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The idea of direct simulation is becoming more established with the incorporation of
unstructured grids in ore body and reservoir modeling. Direct kriging and simulation permits
reliable integration of multiscale data. Simply performing kriging on data in original units,
however, leads to a variance that is incorrect as real data exhibit a proportional effect. This
paper introduces a direct simulation algorithm for data that appears lognormally distributed.
Two types of direct simulation can be executed: (1) a naive type that performs kriging and
simulation on the data directly and (2) a form that corrects the kriging variance according to the
proportional effect inherent in lognormal data. In fact, the proposed algorithm is not direct
simulation — it is not based on the simple kriging (SK) principle that underlies the theory and
publications of direct simulation. The proposed algorithm considers links the kriging estimate
and the kriging variance according to the lognormal model; the SK principle requires
independence of the estimate and variance. Software is developed and documented.

Introduction

Direct sequential simulation (DSS) [1, 2, and 3] has been proposed because of its ability to
account for data of various support volumes and populate unstructured grids. Kriging and
simulating in original units is the essential idea of DSS. Although kriging provides a valid
estimate and variance for a conditional distribution, the resulting homoscedastic variance poses a
significant problem when original data units are considered; the uncertainty in low-valued areas is
over stated and the uncertainty in high-valued areas is understated.

Real data often exhibit a classical heteroscedastic relationship between the local mean and
variance, commonly referred to as the proportional effect [4]. With kriging as the main engine in
DSS, the resulting simulated values do not reproduce a heteroscedastic feature; a method must be
developed to account for the proportional effect inherent in original data units.

Simple kriging (SK) is important in DSS because of its ability to reproduce the covariance even if
the conditional distributions are not Gaussian [1]. Covariance reproduction using SK can be
easily demonstrated; however, it only holds if the variance of the data is homoscedastic. In the
case of lognormal data the variance is heteroscedastic.

This paper proposes a solution to the homoscedastic kriging variance problem of DSS by
introducing a direct lognormal simulation algorithm. This is a particularly interesting case since
the mathematical relationship between the lognormal and the commonly used normal distribution
is well known, as are the equations that describe the proportional effect of lognormal data [5].
Knowing these relations, the kriging variance can be calibrated to honor the heteroscedasticity
inherent in lognormal data. This well posed case provides valuable insight into the nature of
DSS.
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Theoretical Background

A key requirement in the derivation of DSS is that the variance be independent of the conditional
mean; however, the lognormal model is unique in that this requirement is not met; it is a different
model. Working with a lognormal distribution was chosen because there is an analytical
relationship between Normal-(0,1) data as is used in Sequential Gaussian Simulation, and
lognormal data. Also, many actual data sets are indicative of lognormal distributions. Analytical
transformations can be carried out with the data distributions as well as with the variograms.

The definition of a lognormally distributed variable is as follows: A random variable, Z | z(u)>0,
is lognormal with a mean m and standard deviation ¢ if the natural logarithm of Z(u) is normally
distributed with mean a and standard deviation f. Knowing the relation between Z(U) —
logN(m,o) and X(u) — N(a,f) one can transform between Gaussian and lognormal distributions.
Equations 1, 2 and 3 show the relationship between X(u), Y(u), and Z(u), where Y(u) is a standard
normal distribution. Equations 4 and 5 show the relationship between m and ¢ of Z(u) with a and
S of X(u).

XW=a+p-Y(u) )

Z(u) =X W )

Z(u) = 2 TAYW) 3)
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m

Equations 6 and 7 describe the normal and lognormal probability distribution curves. Figure 1
shows the change in the distribution shapes as Y(u) is converted into X(u) and as X(u) is

transformed into Z(U).
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As mentioned, there is an analytical relationship between the variogram of a Gaussian variable
and a lognormal variable. If the variogram in Gaussian space is known, it can be converted to the
variogram in lognormal space through the use of Equation 8. Figure 2 shows a spherical
variogram for Gaussian data, the corresponding lognormal variogram and the difference between
them.
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Where yz(h) is the variogram of the lognormal variable and yy(%) is the variogram of the Gaussian
variable.

