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The idea of direct simulation is becoming more established with the incorporation of 
unstructured grids in ore body and reservoir modeling.  Direct kriging and simulation permits 
reliable integration of multiscale data.  Simply performing kriging on data in original units, 
however, leads to a variance that is incorrect as real data exhibit a proportional effect.  This 
paper introduces a direct simulation algorithm for data that appears lognormally distributed.  
Two types of direct simulation can be executed: (1) a naïve type that performs kriging and 
simulation on the data directly and (2) a form that corrects the kriging variance according to the 
proportional effect inherent in lognormal data.  In fact, the proposed algorithm is not direct 
simulation – it is not based on the simple kriging (SK) principle that underlies the theory and 
publications of direct simulation.  The proposed algorithm considers links the kriging estimate 
and the kriging variance according to the lognormal model; the SK principle requires 
independence of the estimate and variance.  Software is developed and documented. 

Introduction 

Direct sequential simulation (DSS) [1, 2, and 3] has been proposed because of its ability to 
account for data of various support volumes and populate unstructured grids.  Kriging and 
simulating in original units is the essential idea of DSS.  Although kriging provides a valid 
estimate and variance for a conditional distribution, the resulting homoscedastic variance poses a 
significant problem when original data units are considered; the uncertainty in low-valued areas is 
over stated and the uncertainty in high-valued areas is understated. 

Real data often exhibit a classical heteroscedastic relationship between the local mean and 
variance, commonly referred to as the proportional effect [4].  With kriging as the main engine in 
DSS, the resulting simulated values do not reproduce a heteroscedastic feature; a method must be 
developed to account for the proportional effect inherent in original data units. 

Simple kriging (SK) is important in DSS because of its ability to reproduce the covariance even if 
the conditional distributions are not Gaussian [1].  Covariance reproduction using SK can be 
easily demonstrated; however, it only holds if the variance of the data is homoscedastic.  In the 
case of lognormal data the variance is heteroscedastic. 

This paper proposes a solution to the homoscedastic kriging variance problem of DSS by 
introducing a direct lognormal simulation algorithm.  This is a particularly interesting case since 
the mathematical relationship between the lognormal and the commonly used normal distribution 
is well known, as are the equations that describe the proportional effect of lognormal data [5].  
Knowing these relations, the kriging variance can be calibrated to honor the heteroscedasticity 
inherent in lognormal data.  This well posed case provides valuable insight into the nature of 
DSS. 
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Theoretical Background 

A key requirement in the derivation of DSS is that the variance be independent of the conditional 
mean; however, the lognormal model is unique in that this requirement is not met; it is a different 
model.  Working with a lognormal distribution was chosen because there is an analytical 
relationship between Normal-(0,1) data as is used in Sequential Gaussian Simulation, and 
lognormal data.  Also, many actual data sets are indicative of lognormal distributions.  Analytical 
transformations can be carried out with the data distributions as well as with the variograms. 

The definition of a lognormally distributed variable is as follows: A random variable, Z | z(u)>0, 
is lognormal with a mean m and standard deviation σ if the natural logarithm of Z(u) is normally 
distributed with mean α and standard deviation β.  Knowing the relation between Z(u) → 
logN(m,σ) and X(u) → N(α,β) one can transform between Gaussian and lognormal distributions.  
Equations 1, 2 and 3 show the relationship between X(u), Y(u), and Z(u), where Y(u) is a standard 
normal distribution.  Equations 4 and 5 show the relationship between m and σ of Z(u) with α and 
β of X(u). 
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Equations 6 and 7 describe the normal and lognormal probability distribution curves.  Figure 1 
shows the change in the distribution shapes as Y(u) is converted into X(u) and as X(u) is 
transformed into Z(u). 
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As mentioned, there is an analytical relationship between the variogram of a Gaussian variable 
and a lognormal variable.  If the variogram in Gaussian space is known, it can be converted to the 
variogram in lognormal space through the use of Equation 8.  Figure 2 shows a spherical 
variogram for Gaussian data, the corresponding lognormal variogram and the difference between 
them. 
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Where γZ(h) is the variogram of the lognormal variable and γY(h) is the variogram of the Gaussian 
variable. 

