
 109-1 

Order Relations Correction and Tail Extrapolation for 
Stepwise Conditional Transformation 

 
Clayton V. Deutsch 

 
Centre for Computational Geostatistics (CCG) 

Department of Civil and Environmental Engineering 
University of Alberta 

 

The need for many data hinders reliable implementation of stepwise conditional transformation 
for multivariate geostatistical simulation.  Enforcing order relations consistency in the 
multivariate distribution and permitting flexible tail extrapolation for the conditional 
distributions improves the reliability of the transformation and back transformation.  Updated 
transformation and back transformation software is presented. 

Introduction 

In many cases, covariance-based methods like full cokriging, collocated cokriging or Bayesian 
updating work well to account for multivariate relationships; however, stepwise conditional 
transformation (SCT) is particularly useful in cases where multivariate constraints, non-linear 
behavior or heteroscedasticity are important features of the multivariate relationship.  Constraints 
may be important, for example, when accounting for a trend or when accounting for 
mineralogical data.  Non-linear behavior can be important, for example, with flow-related 
variables – some porosity-permeability relationships show a characteristic non-linear relationship 
where the permeability flattens off at high porosity values.  Heteroscedasticity is important, for 
example, with some remotely sensed variables – the relationship between porosity and acoustic 
impedance may be more variable with low impedance values. 

The stepwise conditional transformation technique was first introduced by Rosenblatt (1952).  
Leuangthong (2003) worked significantly with this transform in her Ph.D. thesis and popularized 
its use in modern geostatistics.  The technique is identical to the normal score transform in the 
univariate case.  The normal scores transformation of the second variable is conditional to the 
probability class of the first variable.  The transform for the third variable is conditional to the 
first two and so on:  

y1=G-1(F1(z1) 

y2=G-1(F2|1(z2|z1) 

y3=G-1(F3|1,2(z3|z1,z2) 

The resulting Y variables have univariate Gaussian distributions and the collocated values are 
independent.  This greatly facilitates cosimulation.  The variables are independently simulated 
and the values are back transformed in reverse order.  The multivariate relationships of collocated 
values are reproduced in the back transformation.  The increasing use of SCT has revealed some 
important implementation details.  Correcting the distributions to be monotonically increasing or 
decreasing and permitting more flexible tail extrapolation is important. 
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Order Relations 
The problem considered here is not order relation 
deviations in the conventional sense.  Too few data and 
outlier high values cause the conditional distributions to 
be erratic.  The example at the right is the back 
transformed results for an example of using stepwise for 
trend modeling.  There were nearly 3000 data in the 
original calibration and only 20 classes were used.  
Nevertheless, there are artifacts, particularly in the tails 
of the distribution.  The importance of these artifacts is 
not well understood.  They certainly have a visual 
impact on the cross plot and undermine the credibility of 
the model.  In many cases, I believe they will have no 
affect whatsoever on decisions made with the final 
model.  Nevertheless, the problem of artifacts and 
nonphysical relationships should be corrected.  This problem becomes much worse for the third 
and subsequent variables because conditioning to two or more variables significantly decreases 
the available data for any particular class. 

The direction of the increasing or decreasing correction is based on the sign of the covariance 
between the data.  The discussion below refers to increasing distributions; however, the 
implementation also works with decreasing distributions. 

The key idea for correcting the distributions is to use a procedure similar to that used in GSLIB 
for correcting distributions from indicator kriging: (1) correcting the distributions in an upward 
direction, (2) correcting them in a downward direction, and then (3) averaging the result.  The 
average of two non-decreasing functions is another non-decreasing function.  The average of non-
increasing functions is also non-increasing. 