An additional characteristic of lognormal distributions that we must account for is the
proportional effect. Before moving onto the equation, some comments on the conditional
distributions resulting from kriging must be made. In simulation, our goal is to calculate a
conditional distribution (conditional to some number of local data) for simulation. In a
multivariate Gaussian case we transform the data, infer the parameters in Gaussian units, and then
back transform the result. The transform and back transform are particularly easy when the data
are lognormal. In fact, the shapes of all conditional distributions in original units are lognormal
when the original global histogram is lognormal (see Appendix). The key idea of DSS is to krige
in original units, but we must establish the correct variance, which is heteroscedastic, that is it
depends on the magnitude of the data and estimate. The heteroscedasticity or proportional effect
is automatically accounted for in the back transform. As there is no back transform in DSS we
have to build in some form of correction. What makes the lognormal case unique is that we know
the proportional effect analytically and it is derived from Equation 5:

=142 ©)

Where [ Lz is the homoscedastic kriging variance in N(a,f) units and m, and G; are the estimate

and variance from kriging data in original units.

Since m,, is the estimate from kriging it can be denoted by z'(u). From Equation A2 in the
Appendix it is shown that:

2 2 2
/BL :ﬂG'O-Y

where ﬂé is the global variance of X(u) and (7; is the Gaussian kriging variance. Substituting
these results into Equation 9 yields Equation 10:

0% =[2* W] (" -1 (10)

Where o-éc is the corrected variance, o-i is the local variance in Gaussian space, and g, is the
global variance of [n(Z). A major implication from Equation 10 is that kriging would have to be
performed twice; once to get the kriging variance in Gaussian space (o, ) and again to get the
estimate in lognormal space (z'(U)).

To experimentally show this relation, a Gaussian variable was generated using unconditional
simulation and the corresponding lognormal values were calculated via Equation 3 (m=0=100).
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Kriging was performed on both data sets and the GAM program [6] was run on the results at a lag
equal to half the variogram range and the Y(u+h) values were extracted. Splitting the results into
50 quantiles and determining the mean and standard deviation of each quantile shows that the
variance is homoscedastic for Gaussian data and the variance depends on the mean with
lognormal data. For comparison, the analytical lines were also plotted on Figure 3.

Program

The slogsim program was adapted from the GSLIB sequential Gaussian Simulation algorithm,
sgsim [6]. Three options are available for the type of simulation to be carried out and they are

as follows:

Option 1

Option 2

Option 3

Transform a set of lognormal samples to Gaussian space and perform
kriging and MCS, then back-transform to lognormal space. This is the
standard/common approach. The limitation is that multiscale data are
not easily handled.

Perform direct kriging with the lognormal values with an adjusted
variogram and do MCS without correcting the kriging variance. This is
the published approach to DSS. The limitation 1is that
heteroscedasticity/the proportional effect is not accounted for.

Perform direct kriging on the lognormal values with an adjusted
variogram and correct the kriging variance prior to MCS. This is the
new approach that we are advocating in this paper. Multiscale data can
be used in direct kriging and the proportional effect is explicitly
accounted for.

Parameters are similar to Sgs im; however, there are a few new ones to note:

START OF PARAMETERS:

Line samples.dat

1

2

3 1 0

4 slogsim.trn
5 0

6 histsmth.out
7 12

8 0.0 0.0
9 0.0 0.0
10 0.0 1500.0
11 1

12 slogsim.dbg
13 slogsim.out
14 50

15 260 0.5 1.0
16 300 0.5 1.0
17 1 0.5

18 69069

19 2 20
20 15
21 1
22 1 3
23 0

24 150 75 1.0
25 165 0.0
26 50 50

27 0 0.60

28 ../data/ydata.dat

12 0 4 0 O
-998.0 1.0e21

-file with data

-columns for X,Y,Z,vr,wt,sec.var.