An additional characteristic of lognormal distributions that we must account for is the 
proportional effect.  Before moving onto the equation, some comments on the conditional 
distributions resulting from kriging must be made.  In simulation, our goal is to calculate a 
conditional distribution (conditional to some number of local data) for simulation.  In a 
multivariate Gaussian case we transform the data, infer the parameters in Gaussian units, and then 
back transform the result.  The transform and back transform are particularly easy when the data 
are lognormal.  In fact, the shapes of all conditional distributions in original units are lognormal 
when the original global histogram is lognormal (see Appendix).  The key idea of DSS is to krige 
in original units, but we must establish the correct variance, which is heteroscedastic, that is it 
depends on the magnitude of the data and estimate.  The heteroscedasticity or proportional effect 
is automatically accounted for in the back transform.  As there is no back transform in DSS we 
have to build in some form of correction.  What makes the lognormal case unique is that we know 
the proportional effect analytically and it is derived from Equation 5: 
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Where 2
Lβ  is the homoscedastic kriging variance in N(α,β) units and Zm  and 2

Zσ  are the estimate 
and variance from kriging data in original units. 

Since Zm  is the estimate from kriging it can be denoted by z*(u).  From Equation A2 in the 
Appendix it is shown that: 

 2 2 2
L G Yβ β σ= ⋅  

where 2
Gβ  is the global variance of X(u) and 2

Yσ  is the Gaussian kriging variance.  Substituting 
these results into Equation 9 yields Equation 10: 
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Where 2
,Z Cσ  is the corrected variance, 2

Yσ  is the local variance in Gaussian space, and 2

Gβ  is the 
global variance of ln(Z).  A major implication from Equation 10 is that kriging would have to be 
performed twice; once to get the kriging variance in Gaussian space ( 2

Yσ ) and again to get the 
estimate in lognormal space (z*(u)). 

To experimentally show this relation, a Gaussian variable was generated using unconditional 
simulation and the corresponding lognormal values were calculated via Equation 3 (m=σ=100).  
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Kriging was performed on both data sets and the GAM program [6] was run on the results at a lag 
equal to half the variogram range and the Y(u+h) values were extracted.  Splitting the results into 
50 quantiles and determining the mean and standard deviation of each quantile shows that the 
variance is homoscedastic for Gaussian data and the variance depends on the mean with 
lognormal data.  For comparison, the analytical lines were also plotted on Figure 3. 

Program 

The slogsim program was adapted from the GSLIB sequential Gaussian Simulation algorithm, 
sgsim [6].  Three options are available for the type of simulation to be carried out and they are 
as follows: 

 Option 1  Transform a set of lognormal samples to Gaussian space and perform 
kriging and MCS, then back-transform to lognormal space.  This is the 
standard/common approach.  The limitation is that multiscale data are 
not easily handled. 

 Option 2 Perform direct kriging with the lognormal values with an adjusted 
variogram and do MCS without correcting the kriging variance.  This is 
the published approach to DSS.  The limitation is that 
heteroscedasticity/the proportional effect is not accounted for. 

 Option 3 Perform direct kriging on the lognormal values with an adjusted 
variogram and correct the kriging variance prior to MCS.  This is the 
new approach that we are advocating in this paper.  Multiscale data can 
be used in direct kriging and the proportional effect is explicitly 
accounted for. 

