the ccdfs can be based on a variety of data sources including soft 
data and expert judgment. 

Probability field simulation is attractive because it dissociates the construction of the ccdfs and 
the Monte Carlo sampling from them; however, there are two well know artifacts of probability 
field (p-field) simulation (Pyrcz and Deutsch, 2000 [4]): (1) the local conditioning data data al-
most always appear as local minima and maxima and (2) the covariance is not reproduced in the 
presence of conditioning data.  The first artifact will not be covered in this paper. 

Journel proved that p-field simulation correctly reproduces the input variogram in the uncondi-
tional case [3].  This is not very practical when attempting to generate conditional simulations.  In 
the presence of conditioning data, the covariance field becomes non-stationary.  The covariance 
values close to conditioning data are quite different compared to far away from conditioning data. 

The non-stationary covariance depends on the data configuration and the variogram used for the 
simulation.  The non-stationary covariance field is correctly reproduced in sequential Gaussian 
simulation because previously simulated nodes are used in the estimation of other nodes.  Usu-
ally, the correlated field of random numbers used in p-field simulation is generated using a sta-
tionary covariance matrix.  This gives conditional p-field simulated values the incorrect covari-
ance.  

In this paper we derive the correct covariance between nodes in the presence of conditioning data 
in a multivariate Gaussian framework.  The covariance bias in p-field simulation can be calcu-
lated.  A correction factor is defined so that the output conditional p-field simulation has the cor-
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rect covariance.  An LU based unconditional simulation program was written for generating un-
conditional simulations that honor the non-stationary p-field corrected covariance field. 

Covariance between Simulated Values in a Multivariate Gaussian Setting 
Consider simulating N locations with n conditioning data.  The covariance matrix between the 
data is defined using the modeled covariance function.  The n x n covariance matrix between the 
data is: 
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where C(ui–uj) is the covariance function for the distance between data locations i and j.  Con-
sider the covariance matrix between the n data and the N locations being simulated: 
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where C(ui–u(j)) is the covariance function for the distance between the data location i and the 
location j being simulated.  Consider the covariance matrix between the N locations being simu-
lated: 
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where C(u(i)–u(j)) is the covariance function between the locations being estimated.  By combining 
Equations (1), (2), and (3) we can obtain an expression for the conditional covariance matrix of 
the N points being simulated given the n data: 
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It is interesting to note that the term 1
11 12C C−  is the simultaneous solution the of the N simple 

kriging systems: 

 [ ]1
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Substitute Equation (5) into Equation (4): 
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Next, substitute the kriging equations into Equation (6). Recall the simple kriging system of equa-
tions: 
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After the substitution, the simplified expression for the conditional covariance between locations i 
and j is: 
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The conditional covariance between two simulated nodes simplifies as: 
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This means that the conditional covariance between 2 points being simulated in the presence of 
conditioning data is exactly known.  It is a function of the covariance between the data values and 
of the covariance between the data and locations being estimated.  Note that when there are no 
conditioning data for the locations i and j, the correct covariance is the input covariance. 

Covariance between Simulated Values using P-Field 
Now that we have an expression for the conditional covariance between locations in a multivari-
ate Gaussian setting, we need to determine the covariance between simulated locations in p-field.  
For the p-field proof we will only consider two locations, i and j, within a multivariate Gaussian 
setting. 

Estimating the local ccdfs is the first step for p-field simulation.  Simple kriging can be used to 
estimate the mean and variance at each location given the n conditioning data.  The mean and 
variance completely define the ccdf in a multivariate Gaussian setting.  The ccdfs at the 2 loca-
tions are: 
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Using the ccdfs from Equation (10), the p-field simulated values at each location are: 
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where Ys(i) and Ys(j) are unconditionally simulated values at locations i and j respectively.  The un-
conditionally simulated values have a specific correlation structure and are normally distributed 
with a mean of 0 and a variance of 1.  The covariance between Ycs(i) and Ycs(j) is: 
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The expected values in step 4 of Equation (12) cancel out because mi and mj are constants. The 
covariance between 2 locations in p-field simulation is a function of the standard deviation at 
each location and the covariance of the random field between the 2 locations. We need to correct 
the covariance of the random field so that the output covariance from p-field is correct. 