The example shown below is from the 140 cluster.dat data.  The cross plot on the left 
shows the conditional distributions of the data.  The conditional mean values are connected by a 
solid black line in the middle.  The 0.25 and 0.75 quantiles are shown by long dashed black lines.  
The 0.05 and 0.95 quantiles are shown by the dashed lines.  The cross plot on the right shows the 
results after quantiles are enforced to be increasing. 
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The methodology is easily understood visually.  Here are more details.  The set of conditional 
distributions used for the second variable are denoted: 

 
2 1 1,| 2( ), 1,...,

kZ Z zF z k K= =  

There are K conditional distributions.  The thresholds defining the Z1 classes are often chosen so 
that there is the same number of data in each class.  To facilitate the correction, all conditional 
distributions will be represented by a fixed number of quantiles.  Experience shows that nq=200 
evenly spaced quantiles work well.  The variance of a skewed conditional distribution may be 
underestimated with fewer quantiles.  The probability values: 
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The K • nq quantiles derived from the available data at the specified probability values are: 

 2, , , 1,..., , 1,...,i k qz i n k K= =  

These quantiles will also account for the tail options discussed in the next section.  The correction 
proceeds in three steps: 

 

( )
( )

( ) ( )
2, , 2, , 1 2, ,

( ) ( )
2, , 2, , 1 2, ,

( ) ( )
( ) 2, , 2, ,
2, ,

max , ,proceed upward : 2,...,

min , , proceed downward : 1,...,1

, 1,...,
2

upward upward
i k i k i k

downward downward
i k i k i k

upward downward
corrected i k i k
i k

z z z k K

z z z k K

z z
z k K

−

+

⎫
= =

= = − ⎬

+
= =

, 1,..., qi n

⎪
⎪⎪ =
⎪
⎪
⎪⎭

 

The “max” and “min” are switched if the correction is for a decreasing bivariate distribution. 

There are bivariate distributions that are not monotonically increasing 
or decreasing, see the sketch to the right.  There may be value in 
smoothing the quantiles to reduce unwarranted noise; however, this 
correction will have to be modified for use in cases where the 
distributions are not monotonic. 

The methodology for the third variable is essentially the same.  The set of conditional 
distributions used for the third variable are denoted: 

 
3 1 1, 2 2,| , 3( ), 1,...,

k kZ Z z Z zF z k K= = =  

The upward/downward correction described above proceeds along all Z1 values and then Z2 
values.  The covariance between Z3 and Z1 and Z2 and Z1 is calculated to judge whether the 
correction should be upward or downward. 
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Tail Extrapolation 
There are two main reasons for setting minimum and maximum 
limits for the conditional distributions: (1) there may be spurious 
outlier data that should be clipped, and (2) more reliable back 
transformation when we are simulating many more locations than 
we have original data.  The back transformation according to 
conditional distributions requires a full specification of all 
conditional distributions for p values from 0 to 1.  Some of the p 
values may be very close to 0 or 1 and fall outside the range 
available from the data.  An extrapolation is required. 

The indicator programs IK3D and SISIM in GSLIB permit flexible tail extrapolation because 
there may be less than 10 thresholds.  The power law, hyperbolic and tabulated quantile options 
are not suitable for stepwise transformation: (1) there are not enough data to infer the additional 
parameters, and (2) they are somewhat unstable permitting extreme values in the back 
transformation.  A straightforward linear interpolation to minimum and maximum values has 
been implemented. 

The minimum/maximum values that specify the lower and upper tails are simply 2 numbers for 
the first variable Z1, they are curves for the bivariate case of Z2 (as shown in the sketch above 
right) and they are surfaces for the trivaraite case of Z3.  A piecewise linear interpolation is used 
for the bivariate curves and an inverse distance interpolation is used to estimate the 
minimum/maximum surfaces in the trivariate case. 

The interpolation of the minimum/maximum surfaces in the trivariate (and higher order) cases 
must account for the units of the data.  The distance for the inverse distance weighting uses the 
minimum and maximum values for each variable to specify the anisotropy: 

 
2 2
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i i
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This distance is calculated for all i pairs specified by the user and a conventional inverse squared 
distance estimation is used.  The squared distance is used to ensure that the local control points 
are given a large weight. 

For simplicity in the user input, the minimum and maximum must be specified for all control 
values, that is, the current software does not allow different Z1 control values when the Z2 
maximum values are specified.  The sketch above to the right shows five control points for the 
maximum and four for the minimum, which is not valid input.  There are three tables of input 
values as illustrated below in three tables: 

 

Z1 Tails 

Lower Upper 
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Z2 Tails 

Z1 value Lower Upper 

   

   

 

Z3 Tails 

Z1 value Z2 value Lower Upper 

    

    

 

Outlier data and the minimum and maximum values are fixed before the conditional distributions 
are established and the transform established. 