Parameters are similar to sgsim; however, there are a few new ones to note: 
START OF PARAMETERS: 
Line samples.dat -file with data 
 1 1 2  0  4  0  0 -columns for X,Y,Z,vr,wt,sec.var. 
 2 -998.0  1.0e21 -trimming limits 
 3 1  0 -transform (0=no, 1=yes), dss (0=an,1=nai,2=peff) 
 4 slogsim.trn -  file for output trans table 
 5 0 -  consider ref. dist (0=no, 1=yes) 
 6 histsmth.out -  file with ref. dist distribution 
 7 1 2 -  columns 
 8 0.0     0.0 -Z mean and variance (if 0, determine from data) 
 9 0.0     0.0 -slope & intercept for prop effect fit, 0=not used 
10 0.0  1500.0 -zmin,zmax(tail extrapolation) 
11 1 -debugging level: 0,1,2,3 
12 slogsim.dbg -file for debugging output 
13 slogsim.out -file for simulation output 
14 50 -number of realizations to generate 
15 260  0.5  1.0 -nx,xmn,xsiz 
16 300  0.5  1.0 -ny,ymn,ysiz 
17 1     0.5    1.0 -nz,zmn,zsiz 
18 69069 -random number seed 
19 2    20 -min and max original data for sim 
20 15 -number of simulated nodes to use 
21 1 -assign data to nodes (0=no, 1=yes) 
22 1     3 -multiple grid search (0=no, 1=yes), num 
23 0 -maximum data per octant (0=not used) 
24 150 75 1.0 -maximum search radii (hmax,hmin,vert) 
25 165   0.0   0.0 -angles for search ellipsoid 
26 50    50    1 -size of covariance lookup table 
27 0     0.60   1.0 -ktype: 0=SK,1=OK,2=LVM,3=EXDR,4=COLC 
28 ../data/ydata.dat -file with LVM, EXDR, or COLC variable 
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29 4 -column for secondary variable 
30 0 -Variogram option, 0=NScore Variogram, 1=Z-variogram 
31 1  0.15 -nst, nugget effect 
32 1  0.85  165   0.0  0.0 -it,cc,ang1,ang2,ang3 
33           35   37   1.0 -a_hmax,a_hmin,a_vert 

The transform and dss options (Line 3) specify which form of simulation is to take place.  If 
transform is set to 1, the input variable will be normal scored and sequential Gaussian simulation 
will be performed (dss should be set to zero in this case).  To perform naïve direct lognormal 
simulation, transform should be set to zero and dss to one.  To account for the proportional effect, 
dss must be set to 2 and transform to zero.  On Line 8, the mean and variance of the data can be 
forced or determined from the input data.  At this point, only a linear option for approximating 
the proportional effect is available (Line 9).  If the proportional effect slope and intercept are 
input and the dss option from Line 3 is set to 2, kriging variance values will be corrected 
according to that linear equation.  If the dss option is set to 2 and no slope/intercept parameters 
are entered, kriging is performed twice, once to acquire the Gaussian kriging variance and again 
for the estimate in original units.  Line 30 is the last new parameter to describe the type of 
variogram that is input.  If the variogram was modeled on the normal scores, this parameter must 
be set to zero; however, if the variogram model was calculated in original space, this parameter 
must be set to 1. 

Output from the program is a gridded file containing simulated values similar to sgsim. 

Examples 

Tests were run on four data sets, one of which was simulated to be perfectly lognormal for 
comparison purposes.  The data sets: 

 

Data Set Samples Mean Standard Deviation Alpha Beta 

Analytical Lognormal 625 98.63 97.86 4.249 0.828 

SIC Rainfall 467 184.24 112.26 5.058 0.562 

Walker Lake, U 725 278.46 500.89 4.907 1.201 

Walker Lake, V 725 277.64 249.23 5.331 0.769 

The alpha and beta values were calculated from the actual sample values.  These numbers are 
attained regardless of the type of distribution being input into the slogsim program and all 
conditional distributions resulting from kriging are assumed to be lognormal.  Because of this, 
some initial testing was done on the sample sets to determine their lognormality, which will affect 
program output.  As discussed, a random variable, Z | z(u)>0, is lognormal if the natural 
logarithm of Z(u) is normally distributed.  Since more robust statistical tests exist for normal 
distributions, the normality of ln(Z) was tested.  The assumption made here is that data sets 
exhibiting more lognormal behavior will provide better results regarding mean, variance and 
variogram reproduction. 

Three tests were carried out: 

1. Fit error between the sample cumulative distribution function (cdf) and the best fitting 
analytical lognormal cdf.  The fit error is the area between the two cdf’s calculated using 
the Trapezoidal Rule for integration and is normalized by the width of the sample set. 
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2. Shapiro-Francia W` Test of Normality for large samples (5 to 5000 points), which is 
essentially the correlation between the standard normal cdf and the sample cdf of ln(Z). 