Non-Stationary Covariance Correction 
We now know the covariance between locations i and j from p-field, Equation (12), and the cor-
rect covariance between the 2 locations, Equation (9).  Recall: 
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We can define a corrected covariance for the unconditional simulation that will provide the cor-
rect covariance in the output p-field simulation.  Set the p-field corrected covariance to the condi-
tional covariance from Equation (9): 
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rearrange and substitute the p-field covariance: 
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rearrange to get a corrected covariance for the unconditional simulation that will give p-field 
simulation the correct non-stationary covariance field: 
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The corrected covariance for the unconditional simulation will give the p-field conditional simu-
lations the correct spatial structure.  Next, we present method to generate an unconditional simu-
lation with a non-stationary covariance matrix. 

Unconditional Simulation Using a Non-Stationary Covariance Matrix 
The LU simulation algorithm is perfectly suited to generate unconditional simulations with a non 
-stationary covariance function.  The lusim program from GSLIB was modified to calculate the 
conditional covariance matrix for the N locations given the n data, Equation (8), perform the p-
field covariance correction, Equation (13), and then generate L unconditional realizations for in-
put to pfsim.  Recall the correct non-stationary covariance matrix for the multivariate Gaussian 
case: 
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After applying the p-field covariance correction the conditional covariance matrix becomes: 
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We then perform an LU decomposition of the corrected covariance matrix: 
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Unconditional Gaussian simulations are quickly calculated by a simple matrix multiplication: 

 y Lw=   

where w is an N by 1 vector of independent Gaussian values and y is the resulting N by 1 vector 
of unconditionally simulated values with the p-field corrected covariance. This is repeated L 
times for the multiple realizations. The covariance of the unconditional simulations is such that 
the resulting p-field conditional simulations will have the correct covariance. 

Unconditional simulation with a non-stationary covariance matrix is not simple. There is no stan-
dard software to simulate with a non-stationary covariance function. There is a concern that the 
non-stationary covariance may be non-positive definite. However, we have not observed any 
problems as the non-stationary covariances seem to be positive semi definite by construction. 

Theoretically, the correction will work for any size of grid. However, the size of the uncondi-
tional simulation is limited since an LU based approach was chosen.  The practical size of the 
simulation grid should not exceed 5000 – 10000 nodes. 

The lusim based program was named pfsim_ucc (pfsim unconditional corrected covariance).  
The parameters for the program are: 

 
Line  START OF PARAMETERS: 
  1   parta.dat                    -file with data 
  2   1   2   0                    -   columns for X,Y,Z 
  3   3                            -debugging level: 0,1,2,3 
  4   pfsim_ucc.dbg                -file for debugging output 
  5   pfsim_ucc.out                -file for realization(s) 
  6   100                          -number of realizations 
  7   4   40.25   0.5              -nx,xmn,xsiz 
  8   4   28.25   0.5              -ny,ymn,ysiz 
  9   1    0.00   1.0              -nz,zmn,zsiz 
 10   112063                       -random number seed 
 11   1    0.2                     -nst, nugget effect 
 12   1    0.8  0.0   0.0   0.0    -it,cc,ang1,ang2,ang3 
 13            10.0  10.0  10.0    -a_hmax, a_hmin, a_vert 
 

The data file on Lines 1 and 2 specifies the locations of the conditioning data.  The data values 
themselves are not used.  The covariance bias is only dependant on the covariance function.  
Lines 3 and 4 are for the debugging level and the debugging output file.  The output uncondi-
tional realizations are stored in the output file on Line 5.  Line 6 is the number of realizations to 
generate.  The number of realizations can be set quite high.  Most of the CPU time is devoted to 
the LU decomposition of the C22 matrix.  Once the decomposition is done, the realizations can be 
generated extremely fast.  Lines 7, 8, and 9 contain the grid definition in GSLIB format.  The 
random number seed is in Line 10.  Lines 11 and greater specify a 3-D variogram model in stan-
dard GSLIB conventions. 