-trimming limits

-transform (0O=no, l=yes), dss (0O=an,l=nai,2=peff)
- File for output trans table

- consider ref. dist (0=no, 1l=yes)

- TFile with ref. dist distribution

- columns

-Z mean and variance (if 0, determine from data)
-slope & intercept for prop effect fit, O=not used
-zmin,zmax(tail extrapolation)

-debugging level: 0,1,2,3

-file for debugging output

-file for simulation output

-number of realizations to generate

-nNx,Xmn,xsiz

-ny,ymn,ysiz

-nz,zmn,zsiz

-random number seed

-min and max original data for sim

-number of simulated nodes to use

-assign data to nodes (0O=no, 1l=yes)

-multiple grid search (0=no, 1l=yes), num
-maximum data per octant (0O=not used)

-maximum search radii (hmax,hmin,vert)

-angles for search ellipsoid

-size of covariance lookup table

-ktype: 0=SK,1=0K,2=LVM,3=EXDR,4=COLC

-file with LVM, EXDR, or COLC variable

108-4



29 4 -column for secondary variable

30 0 -Variogram option, 0=NScore Variogram, 1=Z-variogram
31 1 0.15 -nst, nugget effect

32 1 0.85 165 0.0 0.0 -it,cc,angl,ang2,ang3

33 35 37 1.0 -a_hmax,a_hmin,a_vert

The transform and dss options (Line 3) specify which form of simulation is to take place. If
transform is set to 1, the input variable will be normal scored and sequential Gaussian simulation
will be performed (dss should be set to zero in this case). To perform naive direct lognormal
simulation, transform should be set to zero and dss to one. To account for the proportional effect,
dss must be set to 2 and transform to zero. On Line 8, the mean and variance of the data can be
forced or determined from the input data. At this point, only a linear option for approximating
the proportional effect is available (Line 9). If the proportional effect slope and intercept are
input and the dss option from Line 3 is set to 2, kriging variance values will be corrected
according to that linear equation. If the dss option is set to 2 and no slope/intercept parameters
are entered, kriging is performed twice, once to acquire the Gaussian kriging variance and again
for the estimate in original units. Line 30 is the last new parameter to describe the type of
variogram that is input. If the variogram was modeled on the normal scores, this parameter must
be set to zero; however, if the variogram model was calculated in original space, this parameter
must be set to 1.

Output from the program is a gridded file containing simulated values similar to Sgsim.
Examples

Tests were run on four data sets, one of which was simulated to be perfectly lognormal for
comparison purposes. The data sets:

Data Set Samples Mean Standard Deviation Alpha  Beta
Analytical Lognormal 625 98.63 97.86 4249  0.828
SIC Rainfall 467 184.24 112.26 5.058  0.562
Walker Lake, U 725 278.46 500.89 4.907 1.201
Walker Lake, V 725 277.64 249.23 5.331 0.769

The alpha and beta values were calculated from the actual sample values. These numbers are
attained regardless of the type of distribution being input into the slogsim program and all
conditional distributions resulting from kriging are assumed to be lognormal. Because of this,
some initial testing was done on the sample sets to determine their lognormality, which will affect
program output. As discussed, a random variable, Z | z(u)>0, is lognormal if the natural
logarithm of Z(u) is normally distributed. Since more robust statistical tests exist for normal
distributions, the normality of /n(Z) was tested. The assumption made here is that data sets
exhibiting more lognormal behavior will provide better results regarding mean, variance and
variogram reproduction.

Three tests were carried out:

1. Fit error between the sample cumulative distribution function (cdf) and the best fitting
analytical lognormal cdf. The fit error is the area between the two cdf’s calculated using
the Trapezoidal Rule for integration and is normalized by the width of the sample set.
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2. Shapiro-Francia W' Test of Normality for large samples (5 to 5000 points), which is
essentially the correlation between the standard normal cdf and the sample cdf of /n(Z).

3. A combined Skewness and Kurtosis measure defining how the sample probability
distribution function (pdf) of In(Z) deviates from normal [7]. For the standard normal
distribution the skewness is zero, see Equation 11. The kurtosis magnitude is 3 so the
equation is standardized by subtracting this value, see Equation 12.