3. A combined Skewness and Kurtosis measure defining how the sample probability 
distribution function (pdf) of ln(Z) deviates from normal [7].  For the standard normal 
distribution the skewness is zero, see Equation 11.  The kurtosis magnitude is 3 so the 
equation is standardized by subtracting this value, see Equation 12. 
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 Where N is the number of samples, Y  is the mean and σ is the standard deviation.  The 
error measure is the combined deviation these values indicated from standard normal 
where the deviations are defined by skewness normalized by the standard error of 
skewness (ses) and the kurtosis normalized by the standard error of kurtosis (sek), see 
Equations 13 and 14.  Both have been normalized by the number of samples as well.  The 
combined error measure is shown by Equation 15. 
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Lognormality test results for the analytical sample set (the best case) and the rainfall data can be 
found in Figure 6.  The results are tabulated below: 

 

Sample Set Lognormal Fit 
Error 

Shapiro-Francia W` 
Test 

Skewness/Kurtosis 
Measure 

Analytical Lognormal 0.004 0.997 0.071 

SIC Rainfall 0.026 0.763 3.199 

Walker Lake, U 0.017 0.868 0.603 

Walker Lake, V 0.033 0.728 1.082 

Variograms were modeled using the normal scores of the sample sets.  The effects of 
lognormality on the variograms were checked by converting normal space variograms to 
lognormal space via Equation 8 and plotting them against the experimental variograms of the 
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samples in original units, see Figure 7.  Original space experimental variograms of more 
lognormal data tend to match the analytical lognormal variogram model better. 

Mean, variance and variogram reproduction were checked for 50 realizations of both the naïve 
and proportional-effect-corrected (Peff) forms of simulation.  Maps of the mean and variance of 
the realization sets show homoscedastic variance for the naïve runs and reproduction of 
heteroscedasticity with runs accounting for the proportional effect, see Figure 4.  Other Maps are 
located in Figure 8 (E-type means) and 9 (variances).  Histograms of the mean and variance 
reproduction are shown in Figures 10 and 11 and summarized below.  As expected, the 
reproduction of these two statistics was best with the analytical lognormal samples; however, 
even though the Walker Lake U variable seems more lognormal than V and the rainfall data, its 
mean and variance reproduction was worse. 

Data Set Mean Variance Mean Variance Mean Variance
Walker Lake, U 278.457 250542.3 234.97 211785.4 15.62 15.47
Walker Lake, V 277.638 62029.89 289.21 64664.23 4.17 4.25
SIC Rainfall 184.244 12576.05 158.5 15078.68 13.97 19.90
Analytical Log 98.625 9560.733 100.25 9671.55 1.65 1.16

Original Simulated Percent Error

 
Mean and variance reproduction for naïve simulation 

Data Set Mean Variance Mean Variance Mean Variance
Walker Lake, U 278.457 250542.3 234.01 208120.4 15.96 16.93
Walker Lake, V 277.638 62029.89 288.69 67745.54 3.98 9.21
SIC Rainfall 184.244 12576.05 158.09 14179.26 14.20 12.75
Analytical Log 98.625 9560.733 100.19 9518.38 1.59 0.44

Original Simulated Percent Error

 
Mean and variance reproduction for Peff simulation 

To check for variogram reproduction, a modified version of the GSLIB gam program was 
implemented over the sets of realizations.  An average variogram was also calculated and 
compared visually with the input models.  Variograms for both Naïve and Peff runs and for the 
major direction of anisotropy are shown, see Figure 12.  Based on visual inspection, the input 
variogram models for both cases of direct lognormal simulation are reproduced well.  The 
average variogram indicated by the dashed line tends to match the input model better with the 
proportional effect case.  This is especially noticeable with the Walker Lake variables. 

Conclusion 

The direct simulation algorithm was written for use with lognormal data because it is analytically 
related to Gaussian data by the distribution and the variogram.  It was also useful because the 
proportional effect is prominent and analytically defined.  Many natural data sets exhibit the 
proportional effect, which direct kriging alone cannot reproduce.  Introducing a variance 
correction into the kriging algorithm permits direct simulation where the proportional effect 
inherent in lognormal data is reproduced.  Mean, variance, and variogram reproduction was 
acceptable for both the naïve and proportional-effect-corrected forms of direct simulation.  Even 
though the naïve form indicated good variance reproduction, the variance was shown to be 
homoscedastic. 