Modified Computer Code 
Modified programs are available to implement the stepwise conditional transformation and back 
transformation: sctrans and scback.  The version number has been incremented to 2.000.  
There is an indicator flag for the correction of order relations and tabulated minimum/maximum 
values.  The new parameters: 
1                             -apply order relations corrections (1=yes) 
0.0    1.2                    -min/max values for first variable 
2                             -number of min/max values for second variable 
0.0  0.00 0.005               -   second tail: Z1, Z2min, Z2max 
1.2  0.01 0.200               -   second tail: Z1, Z2min, Z2max 
1                             -number of min/max values for third variable 
0.5  0.2  0.01  0.40          -   third tail: Z1, Z2, Z3min, Z3max 

In practice, there would be more than just one or two control points for the second and third 
variable tails; this is just an example. 

Examples 
The first example is from a set of molybdenum and copper data.  Figure 1 shows the original data 
and the results of back transforming 100,000 simulated Gaussian values.  There were 1505 
original data and 20 classes were considered which gives about 75 data per class.  The results on 
Figure 1 are based on the conventional approach with no order relations correction and no 
limiting by tails.  Figure 2 shows the results with the order relations turned on – note that the 
conditional distributions systematically increase.  There are fewer points to the far right of the 
plot (high Cu values), therefore fewer high Mo values.  Figure 3 shows the results when upper 
and lower tail values were imposed on the distribution.  A summary of the statistics reproduction 
is shown in the table below.  The minor difference in the mean values for the classical stepwise 
conditional transform values is due to a slight departure from standard normality and the class 
discretization.  The correlation increases somewhat when order relations and the tails are 
corrected. 
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 Results of Stepwise Back Transformation 
 Original Data Conventional Order Relations Tails/Order 

Cu mean 0.365 0.362 0.362 0.362 
Mo mean 0.027 0.026 0.029 0.025 

ρ 0.239 0.256 0.214 0.405 
ρ - rank 0.507 0.515 0.520 0.536 

 

A second example with log K and porosity data from a North Sea reservoir was considered.  
Figure 4 shows the original data and the results of back transforming 100,000 simulated Gaussian 
values.  There were 3725 original data and 20 classes.  Figure 5 shows the results with the order 
relations turned on.  The statistics are reproduced very closely in all cases, see below. 

 
 Results of Stepwise Back Transformation 

 Original Data Conventional Order Relations 
φ mean 7.656 7.636 7.636 

Log K mean 0.421 0.416 0.416 
ρ 0.689 0.686 0.689 

ρ - rank 0.714 0.712 0.713 

 

A number of other examples were considered.  The order relations correction led to visually 
improved results in all cases.  The tails extrapolation limits are particularly useful with very 
erratic data. 

Conclusions 
Implementation details are important.  This research note discusses some important aspects for 
stepwise conditional transformation (SCT) in presence of relatively sparse data.  The order 
relations correction amounts to smooth the conditional distributions and permits more reliable (at 
least stable) inference of conditional distributions when there are limited calibration data.  The 
tail extrapolation options to user specified minimum and maximum values also permits more 
stable inference of the conditional distributions and leads to more reliable back transformation 
when there are many simulated values. 
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Figure 1: Cross plot of 1505 original molybdenum (Mo) and copper (Cu) data (on the left) and 
the result of simulating 100,000 locations (on the right). 

 

 
Figure 2: Cross plot of backtransformed 100,000 values when the original conditional 
distributions have order relations corrected. 

 

 
Figure 3: Cross plot of backtransformed 100,000 values when the original conditional 
distributions had the tails imposed and order relations corrected. 
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Figure 4: Cross plot of 3725 original log-permeability and porosity data (on the left) and the 
result of simulating 100,000 locations (on the right). 

 

 

 
Figure 5: Cross plot of backtransformed 100,000 values when the original conditional 
distributions have order relations corrected. 

 