N _ 3
S(5-7)
Skewness = m (11)
N _ 4
- 2T
Kurtosis = W—3 (12)

Where N is the number of samples, ¥ is the mean and o is the standard deviation. The
error measure is the combined deviation these values indicated from standard normal
where the deviations are defined by skewness normalized by the standard error of
skewness (ses) and the kurtosis normalized by the standard error of kurtosis (sek), see
Equations 13 and 14. Both have been normalized by the number of samples as well. The
combined error measure is shown by Equation 15.

|Skewness| 6
O-Skew:T ses = ﬁ (13)

Kurtosi
N L (14)
V24 N

_ [ 2
GT otal JSkew + JKurt (1 5 )

Lognormality test results for the analytical sample set (the best case) and the rainfall data can be
found in Figure 6. The results are tabulated below:

Lognormal Fit Shapiro-Francia W* Skewness/Kurtosis
Sample Set

Error Test Measure
Analytical Lognormal 0.004 0.997 0.071
SIC Rainfall 0.026 0.763 3.199
Walker Lake, U 0.017 0.868 0.603
Walker Lake, V 0.033 0.728 1.082

Variograms were modeled using the normal scores of the sample sets. The effects of
lognormality on the variograms were checked by converting normal space variograms to
lognormal space via Equation 8 and plotting them against the experimental variograms of the
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samples in original units, see Figure 7. Original space experimental variograms of more
lognormal data tend to match the analytical lognormal variogram model better.

Mean, variance and variogram reproduction were checked for 50 realizations of both the naive
and proportional-effect-corrected (Peff) forms of simulation. Maps of the mean and variance of
the realization sets show homoscedastic variance for the naive runs and reproduction of
heteroscedasticity with runs accounting for the proportional effect, see Figure 4. Other Maps are
located in Figure 8 (E-type means) and 9 (variances). Histograms of the mean and variance
reproduction are shown in Figures 10 and 11 and summarized below. As expected, the
reproduction of these two statistics was best with the analytical lognormal samples; however,
even though the Walker Lake U variable seems more lognormal than V and the rainfall data, its
mean and variance reproduction was worse.

Original Simulated Percent Error
Data Set Mean Variance Mean Variance Mean Variance
Walker Lake, U  278.457 250542.3 234.97 211785.4 15.62 15.47
Walker Lake, V  277.638 62029.89 289.21 64664.23 417 4.25
SIC Rainfall 184.244 12576.05 158.5 15078.68 13.97 19.90
Analytical Log 98.625 9560.733 100.25 9671.55 1.65 1.16

Mean and variance reproduction for naive simulation

Original Simulated Percent Error
Data Set Mean Variance Mean Variance Mean Variance
Walker Lake, U  278.457 250542.3 234.01 208120.4 15.96 16.93
Walker Lake, V.  277.638 62029.89 288.69 67745.54 3.98 9.21
SIC Rainfall 184.244 12576.05 158.09 14179.26 14.20 12.75
Analytical Log 98.625 9560.733 100.19 9518.38 1.59 0.44

Mean and variance reproduction for Peff simulation

To check for variogram reproduction, a modified version of the GSLIB gam program was
implemented over the sets of realizations. An average variogram was also calculated and
compared visually with the input models. Variograms for both Naive and Peff runs and for the
major direction of anisotropy are shown, see Figure 12. Based on visual inspection, the input
variogram models for both cases of direct lognormal simulation are reproduced well. The
average variogram indicated by the dashed line tends to match the input model better with the
proportional effect case. This is especially noticeable with the Walker Lake variables.

Conclusion

The direct simulation algorithm was written for use with lognormal data because it is analytically
related to Gaussian data by the distribution and the variogram. It was also useful because the
proportional effect is prominent and analytically defined. Many natural data sets exhibit the
proportional effect, which direct kriging alone cannot reproduce. Introducing a variance
correction into the kriging algorithm permits direct simulation where the proportional effect
inherent in lognormal data is reproduced. Mean, variance, and variogram reproduction was
acceptable for both the naive and proportional-effect-corrected forms of direct simulation. Even
though the naive form indicated good variance reproduction, the variance was shown to be
homoscedastic.