Having a direct simulation algorithm capable of handling the proportional effect will allow a 
move into data of various support volumes and population of unstructured grids.  Advancing this 



 108-8 

algorithm to one that can handle any input distribution and their inherent heteroscedastic features 
is sought after. 
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Appendix: Conditional Distributions for Direct Lognormal Kriging 
 
To check if the local distributions at each location being estimated are lognormal, a simple 
kriging example was set up in Excel with 4 known data and 3 locations to be sequentially 
estimated: 

Data Locations
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2.0
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-0.5
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-1.5
20.3

Y*3

Y*2

Y*1

80

90

100

110

120

80 90 100 110 120
X

Y

 
 
 
 
 
 
 

The data configuration for kriging is shown at the top and the kriging results prior to 
transformation to lognormal space are shown at the bottom.  Solid bullets are known data and 
circles are the points to be estimated.  The data values are also shown, both Gaussian (above) and 
lognormal (below). 

To generate the local distributions corresponding to the global lognormal data with a mean and 
standard deviation of 100, a set of 199 quantiles was chosen ranging from 0.005 to 0.995 and the 
value corresponding to each for the local normal distributions was found.  Using 

)()( uu YeZ ⋅+= βα  

to transform the values to Z-space and plotting the results revealed that the local distributions are 
lognormal.  To check if equations A1 and A2 (below) are correct, they were used to find the local 
alpha and beta values and then the LOGINV function in MS Excel was used to determine the 
corresponding value for each quantile.  Both methods gave equal results, see below. 

Location mN 2
Nσ  

Y*1 -0.546 0.462 
Y*2 1.073 0.396 
Y*3 0.267 0.444 
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Local Lognormal Distributions
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Starting with the equation for transforming Gaussian data, Y(u) ~ N(0,1), to normal X-space data, 
X(u) → N(α,β): 

( ) ( )G GX u Y uα β= + ⋅  

Replacing Y(u) with the kriged mean and X(u) with the local mean of ln(Z), we get Equation A1, 
which relates the local mean in X-space to that in Gaussian space. 

 L G G Nmα α β= + ⋅  (A1) 

Where αL is the local mean in X-space, αG is the global mean of X(u), βG is the global variance of 
X(u), and mN is the kriged mean in Gaussian space.  To derive Equation A2, the Equation for 
transforming Y-space values to X-space along with the equation defining the variance of a data 
set was used.  The local normal kriging variance can be defined by the following equation: 
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Where 2
Nσ  is the variance in Gaussian space, ui is the value at location i, and mN is the mean of 

all ui, i=1…n.  To determine the local variance of ln(Z) we need to know the values of uiX and mX 
that correspond to ui and mN in Gaussian space.  Equation A1 can be used to perform this 
transformation: 

  iX G G iu uα β= + ⋅   

  X G G Nm mα β= + ⋅  

Substituting these into the equation for the variance in normal space (X-space), the local variance 
of ln(Z) can be solved for: 
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Where 2
Lβ  is the local variance of ln(Z), 2

Gβ  is the global variance of ln(Z), and 2
Nσ  is the local 

normal variance in Y-space. 
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Normal and Lognormal Distribution Transition
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Figure 1: Normal and corresponding lognormal distributions 
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Figure 2: Variogram model used to generate the unconditional model.  The Gaussian model is 
spherical with no nugget effect and a range of 32.  The corresponding variogram of the lognormal 
variable is shown with the difference between the two functions. 
 
 
 



 108-13 

 
 
 

 
Figure 3: Scatterplots of Gaussian data showing the variance is homoscedastic (left) and 
lognormal data displaying the proportional effect (right). 
 
 
 
 

  
Figure 4: Variance of realizations for naïve and Peff simulation of the Walker Lake sample set. 
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Figure 5: Lognormality of Analytical Lognormal Data. 
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Figure 6: Lognormality of Rainfall Data. 
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Figure 7: Normal scores and original units variograms. 
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Figure 8: E-type Mean Maps of the 50 Realizations. 
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Figure 9: Variance Maps of the 50 Realizations. 
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Figure 10: Mean and Variance Reproduction using Naïve Simulation Note: The darkest bar is 
that which is closest to the actual mean of the data. 
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Figure 11: Mean and Variance Reproduction using P-effect Simulation Note: The darkest bar is 
that which is closest to the actual mean of the data. 



 108-21 

 
 

 
Figure 12: Variogram reproduction. 