Example #1 
The first example shows that the covariance artifact from p-field can be predicted correctly.  The 
results from p-field are compared with sequential Gaussian simulation.  The correction in Equa-
tion (13) is used and the covariance from p-field with the non-stationary unconditional simulation 
is compared with the multivariate Gaussian results.  Consider the setting shown in Figure 1 with 
the following isotropic variogram: 



 103–7 

 ( ) ( )100.1 0.9 asphγ == + ⋅h h  

Solving the kriging equations gives the following ccdf’s: 
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The covariance between the 2 simulated locations should be identical to the predicted covariance 
from the multivariate Gaussian theory.  The predicted conditional covariance is: 
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The predicted covariance from p-field is: 
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The covariance between the simulated locations using p-field is significantly higher than the theo-
retical conditional covariance.  The results predicted by theory match the numerical results shown 
in Figures 2 and 3. 

Now we apply the covariance correction for the unconditional simulation and see if the covari-
ance from p-field is correct.  The corrected covariance for the unconditional simulation is: 
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Instead of the unconditional covariance of C12=0.389.  The corrected p-field results are shown in 
Figure 4.  The covariance, and variogram, between the simulated values is now correct. 
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Example #2 
The second example uses the cluster.dat data file from the GSLIB book [1].  We check the 
variogram reproduction for sequential Gaussian simulation, p-field simulation with the stationary 
covariance, and p-field with the non-stationary corrected covariance.  Figure 5 shows the normal 
score data from cluster.dat.  Figure 6 shows the isotropic variogram: 

 ( ) ( )100.2 0.8 asphγ == + ⋅h h  

Figures 7 and 8 show the ccdf’s for p-field.  The ccdfs are calculated from simple kriging of the 
normal scores. 

The sequential Gaussian simulation results are shown in Figures 9 and 10.  The variogram repro-
duction is acceptable within normal fluctuations.  Figures 11 and 12 show the p-field simulation 
results using an unconditional covariance field.  The variograms from the simulation are too low.  
In other words the conditional simulation is too smooth.  The p-field results improve significantly 
after applying the covariance correction, Figures 13 and 14. 

Conclusions 
Probability field simulation has gained some acceptance in modern geostatistics.  However there 
are 2 artifacts that practitioners must be aware of when using p-field: (1) data appear as local min-
ima and maxima, and (2) the covariance is too smooth in the presence of conditioning data.   

A non-stationary covariance correction was derived for p-field simulation.  It corrects the uncon-
ditional simulation so the output p-field simulation will have the correct covariance.   

The covariance correction is limited in size based on the LU approach used.  This approach could 
be applied to larger problems if a non-stationary sequential simulation approach was developed. 
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Figure 1:  Configuration for example #1. 

 

 
Figure 2:  Sequential Gaussian simulation re-
sults. 

 
Figure 3:  P-Field simulation results. 
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Figure 4:  P-Field simulation results with the corrected unconditional 

covariance.  The ouput covariance is right. 

 

 

 
Figure 5:  Data from cluster.dat. 

 
Figure 6:  Isotropic variogram. 

 

 
Figure 7:  Simple kriging estimate. 

 
Figure 8:  Simple kriging estimation variance. 
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Figure 9:  SGSIM Realization. 

 
Figure 10:  SGSIM variogram reproduction. 

 

 

 
Figure 11:  Uncorrected PFSIM realization. 

 
Figure 12:  Uncorrected PFSIM variogram 
reproduction. 

 

 
Figure 13:  Corrected PFSIM realization. 

 
Figure 14:  Corrected PFSIM variogram 
reproduction 

 