Having a direct simulation algorithm capable of handling the proportional effect will allow a
move into data of various support volumes and population of unstructured grids. Advancing this
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algorithm to one that can handle any input distribution and their inherent heteroscedastic features
is sought after.
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Appendix: Conditional Distributions for Direct Lognormal Kriging

To check if the local distributions at each location being estimated are lognormal, a simple
kriging example was set up in Excel with 4 known data and 3 locations to be sequentially
estimated:

120 Data Locations
-1.5 -0.5
110 - 0203 o 46.6
o Y*1
> 100 - o Y*3
o Y*2
90 - ®5) ° 10
374 163
80 : : :
80 90 100 110 120
X
Location my o
Y*1 -0.546 0.462
Y*2 1.073 0.396
Y*3 0.267 0.444

The data configuration for kriging is shown at the top and the kriging results prior to
transformation to lognormal space are shown at the bottom. Solid bullets are known data and
circles are the points to be estimated. The data values are also shown, both Gaussian (above) and
lognormal (below).

To generate the local distributions corresponding to the global lognormal data with a mean and
standard deviation of 100, a set of 199 quantiles was chosen ranging from 0.005 to 0.995 and the
value corresponding to each for the local normal distributions was found. Using

Z(U) = ea+,B~Y(u)

to transform the values to Z-space and plotting the results revealed that the local distributions are
lognormal. To check if equations Al and A2 (below) are correct, they were used to find the local

alpha and beta values and then the LOGINV function in MS Excel was used to determine the
corresponding value for each quantile. Both methods gave equal results, see below.
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Local Lognormal Distributions
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Starting with the equation for transforming Gaussian data, Y(u) ~ N(0,1), to normal X-space data,
X(u) — Ma.p):

Xu)y=ag+pf;-Y(u)

Replacing Y(u) with the kriged mean and X(u) with the local mean of /n(Z), we get Equation Al,
which relates the local mean in X-space to that in Gaussian space.

ap =g+ f-my (AD)

Where ¢ is the local mean in X-space, o is the global mean of X(u), S is the global variance of
X(u), and my is the kriged mean in Gaussian space. To derive Equation A2, the Equation for
transforming Y-space values to X-space along with the equation defining the variance of a data
set was used. The local normal kriging variance can be defined by the following equation:

1<
2 2
On __Z(ui_mn
nio

Where o, is the variance in Gaussian space, u; is the value at location i, and my is the mean of

all u;, i=1...n. To determine the local variance of /n(Z) we need to know the values of u;y and my
that correspond to u; and my in Gaussian space. Equation Al can be used to perform this
transformation:

Uy =Cg +ﬂG U,
my =g+ P my

Substituting these into the equation for the variance in normal space (X-space), the local variance
of [n(Z) can be solved for:

1 n
ﬂLz :;Z(ui/\’ _mx)2
i=1
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B =3 (@t + Pt g + fm, )

ﬂLz = li[ﬂG (u, — mN)]2

n o

2 n

ﬂLz =7G2(ui _mN)2

B =pon (A2)

Where ﬂLZ is the local variance of In(Z), ﬂé is the global variance of /n(Z), and O']%, is the local

normal variance in Y-space.
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Normal and Lognormal Distribution Transition
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Figure 1: Normal and corresponding lognormal distributions
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Figure 2: Variogram model used to generate the unconditional model. The Gaussian model is
spherical with no nugget effect and a range of 32. The corresponding variogram of the lognormal
variable is shown with the difference between the two functions.
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Standard Deviation
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Figure 3: Scatterplots of Gaussian data showing the variance is homoscedastic (left) and
lognormal data displaying the proportional effect (right).
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Figure 4: Variance of realizations for naive and Peff simulation of the Walker Lake sample set.
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Figure 5: Lognormality of Analytical Lognormal Data.
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SIC Rainfall Lognormality
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Figure 6: Lognormality of Rainfall Data.
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Figure 7: Normal scores and original units variograms.
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Figure 10: Mean and Variance Reproduction using Naive Simulation Note: The darkest bar is
that which is closest to the actual mean of the data.
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Figure 11: Mean and Variance Reproduction using P-effect Simulation Note: The darkest bar is
that which is closest to the actual mean of the data.
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Figure 12: Variogram reproduction.
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